


Riemann Solvers and Numerical Methods
for Fluid Dynamics

Third Edition



Eleuterio F. Toro

Riemann Solvers
and Numerical Methods
for Fluid Dynamics

A Practical Introduction

Third Edition

@ Springer



Professor Eleuterio F. Toro
University of Trento

Italy
eleuteriofrancisco.toro@unitn.it

ISBN 978-3-540-25202-3 e-ISBN 978-3-540-49834-6
DOI 10.1007/978-3-540-49834-6
Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2009921818

(© Springer-Verlag Berlin Heidelberg 2009

This work is subject to copyright. All rights are reserved, whether the whole or part of the materia is
concerned, specifically therights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: eStudio Calamar S.L.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



In memory of two remarkable persons:
my mother Olga Munoz de Toro (Chile, 1930-2003) and
my father—in-law Fritz Freund (Germany, 1926-2008).



Preface to the First Edition

In 1917, the British scientist L. F. Richardson made the first reported
attempt to predict the weather by solving partial differential equations nu-
merically, by hand! It is generally accepted that Richardson’s work, though
unsuccessful, marked the beginning of Computational Fluid Dynamics (CFD),
a large branch of scientific computing today. His work had the four distinguish-
ing characteristics of CFD: a PRACTICAL PROBLEM to solve, a MATHEMATICAL
MODEL to represent the problem in the form of a set of partial differential equa-
tions, a NUMERICAL METHOD and a COMPUTER, human beings in Richardson’s
case. Eighty years on and these four elements remain the pillars of modern
CFD. It is therefore not surprising that the generally accepted definition of
CFD as the science of computing numerical solutions to partial differential or
integral equations that are models for fluid flow phenomena, closely embodies
Richardson’s work.

COMPUTERS have, since Richardson’s era, developed to unprecedented lev-
els and at an ever decreasing cost. The range of application areas giving rise
to PRACTICAL PROBLEMS to be solved numerically has increased dramati-
cally. In addition to the traditional demands from meteorology, oceanogra-
phy, some branches of physics and from a range of engineering disciplines,
there are at present fresh demands from a dynamic and fast-moving man-
ufacturing industry, whose traditional build-test—fix approach is rapidly be-
ing replaced by the use of quantitative methods, at all levels. The need for
new materials and for decision—making under environmental constraints are
increasing sources of demands for mathematical modelling, numerical algo-
rithms and high—performance computing. MATHEMATICAL MODELS have im-
proved, though the basic equations of continuum mechanics, already available
more than a century before Richardson’s first attempts at CFD, are still the
bases for modelling fluid flow processes. Progress is required at the level of
thermodynamics, equations of state, and advances into the modelling of non—
equilibrium and multiphase flow phenomena. NUMERICAL METHODS are per-
haps the success story of the last eighty years, the last twenty being perhaps
the most productive. This success is firmly based on the pioneering works of
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scientists such as von Neumann, whose research on stability explained and
resolved the difficulties experienced by Richardson. This success would have
been impossible without the contributions from Courant, Friedrichs, Richt-
myer, Lax, Oleinik, Wendroff, Godunov, Rusanov, van Leer, Harten, Roe,
Osher, Colella, Yee, and many others. The net result is: more accurate, more
efficient, more robust and more sophisticated numerical methods are available
for ambitious practical applications today.

Due to the massive demands on CFD and the level of sophistication of
numerical methods, new demands on education and training of the scientists
and engineers of the present and the future have arisen. This book is an
attempt to contribute to the training and education in numerical methods for
fluid dynamics and related disciplines.

The contents of this book were developed over a period of many years of
involvement in research on numerical methods, application of the methods
to solve practical problems and teaching scientist and engineers at the post—
graduate level. The starting point was a module for a Masters Course in Com-
putational Fluid Dynamics at the College of Aeronautics, Cranfield, UK. The
material was also part of short courses and lectures given at Cranfield, UK; the
Ernst Mach Institute, Freiburg, Germany; the Shock Wave Research Centre,
Tohoku University, Sendai, Japan; the Department of Mathematics and the
Department of Civil and Environmental Engineering, University of Trento,
Italy; the Department of Mathematics, Technical University Federico Santa
Maria, Chile; the Department of Mechanics, Technical University of Aachen,
Germany; and the Manchester Metropolitan University (MMU), Manchester,
UK.

This book is about modern shock—capturing numerical methods for solv-
ing time—dependent hyperbolic conservation laws, with smooth and discon-
tinuous solutions, in general multidimensional geometries. The approach is
comprehensive, practical and, in the main, informal. All necessary items of
information for the practical implementation of all methods studied here, are
provided in detail. All methods studied are illustrated through practical nu-
merical examples; numerical results are compared with exact solutions and in
some cases with reliable experimental data.

Most of the book is devoted to a coherent presentation of Godunov meth-
ods. The developments of Godunov’s approach over the last twenty years have
led to a mature numerical technology, that can be utilised with confidence to
solve practical problems in established as well as new areas of application.
Godunov methods rely on the solution of the Riemann problem. The exact
solution is presented in detail, so as to aid the reader in applying the solution
methodology to other hyperbolic systems. We also present a variety of approx-
imate Riemann solvers; again, the amount of detail supplied will hopefully aid
the reader who might want to apply the methodologies to solve other prob-
lems. Other related methods such as the Random Choice Method and the Flux
Vector Splitting Method are also included. In addition, we study centred (non—
upwind) shock—capturing methods. These schemes are much less sophisticated
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than Godunov methods, and offer a cheap and simple alternative. High—order
extensions of these methods are constructed for scalar PDEs, along with their
Total Variation Diminishing (TVD) versions. Most of these TVD methods
are then extended to one-dimensional non-linear systems. Techniques to deal
with PDEs with source terms are also studied, as are techniques for multidi-
mensional systems in general geometries.

The presentation of the schemes for non-linear systems is carried out
through the time—dependent Euler equations of gas dynamics. Having read
the relevant chapters/sections, the reader will be sufficiently well equipped to
extend the techniques to other hyperbolic systems, and to advection—reaction—
diffusion PDEs.

There are at least two ways of utilising this book. First, it can be used as
a means for self-study. In the presentation of the concepts, the emphasis has
been placed on clarity, sometimes sacrificing mathematical rigour. The typical
reader in mind is a graduate student in a department of engineering, physics,
applied mathematics or computer science, embarking on a research topic that
involves the implementation of numerical methods, from first principles, to
solve advection—reaction—diffusion problems. The contents of this book may
also be useful to numerical analysts beginning their research on algorithms,
as elementary background reading. Such users may benefit from a compre-
hensive self-study of all the contents of the book, in a period of about two
months, perhaps including the practical implementation and testing of most
numerical methods presented. Another class of readers who may benefit from
self-studying this book are scientists and engineers in industry and research
laboratories. At the cost of some repetitiveness, each chapter is almost self—
contained and has plenty of cross—referencing, so that the reader may decide
to start reading this book in the middle or jump to the last chapter.

This book can also be used as a teaching aid. Academics involved in the
teaching of numerical methods may find this work a useful reference book.
Selected chapters or sections may well form the bases for a final year under-
graduate course on numerical methods for PDEs. In a mathematics or com-
puter science department, the contents may include: some sections of chapter
1, chapters 2, 5, 13, some sections of chapter 14, chapter 15 and some sections
of chapter 16. In a department of engineering or physics, one may include
chapters 3, 4, 6, 7, 8, 9, 10, 11, 12, 15, 16 and 17. A postgraduate course may
involve most of the contents of this book, assuming perhaps a working knowl-
edge of compressible fluid dynamics. Short courses for training engineers and
scientists in industry and research laboratories can also be based on most of
the contents of this book.

Eleuterio Toro
Manchester, UK
March 1997.
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More than a decade has elapsed since the publication of the first edition of this
book. During this period the response from readers the world over has been
overwhelming, from students and academics to senior researchers. This decade
has also witnessed a significant increase in the use of numerical methods, not
only in the traditional areas such as physics and industrial processes, but also
in biology, economics, social sciences and in inter—disciplinary research areas.
We also observe a new trend in mathematical modelling and numerical simu-
lation. Numerical methods are steadily moving from being a simulation tool
for engineering design in technology, to being an indispensable instrument in
science, for studying and understanding phenomena of the most varied kind.
The expectation is that a simulation will represent the solution of the actual
mathematical model. Such expectation implies the need for more and more
high—quality research on new and more accurate numerical methods and the
need for better training of scientists at the undergraduate and post—graduate
levels at universities and higher education institutions. I expect that this new
edition of the book will continue to play a role in such endeavours.

In this edition I have included three new chapters, chapters 18 to 20. Chapter
18 is about a multi-dimensional extension of the centred FORCE flux stud-
ied in Chapter 7, for one-dimensional systems; in a sense, this new chapter
is a response to the increasing role of the so—called centred methods. These
have the advantage of avoiding the direct solution of the classical Riemann
problem, in the conventional manner. As a result, the applicability of these
centred schemes is more general than that of conventional upwind methods;
this feature is specially useful when having to solve complicated systems, for
which the solution of the Riemann problem may be difficult or impossible
to obtain. The new FORCE scheme applies to two and three space dimen-
sions on general structured and unstructured meshes and can be extended to
high order of accuracy in space and time in the frameworks of finite volume
and discontinuous Galerkin finite element methods. The second new addition,
chapter 19, is about the high—order, or generalized, Riemann problem, the
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Cauchy problem for hyperbolic balance laws whose initial conditions are two
smooth vectors separated by a discontinuity at the origin. The solution of the
generalized Riemann problem serves as the building block for constructing
fully discrete, one-step Godunov—type schemes of arbitrary order of accuracy
in both space and time. This chapter is effectively a generalization of the ma-
terial of this book studied in previous chapters and responds to the general
trend of improving the accuracy, in space and time, of numerical methods for
solving evolutionary partial differential equations. These high—order numerical
schemes can be constructed in the frameworks of finite volume and discon-
tinuous Galerkin finite element methods. The third new chapter, chapter 20,
contains an introduction to these high—order methods in the framework of
finite volumes.

This edition of the book contains a substantially revised version of the HLLC
Riemann solver of chapter 10. This responds to many communications re-
ceived from readers and to new developments of the technique and its use for
very ambitious scientific and technological applications. Some modifications
to chapter 21 have also been carried out, as well general corrections to errors
pointed out by readers.

This book, in spite of being introductory in nature, continues to be a book
used mainly by researchers, and is perhaps too advanced for teaching under-
graduate students. As a result, a new more elementary book is being written
in collaboration with Enrico Bertolazzi and Gianluca Vignoli. This new book,
to be published by Springer in 2009, is specifically designed for teaching un-
dergraduate students in Science and Engineering, with plenty of exercises,
case studies and miniprojects. On the other hand, in order to respond to re-
search needs for better and more sophisticated numerical methods, we are
currently preparing a new book, in collaboration with Claus—Dieter Munz,
Vladimir Titarev and Michael Dumbser. This book will deal with advanced,
high—order, finite volume and discontinuous Galerkin numerical methods for
structured and unstructured meshes in multiple space dimensions, to be pub-
lished by Springer in 2009.

I gratefully acknowledge the contribution of some collaborators to the prepara-
tion of this third edition. In particular I thank two of my former PhD students,
Dr. Vladimir Titarev, now at Cranfield University, UK and Dr. Cristobal Cas-
tro, now at the Technical University of Munich, Germany. I also thank two
former post—doctoral fellows, Dr. Martin Kéaser, now at the Technical Uni-
versity of Munich, Germany and Dr. Michael Dumbser, now a colleague in
my group at Trento University, Italy. Thanks are also due to colleague Enrico
Bertolazzi and to visiting scholars Marfa Nofuentes (Universidad de Cérdoba,
Spain) and Arturo Hidalgo (Universidad Politécnica de Madrid, Spain), who
kindly helped in various ways in the preparation of the material.
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The Equations of Fluid Dynamics

In this chapter we present the governing equations for the dynamics of
a compressible material, such as a gas, along with closure conditions in the
form of equations of state. Equations of state are statements about the nature
of the material in question and require some notions from Thermodynamics.
There is no attempt to provide an exhaustive and rigourous derivation of the
equations of continuum mechanics; such a task is beyond the scope of this
book. Instead, we give a fairly self-contained summary of the equations and
the Thermodynamics in a manner that is immediately useful to the main
purpose of this book, namely the detailed treatment of Riemann solvers and
numerical methods.

The presentation of the equations is unconventional. We first introduce the
differential form of the Euler equations along with basic physical quantities
and thermodynamic relations leading to equations of state. Then the effects
of viscous diffusion and heat transfer are added to the Euler equations. After
this, the fundamental integral form of the equations is introduced; conven-
tionally, this is the starting point for presenting the governing equations. This
chapter contains virtually all of the necessary background on Fluid Dynamics
that is required for a fruitful study of the rest of the book. It also contains
useful information for those wishing to embark on complex practical applica-
tions. A hierarchy of submodels is also presented. This covers four systems of
hyperbolic conservation laws for which Riemann solvers and upwind methods
are directly applicable, namely (i) the time-dependent Euler equations, (ii)
the steady supersonic Euler equations, (iii) the shallow water equations and
(iv) the artificial compressibility equations associated with the incompress-
ible Navier—Stokes equations. Included in the hierarchy are also some simpler
models such as linear systems and scalar conservation laws.

Some remarks on notation are in order. A Cartesian frame of reference
(z,y, z) is chosen and the time variable is denoted by ¢. Transformation to
other coordinate systems is carried out using the chain rule in the usual way,
see Sect. 16.7.2 of Chap. 16. Any quantity ¢ that depends on space and time
will be written as ¢(z,y, z,t). In most situations the governing equations will
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be partial differential equations (PDEs). Naturally, these will involve partial
derivatives for which we use the notation

_ 09 _ 0¢
(bt - E ) (bzxz = a

)
X

_9¢

_9¢
¢y = 5'7y )
We also recall some basic notation involving scalars and vectors. The dot
product of two vectors A = (a1, a9,a3) and B = (b1, by, bs) is the scalar
quantity

A -B = ai1b; + agbs + agbs .

Given a scalar quantity ¢ that depends on the spatial variables z, y, z the
gradient operator V as applied to ¢ is the vector

¢ ¢ 0¢
do=Vo=(—,+,5) -
The divergence operator applies to vectors and the result is a scalar quantity;
for a vector A, the divergence of A is
0a1 3@2 aag

divA=V - A= —+4+—+—.
a v 8x+8y+8z

1.1 The Euler Equations

In this section we consider the time-dependent Euler equations. These are
a system of non—linear hyperbolic conservation laws that govern the dynamics
of a compressible material, such as gases or liquids at high pressures, for which
the effects of body forces, viscous stresses and heat flux are neglected.

There is some freedom in choosing a set of variables to describe the flow
under consideration. A possible choice is the so called primitive variables or
physical variables, namely, p(x,y, z,t) = density or mass density, p(z,y, z,t) =
pressure, u(z,y, z,t) = x—component of velocity, v(z,y, z,t) = y—component
of velocity, w(x,y,z,t) = z—component of velocity. The velocity vector is
V = (u,v,w). An alternative choice is provided by the so called conserved
variables. These are the mass density p, the z—momentum component pu, the
y-momentum component pv, the z-momentum component pw and the total
energy per unit mass E. Physically, these conserved quantities result natu-
rally from the application of the fundamental laws of conservation of mass,
Newton’s Second Law and the law of conservation of energy. Computationally,
there are some advantages in expressing the governing equations in terms of
the conserved variables. This gives rise to a large class of numerical methods
called conservative methods, which will be studied later in this book. We next
state the equations in terms of the conserved variables under the assumption
that the quantities involved are sufficiently smooth to allow for the operation
of differentiation to be defined. Later we remove this smoothness constraint
to allow for solutions containing discontinuities, such as shock waves.
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1.1.1 Conservation—Law Form
The five governing conservation laws are
pt + (pu)z + (pv)y + (pw). =0,
(pu)t + (pu® + p)a + (puv)y + (puw
(pv)e + (puv)e + (pv* + Py + (v
(pw)e + (puw)s + (pvw)y + (pw? +p). =0,
B+ [u(E+p)le + v(E+p)ly + [w(E+p)l. =0.

Here E is the total energy per unit volume

+ )z:Oa
+ )z:0a

1
E:p(§V2+€),

where

lyo 1 Lo 9 2
2V = 2V~V7 2(u +v° +w?)
is the specific kinetic energy and e is the specific internal energy. One generally
refers to the full system (1.1)—(1.5) as the Euler equations, although strictly
speaking the Euler equations are just (1.2)—(1.4).

The conservation laws (1.1)—(1.5) can be expressed in a very compact
notation by defining a column vector U of conserved variables and flux vectors
F(U), G(U), H(U) in the z,y and z directions, respectively. The equations

now read

U, +F(U),+G(U), +H(U), =0, (1.7)
with ~
p pu
pu pu? +p
U=|pv| ,F= pUY ,
pw puw
| E u(E + p)
(1.8)
[ v pw
puv puw
G=|p?+p | H= pow
powW pw* +p
| v(E +p) w(E +p)

It is important to note that F = F(U), G = G(U), H = H(U); that is,
the flux vectors are to be regarded as functions of the conserved variable
vector U. Any set of PDEs written in the form (1.7) is called a system of
conservation laws. As partial derivatives are involved we say that (1.7) is a
system of conservation laws in differential form. The differential formulation
assumes smooth solutions, that is, partial derivatives are assumed to exist.
There are other ways of expressing conservation laws in which the smoothness
assumption is relaxed to include discontinuous solutions.
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1.1.2 Other Compact Forms

An even more compact way of expressing equations (1.1)—(1.5) involves
tensors. First note that the spatial derivatives in (1.1) can be expressed in
terms of the divergence operator e.g.

div(pV) = V- (pV) = (pu)z + (pv)y + (pw)= -
Thus equation (1.1) for conservation of mass can be written as
pe+V.-(pV)=0. (1.9)

As the divergence operator may also be applied to tensors, the three momen-
tum equations for conservation of momentum can be written in compact form
as

(pV)+V-(pVRV +pl)=0, (1.10)

where V ® V is the tensor product and | is the unit tensor. These are given
respectively by

w? wv uw 100
VoV=|vw22ow]|, I=[010
wu wu w? 001

The conservation of energy equation can be written as
E.+V-[(E+pV]=0. (1.11)

In fact the complete system of equations (1.9)—(1.11) can be written in diver-
gence form as
U, +V-H=0, (1.12)

where H is the tensor

pu pu?+p pou  pwu u(E+p)
H=1|pv puw pv’+p pwv v(E+p)| . (1.13)
pw puw  pvw pw?+pw(E +p)

Note that the rows of the tensor H are the flux vectors F, G and H, under-
stood as row vectors. For computational purposes it is the compact conserva-
tive form (1.7)—(1.8) of equations (1.1)—(1.5) that is most useful. In Chap. 3 we
study some mathematical properties of the Euler equations and in Chap. 4 we
solve exactly the Riemann problem for the one—dimensional Euler equations
for ideal and covolume gases. Numerical methods for the Euler equations are
discussed in Chaps. 6-12, 14 and 16.
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1.2 Thermodynamic Considerations

The stated governing partial differential equations (1.1)—(1.5) for the dy-
namics of a compressible material are insufficient to completely describe the
physical processes involved. There are more unknowns than equations and
thus closure conditions are required. Physically, such conditions are state-
ments related to the nature of the material or medium. Relation (1.6) defines
the total energy E in terms of the velocity vector V involved in equations
(1.1)—(1.5) and a new variable e, the specific internal energy. One therefore
requires another relation defining e in terms of quantities already given, such
as pressure and density, as a closure condition. For some applications, or when
more physical effects are added to the basic equations (1.1)—(1.5), other vari-
ables, such as temperature for instance, may need to be introduced.

Central to providing closure conditions is a discussion of the fundamen-
tals of Thermodynamics. This introduces new physical variables and provides
relations between variables. Under certain conditions the governing equations
may be approximated so as to make such discussion of Thermodynamics un-
necessary; two important examples are incompressible flows and isentropic
flows [112]. The specific internal energy e has an important role in the First
Law of Thermodynamics, while the entropy s is intimately involved with the
Second Law of Thermodynamics. Entropy plays a fundamental role not just
in establishing the governing equations but also at the level of their mathe-
matical properties and the designing of numerical methods to solve them. In
addition to the basic thermodynamic variables density p, pressure p, temper-
ature T, specific internal energy e and entropy s, one may define other new
variables that are combinations of these.

1.2.1 Units of Measure

A brief discussion of physical quantities and their units of measure is essen-
tial. We consistently adopt, unless otherwise stated, the International System
of Units or SI Units. Three basic quantities are length (1), mass (m) and time
(t). The unit of measure of length is: one metre = 1 m. Submultiples are: one
decimetre = 10~! m, one centimetre = 1072 m, one millimetre = 1073 m.
Multiples are: 10' m, 10> m and 10®> m = one kilometre. From length one can
establish the units of measure of area: one square metre = 1 m? and the units
of measure of volume: one cubic metre = 1 m?. The unit of measure of mass
is: one kilogram = 1 kg. A useful submultiple is: one gram = 1 g = 1073 kg.
As density is p = m/V, where V is the total volume of the system, the unit of
measure of density is: one kilogram per cubic metre = 1 kg/m? = 1 kgm~3.
The unit of measure of time is: one second = 1 s. The unit of measure of speed
is: one metre per second =1 m/s= 1 ms~!. The unit of measure of acceleration
is: one metre per second per second = 1 m/s?= 1 ms~2. The unit of measure
of force is: one Newton = 1 N. The Newton N is defined as the force required
to give a mass of 1 kg an acceleration of 1 ms~2. Newton’s Second Law states
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that force = constant x mass x acceleration. The value of the unit of force is
then chosen so as to make force = 1 when constant = 1. Therefore the unit of
force (N) is: 1 kgms™2. We now give the unit of measure of pressure. Pressure
p is the magnitude of force per unit area and therefore its unit of measure is:
one Newton per square metre = 1 Nm~2 = 1 Pa : one Pascal. Two common
units of pressure are 1 bar=10° Pa and 1 atm (atmosphere) = 101 325 Pa. An
important rule in manipulating physical quantities is dimensional consistency.
For example, in the expression pu? + p in the momentum equation (1.2), the
dimensions of pu? must be the same as those of (pressure) p. This is easily
verified.

To introduce the unit of measure of energy we first recall the concept of
Work. Work (W) is done when a force produces a motion and is measured as
W = force x distance moved in the direction of the force. The unit of measure
of work is: one Joule = 1 J. One Joule is the work done when the point of
application of a force of 1 N moves through a distance of 1 m in the direction
of the force. As energy is the capacity to perform work, the unit of measure
of energy is also one Joule. The temperature T will be measured in terms of
the Thermodynamic Scale or the Absolute Scale, in which the unit of measure
is: one kelvin = 1 K.

Thermodynamic properties of a system that are proportional to the mass
m of the system are called extensive properties. Examples are the total energy
FE and the total volume V of a system. Properties that are independent of m
are called intensive properties; examples are temperature 7" and pressure p.
Extensive properties may be converted to their specific (intensive) values by
dividing that property by its mass m. For instance, from the total volume
V' we obtain the specific volume v = V/m (the reader is warned that v is
also used for velocity component). As p = m/V, the specific volume is the
reciprocal of density. The units of measure of other quantities will be given as
they are introduced.

1.2.2 Equations of State (EOS)

A system in thermodynamic equilibrium can be completely described by
the basic thermodynamic variables pressure p and specific volume v. A family
of states in thermodynamic equilibrium may be described by a curve in the p—
v plane, each characterised by a particular value of a variable temperature 7.
Systems described by the p—v—T variables are usually called p—v—T" systems.
There are physical situations that require additional variables. Here we are
only interested in p—v—T systems. In these, one can relate the variables via
the thermal equation of state

T=T(p,v) . (1.14)
Two more possible relations are

p:p(T7U) » U= U(Tvp) .
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The p—v-T relationship changes from substance to substance. For thermally
ideal gases one has the simple expression

T:%W (1.15)
where R is a constant which depends on the particular gas under considera-
tion.

The First Law of Thermodynamics states that for a non—adiabatic sys-
tem the change Ae in internal energy e in a process will be given by
Ae = AW + AQ, where AW is the work done on the system and AQ is
the heat transmitted to the system. Taking the work done as dW = —pdv one
may write

d@ = de + pdv . (1.16)

The internal energy e can also be related to p and v via a caloric equation of
state

e=c¢e(p,v) . (1.17)
Two more possible ways of expressing the p—v—e relationship are
p=p(v,e), v=1u(e,p).
For a calorically ideal gas one has the simple expression

o P
y—=1 p(yv-1)’

e= (1.18)
where v is a constant that depends on the particular gas under consideration.

The thermal and caloric equations of state for a given material are closely
related. Both are necessary for a complete description of the thermodynamics
of a system. Choosing a thermal EOS does restrict the choice of a caloric
EOS but does not determine it. Note that for the Euler equations (1.1)—(1.5)
one only requires a caloric EOS, e.g. p = p(p,e), unless temperature T is
needed for some other purpose, in which case a thermal EOS needs to be
given explicitly.

1.2.3 Other Variables and Relations

The entropy s results as follows. We first introduce an integrating factor
1/T so that the expression

de + pdv = %—i-p dv—l—%dp
v op

in (1.16) becomes an exact differential. Then the Second Law of Thermody-
namics introduces a new variable s, called entropy, via the relation

Tds = de + pdv . (1.19)



8 1 The Equations of Fluid Dynamics

For any process the change in entropy is As = Asg + As;, where Asg is the
entropy carried into the system through the boundaries of the system and
As; is the entropy generated in the system during the process. Examples of
entropy—generating mechanisms are heat transfer and viscosity, such as may
operate within the internal structure of shock waves. The Second Law of
Thermodynamics states that As; > 0 in any irreversible process. Only in a
reversible process is As; = 0.

Another variable of interest is the specific enthalpy h. This is defined in
terms of other thermodynamic variables, namely

h=e+pv. (1.20)

One can also establish various relationships amongst the basic thermodynamic
variables already defined. For instance from (1.19)

de =Tds — pdv , (1.21)

that is to say, one may choose to express the internal energy e in terms of the
variables appearing in the differentials, i.e.

e=e(s,v) . (1.22)

Also, taking the differential of (1.20) we have dh = de + pdv + vdp, which by
virtue of (1.21) becomes
dh =Tds+vdp , (1.23)

and thus we can choose to define h in terms of s and p, i.e.
h = h(s,p) . (1.24)

Relations (1.22) and (1.24) are called canonical equations of state and, unlike
the thermal and caloric equations of state (1.14) and (1.17), each of these
provides a complete description of the Thermodynamics. For instance, given
(1.22) in which e is a function of s and v (independent variables) the pressure
p and temperature T follow as

() - (2) w25

Relations (1.25) follow from comparing

Oe Oe
e (5), 0 (),

with equation (1.21). It is conventional in Thermodynamics to specify clearly
the independent variables in partial differentiation, as changes of variables
often take place. In (1.25), obviously the independent variables are s and v,
as is also indicated in (1.22). For instance, the first partial derivative in (1.25)
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means differentiation of e with respect to v while holding s constant; the
second partial derivative in (1.25) means differentiation of e with respect to s
while holding v constant. In a similar manner, equation (1.24) (where s and
p are the independent variables) produces T and v from relation (1.23) and

oh oh
- () 04 (3)

o (1) () a0

The Helmholtz free energy f is defined as

Hence,

f=e—-Ts. (1.27)
A corresponding canonical EOS is

f=1FfwT),

from which one can obtain

Two more quantities can be defined if a thermal EOS v = v(p,T) is given.
These are the volume expansivity o (or expansion coefficient) and the isother-
mal compressibility 3, namely

1/ dv 1 /ov

Using equations (1.28) and (1.27) we obtain

Js _[(Op\ «
(&))T B <W)v a B 7

from which it can be shown that

de\ o1 —pp
() ~or= a0

The heat capacity at constant pressure c, and the heat capacity at constant
volume ¢, (specific heat capacities) are now introduced. In general, when an
addition of heat d@ changes the temperature by dT the ratio ¢ = dQ/dT
is called the heat capacity of the system. For a process at constant pressure
relation (1.16) becomes

d@ = de + d(pv) = dh,
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where definition (1.20) has been used. The heat capacity ¢, at constant pres-
sure becomes ¢, = dQ/dT = dh/dT. From (1.23), since dp = 0, dh = T'ds.
Assuming h = h(T, p) we obtain

o (2) -1(Z) - aa

The heat capacity ¢, at constant volume may be written, following a similar

argument, as
Oe Js
C'U - (W)v - T (W)v . (1.32)

The speed of sound is another variable of fundamental interest. For flows in
which particles undergo unconstrained thermodynamic equilibrium one de-
fines a new state variable a, called the equilibrium speed of sound or just
speed of sound. Given a caloric equation of state

p=0p(p,s), (1.33)

one defines the speed of sound a as

a= <?;>S . (1.34)

This basic definition can be transformed in various ways using established
thermodynamic relations. For instance, given a caloric EOS in the form h =

h(p, p), from (1.23) we can write
oh oh 1 dp dp
D) ap (51) ap=rass | () ap+ () as)
<3p>,,p 3ppp o |[\op), " 9s ),

Setting ds = 0 and using definition (1.34) we obtain

From (1.31) (%)p = ¢, and, if the thermal EOS (1.15) is acceptable, we
obtain
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a=+/v(T)RT = \/% (1.35)

P

For a general material the caloric EOS is a functional relationship involving
the variables p—p-e. One may also use the specific volume v = 1/p instead
of density p. The derived expression for the speed of sound a depends on
the choice of independent variables. Two possible choices and their respective

expressions for a are
p=oplpe), a=/Lp.+p,,
T ’ (1.36)

e=e(p,p), a s

p2ep ep ’

where subscripts denote partial derivatives.

1.2.4 Ideal Gases
We consider gases obeying the ideal thermal EOS
pV =nRT, (1.37)

where V is the volume, R = 8.134 x 103 J kilomole 'K !, called the Universal
Gas Constant, and T is the temperature measured in degrees kelvin (K).
Two more universal constants are now introduced. Recall that a mole of a
substance is numerically equal to w gram and contains 6.02 x 102 particles
of that substance, where w is the relative atomic mass (RAM) or relative
molecular mass (RMM); 1 kilomole = w kg. One kilomole of a substance
contains Na = 6.02 x 10%6 particles of that substance. The constant Nj is
called the Avogadro Number. Sometimes this number is given in terms of one
mole. The Boltzmann Constant k is now defined as k = RNu; n in (1.37) is
the number of kilomoles in volume V, that is n = N/N, and N is the number
of molecules. On division by the mass m = nw we have

R
pv:RT,R:;, (1.38)

where R is called the Specific Gas Constant or simply Gas Constant. Solving
for v we write the ideal gas thermal equation of state as

iy

v=ov(T,p) = (1.39)

The volume expansivity « and the isothermal compressibility 3 defined by
(1.29) become

1 1
a=7. 8= (1.40

Substitution of these into (1.30) gives



12 1 The Equations of Fluid Dynamics

de
(av);“'

This means that if the ideal thermal EOS (1.39) is assumed, then it follows
that the internal energy e is a function of temperature alone, that is e = e(7').
In the particular case in which

e=¢T, (1.41)

where the specific heat capacity ¢, is a constant, one speaks of a calorically
ideal gas, or a polytropic gas.
It is possible to relate ¢, and ¢, via the general expression

2
T
cp=cy+ aﬁ Y (1.42)
For a thermally ideal gas equations (1.39) and (1.40) apply and thus
cp—C=R. (1.43)

A necessary condition for thermal stability is ¢, > 0 and for mechanical
stability 8 > 0 [35]. From (1.42) the following inequalities result

cp >cy > 0. (1.44)

The ratio of specific heats v, or adiabatic exponent, is defined as

y=2 (1.45)

Co
which if used in conjunction with (1.43) gives

= o - R (1.46)
v—1 v—1

For a calorically ideal gas (polytropic gas ) «y is a constant and for a thermally

ideal gas v is a function of temperature, i.e. v = (7).

In order to determine the caloric EOS (1.41) we need to determine the
specific heat capacities, ¢, in particular. Molecular Theory and the principle
of equipartition of energy [439] can also provide an expression for the specific
internal energy of a molecule. In general a molecule, however complex, has M
degrees of freedom, of which three are translational. Other possible degrees
of freedom are rotational and vibrational. From Molecular Theory it can be
shown that if the energy associated with any degree of freedom is a quadratic
function in the appropriate variable expressing that degree of freedom, then
the mean value of the energy is %kT where k is the Boltzmann constant.
Moreover, from the principle of equipartition of energy this is the same for
each degree of freedom. Therefore, the mean total energy of a molecule is

e= %M kT, and for N molecules we have
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_ 1
Ne = QM NEkT
from which the specific internal energy is

1
— _MRT.
)

Use of (1.32) gives directly
Oe 1
= _ = 7M
v <8T>v g ME,

M +2
Cpn =
P 2
The ratio of specific heats becomes

and thus we obtain
R.

M +2
7= (1.47)
From the thermal EOS for ideal gases (1.39) we have
1
e= §Mpv .
But from (1.43) and (1.46)
M= 2
v—1
and hence v
R L (1.48)

(y=1) (v=1p"

which is the expression for the specific internal energy advanced in (1.18).

The theoretical expressions for ¢,, ¢, and 7 in terms of R and M are found
to be very accurate for monatomic gases, for which M = 3 (three translational
degrees of freedom). For polyatomic gases rotational and vibrational degrees
of freedom contribute to M but now the expressions might be rather inac-
curate when compared with experimental data. A strong dependence on T is
observed. However, the inequality 1 < v < %, predicted from (1.47) for the
limiting values M = 3 and M = oo, holds true.

1.2.5 Covolume and van der Waal Gases

A very simple generalisation of the ideal-gas thermal EOS, pv = RT, is
the so—called covolume equation of state

p(v—b) = RT, (1.49)
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where b is called the covolume and in SI units has dimensions of m®kg .
This EOS applies to dense gases at high pressure for which the volume occu-
pied by the molecules themselves is no longer negligible. There is therefore a
reduction in the volume available to molecular motion. This type of correc-
tion to the ideal gas EOS is said to have first been suggested by Clausius.
Hirn is credited with first having written down EOS (1.49). Sometimes, this
equation is also called the Noble-Abel EOS. In the study of propulsion sys-
tems, gaseous combustion products at very high densities are reasonably well
described by the covolume EOS. In its simplest version the covolume b is a
constant and is determined experimentally or from equilibrium thermochemi-
cal calculations. Corner [141] reports on good experimental results for a range
of solid propellants and observes that b changes very little, usually in the range
0.9 x 1072 < b < 1.1 x 1073, The best values of b lead to errors of no more
than 2% and thus there is some justification in using (1.49) with b constant.
A more accurate covolume EOS defines b as a function of p, i.e. b = b(p).
Such dependence of b on p can be given in either tabular or algebraic form.
A simple example of an algebraic form is b(p) = exp~ %47, for p < 2 gem 3.
The thermal covolume EOS (1.49) leads to a caloric covolume EOS e = e(p, p)
with a corresponding sound speed a. These are given by

_pt=bp) [ :
=B o= ) (150)

where 7 is the ratio of specific heats as before.

The covolume EOS (1.49) can be further corrected to account for the forces
of attraction between molecules, the van der Waal forces. These are neglected
in both the ideal and covolume equations of state. Accounting for such forces
results in a reduction of the pressure by an amount ¢/v?, where c is a quantity
that depends on the particular gas under consideration. Thus from (1.49) the
pressure is corrected as

_ RT c
p= v—>b 2
Then we can write .
(p+ ﬁ)(v—b) =RT . (1.51)

This is generally known as the van der Waal’s equation of state for real gases.

General background on Thermodynamics and equations of state can be
found in virtually any textbook on Thermodynamics or Gas Dynamics. We
particularly recommend the book by Sears and Salinger [439], Chap. 1 of the
book on Gas Dynamics by Becker [35] and the book by Clarke and McChesney
[119]. The review paper by Menikoff and Plohr [349] is highly relevant to the
themes of this book. A useful reference on equations of state for combustion
problems is [573].

So far, we have presented the Euler equations for the dynamics of a com-
pressible medium along with some elementary notions on Thermodynamics
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so that a closed system is obtained. Given initial and boundary conditions
the conservation equations can be solved. In this book we are interested in
numerical methods to solve the governing equations.

1.3 Viscous Stresses

Here we augment the Euler equations (1.7) by adding the physical effects
of viscosity. Strictly speaking it is only the momentum equations in (1.7) that
are modified. The stresses in a fluid, given by a tensor S, are due to the effects
of the thermodynamic pressure p and the viscous stresses. Thus the stress
tensor can be written as

S— —pl+11, (1.52)

where pl is the spherically symmetric tensor due to p, | is the unit tensor as in
(1.10) and IT is the viscous stress tensor. It is desirable to express S in terms of
flow variables already defined. For the pressure contribution this has already
been achieved by defining p in terms of other thermodynamic variables via an
equation of state. Recall that equations of state are approximate statements
about the nature of a material. In defining the viscous stress contribution I
one may resort to the Newtonian approximation, whereby II is related to the
derivatives of the velocity field V = (u, v, w) via the deformation tensor

. %(vm + uy) %(ww—l—uz)

(uy + vz) Uy %(wy +v,)

N|—

%(uz +w,) %(Uz + wy) W

The Newtonian assumption is an idealisation in which the relationship be-
tween IT and D is linear and homogeneous, that is IT will vanish only if D
vanishes, and the medium is isotropic with respect to this relation; an isotropic
medium is that in which there are no preferred directions. By denoting the
stress tensor by
TIT LTY LTZ
I = | 9% 7% V= | | (1.53)
TR LY ;22

the Newtonian approximation becomes
2
II =2nD + (ny — gn)(divV)l ) (1.54)

or in full
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TrxT

T = 2nug, — 2n(vy + w.) + N divV,

TYY = %nvy — %n(wz + Ug:) + o divV )
7% = dnw, — 2n(ug +vy) + 1 divV
(1.55)
= 9y )
4

T = T = o, +w,)

T = 7%% = p(w, + uy) .

In the Newtonian relationship (1.54) there are two scalar quantities that are
still undetermined, these are the coefficient of shear viscosity n and the co-
efficient of bulk viscosity n,. Approximate expressions for these are obtained
from experimentation and results from Molecular Theory. In particular, for
monatomic gases Molecular Theory based on the hard sphere assumption
gives 1, = 0, which is found to agree well with experiment. For polyatomic
gases 1, # 0 and appropriate values for 7, are to be given experimentally.
Concerning the coefficient of shear viscosity 7, it is observed that, as long as
temperatures are not too high, n depends strongly on temperature and only
slightly on pressure. Again, Molecular Theory and experimentation suggest
that n be proportional to T™; in fact n = % in Molecular Theory. A relatively
accurate relation between 1 and T is the Sutherland formula

n=0C [1+Cﬂ_lﬁ, (1.56)

where C7 and Cy are two experimentally adjustable constants. When T is
measured in kelvin, i has the units of kgm~'s~!. For the case of air one has

C,=146x10"%, C, =112 K.

Sutherland’s formula describes the dependence of 1 on 7' rather well for a
wide range of temperatures, provided no dissociation or ionisation take place.
These phenomena occur at very high temperatures where the dependence of n
on pressure p, in addition to temperature T', cannot be neglected. Useful back-
ground on high temperature gas dynamics is found in the book by Anderson
[9] and in the book by Clarke and McChesney [119].

In summary, the Navier—Stokes equations (momentum equations) can now
be written in differential conservation law form as

(PV)i+V - (pV@V +pl—II)=0, (1.57)

where IT is given by (1.55) with 1, = 0. Compare with the Euler equations
(1.10).
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1.4 Heat Conduction

Influx of energy contributes to the rate of change of total energy E. We
denote by Q = (q1,¢2,q3)" the energy flux vector, which results from (i) heat
flow due to temperature gradients, (ii) diffusion processes in gas mixtures and
(iii) radiation. Here we only consider effect (i) above. Q is identical to the
heat flux vector caused by temperature gradients. In a similar manner to that
in which viscous stresses were related to gradients of the velocity vector V,
one can relate Q to gradients of temperature 7' via Fourier’s heat conduction

law
Q= —kVT, (1.58)

where k is a positive scalar quantity called the coefficient of thermal con-
ductivity or just thermal conductivity, and is yet to be determined. Note the
analogy between n and k. This analogy between 1 and x goes further in that
K, just as 7, depends on T but only slightly on pressure p. In fact, Molecu-
lar Theory says that « is directly proportional to 7. Under the assumption
that the specific heat at constant pressure c, is constant, the dimensionless
quantity

p=20 (1.59)

K

is a constant, and is called the Prandtl number. For monatomic gases P; is
very nearly constant. For air in the temperature range 200 K <7 < 1000 K
P, differs only slightly from its mean value of 0.7. A formula attributed to
Eucken [35] relates P, to the ratio of specific heats v via

4y
9y -5’

P, = (1.60)
to account for departures from calorically ideal gas behaviour.

When the effects of viscosity and heat conduction are added to the basic
Euler equations (1.7) one has the Navier—Stokes equations with heat conduc-
tion

U, +F2+ Gl + H2 =F) + G) + HY | (1.61)

where U is the vector of conserved variables, the flux vectors F*, G* and H*
are the inviscid fluxes (a stands for advection) for the Euler equations as given
by (1.8) and the respective flux vectors F4, G¢ and HY (d stands for diffusion)
due to viscosity and heat conduction are
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Fi = e

ut®® + ot + wr'* —

G = TYY , (1.62)

utY® ot 4 wrY? — g9

0
TZ(E
HI = Y
TZZ
ut* 4+ vt 4+ wr** — g3

The form of the equations given by (1.61) splits the effect of advection on
the left—-hand side from those of viscous diffusion and heat conduction on the
right—hand side. For numerical purposes, the particular form of the equations
adopted depends largely on the numerical technique to be used to solve the
equations. One possible approach is to split the advection effects from those
of viscous diffusion and heat conduction during a small time interval At, in
which case form (1.61) is perfectly adequate. An alternative form is obtained
by combining the fluxes due to advection, viscous diffusion and heat con-
duction into new fluxes so that the governing equations look formally like a
homogeneous system (zero right—hand side) of conservation laws

U +F,+G,+H.=0,
(1.63)
F=F-F! G=G*-GY, H=H*-H".

This form is only justified if the numerical method employed actually ex-
ploits the coupling of advection, viscosity and heat conduction when defining
numerical approximations to the flux vectors F, G, and H in (1.63).

1.5 Integral Form of the Equations

The actual derivation of the governing equations, such as the Euler and
Navier—Stokes equations stated earlier, is based on integral relations on control
volumes and their boundaries. The differential form of the equations results
from further assumptions on the flow variables (smoothness). In the absence of
viscous diffusion and heat conduction one obtains the Euler equations. These
admit discontinuous solutions and the smoothness assumption that leads to
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the differential form no longer holds true. Thus one must return to the more
fundamental integral form involving integrals over control volumes and their
boundaries. From a computational point of view there is another good reason
for returning to the integral form of the equations. Discretised domains result
naturally in finite control volumes or computational cells. Local enforcement of
the fundamental equations in these volumes lead to Finite Volume numerical
methods.

1.5.1 Time Derivatives

Before proceeding to the derivation of the equations in integral form we
review some preliminary concepts that are needed. Consider a scalar field
function ¢(x,y, z,t), then the time rate of change of ¢ as registered by an
observer moving with the fluid velocity V = (u,v,w) is given by

%f = % +V .grad¢ . (1.64)
This time derivative D /Dt following a particle is usually called the substantial
derivative or material derivative. The first term d¢/0t in (1.64) denotes the
partial derivative of ¢ with respect to time and represents the local rate of
change of ¢; the second term in (1.64) is the convective rate of change. The
operator D/Dt can also be applied to vectors in a component—wise manner,
in which case equation (1.64) is to be interpreted as a vector equation. In
particular, we can obtain the substantial derivative of V = (u, v, w), that is

DV 0V
— = — + V. .gradV 1.65
i = Bt g ; (1.65)
which in full becomes

Du\ T ou\ T du du dw

Dt ot Jxr Ox Ox

Do _ Jv Ju OJv dw

Dt - ot + (’LL,’U,U}) | 9y 9y dy

Dw ow Ou v dw

Dt ot 0z 0z Oz

The symbol ()7 denotes transpose of (). Actually, equation (1.65) is the
acceleration vector of an element of a moving fluid. Let us now consider

W(t)z//[/d)(x,y,z,t)dV, (1.66)

where the integrand ¢ is any scalar field function and the volume of integration
V is enclosed by a piece—wise smooth boundary surface A that moves with the
material under consideration. It can be shown that the material derivative of
¥ is given by
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/// 7dv+//A(n'¢V)dA, (1.67)

where n = (n1,n2,n3) is the outward pointing unit vector normal to the
surface A. The proof of statement (1.67) is based on a three dimensional
generalisation of the following result:

d &2(a) &2(c) 3f

g f(ga O{) d§ =
da Je, (a) £1(a) O

gy

Qe+ 1(62,0) 52 — Fler,a) L

(1.68)

Expression (1.67) can be generalised to vectors ¥ (z,y, z,t) as follows:

// 7dv+//AQ'>(n-V)dA. (1.69)

The first term on the right hand side of (1.67) represents the local contribution
of the field ¢ to the time rate of change of ¥(t). The second term is the
contribution due to the motion of the surface moving at the fluid velocity
V. The surface integral may be transformed to a volume integral by virtue
of Gauss’s theorem. This states that for any differentiable vector field & =
(¢1, P2, ¢3) and a volume V with smooth bounding surface A the following

identity holds
//(n-@)dA:///divdidV. (1.70)
A 1%

Gauss’s theorem also applies to differentiable scalar fields and tensor fields.

1.5.2 Conservation of Mass

The law of conservation of mass can now be stated in integral form by
identifying the scalar ¢ in (1.66) and (1.67) as the density p. In this case ¥(t)
in (1.66) becomes the total mass in the volume V. By assuming that no mass
is generated or annihilated within V and recalling that the surface A moves
with the fluid velocity, which means that no mass flows across the surface, we
have D¥/Dt = 0, or from (1.67)

/1], apd"*//Am-(pV)dA:o.

This is the integral form of the law of conservation of mass corresponding to
the differential form (1.1). This integral conservation law may be generalised
to include sources of mass, which will then appear as additional integral terms.
A useful reinterpretation of the integral form results if we rewrite it as

/// 9 gy — _ //An-(pV)dA. (1.71)

If now V is a fixed control volume independent of time ¢ then the left hand
side of (1.71) becomes
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I sa =gl Lo

and thus is the time-rate of change of the mass enclosed by the volume V.
The right hand side of (1.71) is the net mass inflow, per unit time, over the
mass outflow. That is, the mass enclosed by the control volume V', in the
absence of sources or sinks, can only change by virtue of mass flow through
the boundary of the control volume V. Thus we rewrite (1.71) as

B[ fow fprisa

Here pV is the mass flow vector and n- (pV) is its normal component through
the surface A with outward unit normal vector n. For computational purposes
this is the formulation of the integral form of the law of conservation of mass
that is most useful.

The integral form is actually equivalent to the differential form (1.1) of
the law conservation of mass if we assume sufficient smoothness of the flow
variables in (1.72). Then we can apply Gauss’s theorem and write

//An-(pV)dA:///vdiv(pV)dV.

Then (1.71) becomes

///V[(;f+div(pV)] v =0.

As V is arbitrary it follows that the integrand must vanish, that is

pe + (pu)e + (p'U>y + (pw)z =0,

which is (1.1). As pointed out earlier, the Euler equations (1.7) admit dis-
continuous solutions, such as shock waves and contact surfaces. Hence the
differential form (1.7) is not valid in general. The integral form (1.72), how-
ever, remains valid.

1.5.3 Conservation of Momentum

The differential form of the law of conservation of momentum for the
inviscid case was stated as equations (1.2)—(1.5), or in more compact form
involving tensors as equation (1.10), the Euler equations. Equations (1.61)
contain the momentum equations augmented by the effects of viscosity, which
gives the Navier—Stokes equations, and heat conduction. As done for the mass
equation, we now provide the foundations for the law of conservation of mo-
mentum, derive its integral form in quite general terms and show that under
appropriate smoothness assumptions the differential form is implied by the



22 1 The Equations of Fluid Dynamics

integral form. A control volume V' with bounding surface A is chosen and the
total momentum in V' is given by

:///VdeV. (1.73)

The law of conservation of momentum results from the direct application of
Newton’s law: the time rate of change of the momentum in V is equal to the
total force acting on the volume V. The total force is divided into surface
forces fs and volume forces fy given by

fs://ASdA, fV:///Vpng. (1.74)

Here g is the specific volume—force vector and may account for inertial forces,
gravitational forces, electromagnetic forces and so on. S is the stress vector,
which is given in terms of a stress tensor S as S = n - S. The stress tensor S
can be split into a spherically symmetric part —pl due to pressure p, and a
viscous part IT given by (1.52)—(1.53). Application of Newton’s Law gives

Dy

ﬁ:fS‘f‘fVa

which by virtue of (1.69) with ® = pV gives

///v(;at(pv)dv_//AV(H'PV)dAJrfs+fV.

Regarding V as a fixed volume in space, independent of time, we write

%///V(pV)dV:7//AV(H'PV)dA+fs+fV, (1.75)

which may be interpreted as saying that the time rate of change of momentum
within the fixed control volume V is due to the met momentum inflow over
momentum outflow, given by the first term in (1.75), plus surface and volume
forces. Substituting S from (1.52) into (1.74) and writing all surface terms
into a single integral we have

L[ (pV)AV =~ [ [,[V(n-pV)+pn—n-II] dA

+ S )y pedV.

This general statement is valid even for the case of discontinuous solutions.
The differential conservation law form can now be derived from (1.76) un-
der the assumption that the integrand in the surface integral is sufficiently
smooth so that Gauss’s theorem may be invoked. Consider the first term of
the integrand of the surface integral in (1.76)

(1.76)
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V(n-pV)=n-pVaVv,

where V ® V is the tensor in (1.10). The three columns of the left hand side
are

u- (Il : pV) =n-: [pu2,puv, PUW}T )
T
v+ (n-pV) = n- [puv, pu?, pou]
w-(n-pV)=n- [puw,pvw,pr]T
Application of Gauss’s theorem to each of the surface terms gives

I %(pV) AV = — [ [ [, [div(pV ®@ V) + gradp — divII] dV

+ /Sy pgdV .

As this is valid for any arbitrary volume V' the integrand must vanish, i.e.

%(pV)—i—div[pV@V—i—pl—H] =g . (1.77)
This is the differential form of the momentum equation, including a source
term due to volume forces. When the viscous stresses are identically zero, IT =
0 and the volume forces are neglected, we obtain the Euler equations (1.10).
If the viscous stresses are given by (1.55) under the Newtonian assumption
we obtain the Navier-Stokes equations (1.57) in differential conservation law
form.

1.5.4 Conservation of Energy

As done for mass and momentum we now consider the total energy ¥(t)
in a control volume V, that is

&P(t):///vEdV. (1.78)

The time rate of change of total energy W(t) is equal to the work done, per
unit time, by all the forces acting on the volume plus the influx of energy per
unit time into the volume. Recall that a force f acting on a point moving with
velocity V' produces the work V - f per unit time. The surface and volume
forces in (1.74) respectively give rise to the following terms:

Esurf:7//Ap(V~n)dA+//AV«(n~H)dA, (1.79)

ﬂm://LMV€NV' (1.80)
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The first term in (1.79) corresponds to the work done by the pressure while
the second term corresponds to the work done by the viscous stresses. Fyolu
in (1.80) is the work done by the volume force g. To account for the influx of
energy into the volume we denote the energy flow vector by Q = (¢1, g2, q3);
the flow of energy per unit time across a surface element dA is given by
—(n - Q) dA. This gives another term,

By = - | /A (n-Q)aa, (1.81)

to be included in the equation of balance of energy, which now reads

D

Dt
The left hand side of (1.82) can be transformed via (1.67) with the definition
¢ = F and the result is

w):///V;EdVJF//A(n.EV)dA. (1.83)

As done for the laws of conservation of mass and momentum we now rein-
terpret the volume V as fixed in space and independent of time and rewrite
(1.82)—(1.83) as

i///Ewdvv:*‘/\/(II'E“/)dA‘FEjsurf‘i’-Evolu‘i’Ewinﬁ7
de v A

which in full becomes

dtfffVEdV**ffA (EV+pV+Q)—-V-(n-II)] dA

+[ [y p(V-g)dv .

Thus the time rate of change of total energy enclosed in the volume V'
equals the net flow of energy through the boundary surface A plus the forces
Equt , Evorn and Eig as given by (1.79)—(1.81).

The differential form of the conservation of energy law (1.84) can now be
derived by assuming sufficient smoothness and applying Gauss’s theorem to
all surface integrals. Direct application of Gauss’s theorem to the first term
of (1.79) and to (1.81) gives

_//An.(pv)dA:—///Vdiv(pV)dV
//n QdA = - ///dedV

The second term of (1.79) can be transformed via Gauss’s theorem by first
observing that V - (n n ) n- (V. II). This follows from the symmetry of
the viscous stress tensor IT, see (1.53), (1.55). Hence

= Digurf + Evolu + Einﬂ . (182)

(1.84)
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//AV-(n~H)dA:///Vdiv(V-H)dV.

Substitution of these volume integrals into the integral form of the law of
conservation of energy (1.84) gives

/// (Ei+div[(E+p)V =V -TT+Q - p(V-g)} dV =0.

1%

Since V is arbitrary the integrand must vanish identically, that is
E;+div[(E+p)V-V -II+Q]=p(V-g). (1.85)

This is the differential form of the law of conservation of energy with a source
term accounting for the effect of body forces; if these are neglected we obtain
the homogeneous energy equation contained in (1.61). When viscous and heat
conduction effects are neglected we obtain the energy equation (1.5) or (1.11)
corresponding to the compressible Euler equations.

1.6 Submodels

In this section we consider simplified versions, or submodels, of the govern-
ing equations and their closure conditions. Compressible submodels will in-
clude flows with area variation; flows with axial symmetry; flows with cylindri-
cal and spherical symmetry; plane one-dimensional flow and further simplifi-
cations of this to include linearised and scalar submodels; the one-dimensional
version of the Navier—Stokes equations. Incompressible submodels will include
free—surface gravity flows and the derivation of the shallow water equations
as a special case; we also study various formulations of the incompressible
Navier—Stokes equations.

1.6.1 Summary of the Equations

Before proceeding with the study of particular situations we summarise
the general laws of conservation of mass, momentum and total energy. In
differential conservation law form these read

P+ V- (pV) =0, (1.86)
V) + Y VeVl 11 = e, (1.87)
E;+V-[(E+p)V-V.-II+Q]=p(V-g). (1.88)

where g = (g1, g2, 93) is a body force vector. The integral form of the conser-
vation laws is given by
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8 o[ oo

dtfffv pV)dV = — [ [, [V

+ [ JyrgdV,
dtfffvEdV—_ffA (EV +pV+Q) -

+ [y p(V-g)dv,

where V' is the total volume of an element of fluid and A is its boundary.
Computationally, V' will be a finite volume or computational cell. When body
forces are included via a source term vector but viscous and heat conduction
effects are neglected we have the Euler equations

(n-pV)+pn—n-II]dA
(1.90)

V. (n-I)] dA
(1.91)

U, +F(U), +G(U), + H(U), = S(U), (1.92)
p pu
pu pu® +p
U= |pw| ,F= pUY ,
pw puw
E uw(E +p)
(1.93)
[ pw
puv puw
G=| p?+p |, H= pUW
pow pw® +p
| v(E +p) w(E + p)

Here S = S(U) is a source or forcing term. Body forces such as gravity may
be represented in S. Injection of mass, momentum or energy may also be
included in S. Usually, S(U) is a prescribed algebraic function of the flow
variables and does not involve derivatives of these, but there are exceptions.
Equations (1.92) are said to be inhomogeneous . When S(U) = 0 one speaks
of homogeneous equations. There are other situations in which source terms
S(U) arise as a consequence of approximating the homogeneous equations in
(1.92) to model situations with particular geometric features. In this case the
source term is of geometric character, but we shall still call it a source term.

Sometimes it is convenient to express the equations in terms of the primi-
tive or physical variables p, u, v, w and p. By expanding derivatives in (1.92),
using the mass equation into the momentum equations and in turn using
these into the energy equation one can re—write the three—dimensional Euler
equations for ideal gases with a body—force source term as
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pt + upy +vpy +wps + pug + vy +wz) =0,
ut+uum+vuy+wu2+%pm =01,
vy + uvy + Vv, + wu, + %py =02, (1.94)

Wy + uwy +vwy, +ww, + 1p. = g3,

Pt + Upy + vpy + Wp, +’Yp(uw+vy+wz):0'

Next we consider simplifications of the Euler and Navier—Stokes equations
augmented by source terms to account for additional flow physics.

1.6.2 Flow with Area Variation

Flows with area variation arise naturally in the study of fluid flow phenom-
ena in ducts, pipes, shock tubes and nozzles. One may start from the three
dimensional homogeneous version of (1.92) to produce, under the assumption
of smooth area variations, a one—dimensional system with geometric source
terms. Denote the cross—sectional area of the nozzle by A = A(z,t), where
x denotes distance along the nozzle and ¢ denotes time. It is assumed that
the area varies smoothly with space and time and its variation is due to both
translation and deformation. Assume that the speed of translation is given by
c(z,t).

Most of the presentation that follows is motivated by some useful remarks
by Professor Tim Swafford (Swafford, 1998, private communication) on the
first edition of this book. He pointed out the correct derivation of the equations
for the case in which the area depends on time, and also provided the following
key references: Varner et. al. [567], Chessor [107] and Warsi [575].

The governing equations read

U, +F(U), =S(U), (1.95)
where
Ap Ap(u —c) 0
U= |Apu| ,F= | Apu(u—c)+p] | , S=| p4, | . (1.96)
AFE Al(u—¢)E + up] —pA,

In what follows we assume ¢ = 0. Manipulation of equations (1.95)—(1.96)
lead to the following alternative form

U, + F(U), = S(U), (1.97)

where now
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P pu 1dA P
U=|pu| ,F=| pu>+p | ,S= “Ad U . (1.98)
E u(E +p) (E+p)

Here the source term vector contains the differential operator

% = A +uA, (1.99)
which expresses the time variation of the area A(x,t) along particle paths
dx/dt = u. The upwind nature of the coefficient % in the source term vector
suggests possible discretisation procedures.

Yet another form of equations (1.95)-(1.96), for the case in which the area
is independent of time and ¢ = 0, is the following

(AU) + [AF(U)], = —AS(U), , (1.100)
where
p pu 0
U= |pul| ,F= pu? ,S=|p (1.101)
E u(E +p) 0

Note that the momentum flux does not include the pressure term p. For details
see Ben—Artzi and Falcovitz [38].

1.6.3 Axi—Symmetric Flows

Here we consider domains that are symmetric around a coordinate di-
rection. We choose this coordinate to be the z—axis and is called the axial
direction. The second coordinate is r, which measures distance from the axis
of symmetry z and is called the radial direction. There are two components of
velocity, namely u(r, z) and v(r, z). These are respectively the radial (r) and
axial (z) components of velocity. Then the three dimensional (inhomogeneous)
conservation laws (1.92) are approximated by a two dimensional problem with
geometric source terms S(U), namely

U, + F(U), + G(U), = S(U), (1.102)
where ~
p pu
U= ] po |t
pU puv
L E u(E +p)
] (1.103)
pU pU
2
_ puv 1 pu
G=1porap | 5777 puw
| v(E +p) uw(E + p)
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An alternative form of (1.102)—(1.103) is
U, + F(U), + G(U), =S(U), (1.104)

where _ _ _
U=rU,F=rF, G=rG,
(1.105)
S=(0, -p, 0, 0)" .

From a numerical point of view this form of the equations has its attractions
(Pike and Roe, 1989, private communication).

1.6.4 Cylindrical and Spherical Symmetry

Cylindrical and spherically symmetric wave motion arises naturally in the
theory of explosion waves in water, air and other media. In these situations
the multidimensional equations may be reduced to essentially one—dimensional
equations with a geometric source term vector S(U) to account for the second
and third spatial dimensions. We write

U; +F(U),. =S(U), (1.106)
where
p pu ol pu
U=|pu| ,F=|pu>+p | ,S=—— pu? . (1.107)
E uw(E + p) " | w(E +p)

Here r is the radial distance from the origin and wu is the radial velocity.
When a = 0 we have plane one-dimensional flow; when o = 1 we have cylin-
drically symmetric flow, an approximation to two—dimensional flow. This is a
special case of equations (1.102)—(1.103) when no axial variations are present
(v =0). For « = 2 we have spherically symmetric flow, an approximation to
three-dimensional flow. Approximations (1.106)—(1.107) can easily be solved
numerically to a high degree of accuracy by a good one—dimensional numerical
method. These accurate one—dimensional solutions can then be very useful in
partially validating two and three dimensional numerical solutions of the full
models, see Sect. 17.1 of Chap. 17.

1.6.5 Plain One—-Dimensional Flow
We first consider the one-dimensional time dependent case
U, +FU), =0, (1.108)

where
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p pu
U=|pu| ,F=| pu>+p | . (1.109)
E uw(E +p)

These equations also result from equations (1.106)—(1.107) with o = 0 and r
replaced by z. Under suitable physical assumptions they produce even simpler
mathematical models. In all the submodels studied so far we have assumed
some thermodynamic closure condition given by an Equation of State (EOS).
The isentropic equations result under the assumption that the entropy
s is constant everywhere, which is a simplification of the thermodynamics.
Now the EOS is
p=7p(p) =Cp”, C=constant . (1.110)

This makes the energy equation redundant and we have the 2 x 2 system

U, +FU),=0,

U:[P}’F:{ pu ] (1.111)

pu pu? +p

with the pressure p given by the simple EOS (1.110).

The isothermal equations are even a simpler model than the isentropic
equations, still non-linear. These may be viewed as resulting from the isen-
tropic equations (1.111) with the EOS (1.110) further simplified to

p=plp) =d’p, (1.112)

where a is a non—zero constant propagation speed of sound. The isothermal

equations are
U, +FU), =0,

, . (1.113)
v Lm} e {ﬂu2+pa2} '

More submodels may be obtained by writing the isentropic equations as

pt+ pug +upy =0, (1.114)
1

Up + Uy = — =Py (1.115)
p

These result from (1.94) with the appropriate simplifications.
The inviscid Burgers equation is a scalar (single equation) non—linear
equation given by
up +uuy =0, (1.116)

and can be obtained from the momentum equation (1.115) by neglecting den-
sity, and thus pressure, variations. In conservative form equation (1.116) reads

u2
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The Linearised Equations of Gas Dynamics are obtained from
(1.114)—( 1.115) by considering small disturbances @, p to a motionless gas.
Set u =w and p = p + pg, where pg is a constant density value. Recall that
p = p(p) and neglecting products of small quantities we have

_ _Op
P = p(po) + pafp(po) ;

that is, p = po + a2,6 with po = p(po), and

0
a’ = —p(po) = constant . (1.118)
dp
Substituting into (1.114)—(1.115) and neglecting squares of small quantities
we obtain the linear equations

Pt + potiy =0, (1.119)
a2
U+ —py =0. (1.120)
Po
Elimination of u gives
et = 0°Pag | (1.121)

which is the linear second—order wave equation for p(z,t). In matrix form
system (1.119)—( 1.120) reads

W, + AW, =0, (1.122)
w= ||, a=]|,0 (1.123)
u ) a2/p0 0 ) .

where bars have been dropped. The coefficient matrix A is now constant
and thus the system (1.122) is a linear system with constant coefficients, the
linearised equations of gas dynamics.

The linear advection, sometimes called linear convection, equation

ug +auy, =0, (1.124)

where a is a constant speed of wave propagation, is a further simplification to
(1.121). This is also known as the one-way wave equation and plays a major
role in the designing, analysing and testing of numerical methods for wave
propagation problems.

1.6.6 Steady Compressible Flow

The steady, or time independent, homogeneous three dimensional Euler
equations (1.92) are
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F(U). +G(U), + H(U). =0. (1.125)

In the steady regime it is important to identify subsonic and supersonic flow.
To this end we recall the definition of Mach number M

2

(u2 + 02 + w2)

M = 2

, (1.126)

where a is the speed of sound; for ideal gases a = \/(yp/p). Supersonic flow
requires M > 1, while for subsonic flow we have M < 1. For sonic flow
M = 1. Computationally, the three-dimensional equations may be treated
via the method of dimensional splitting, which in essence reduces the three—
dimensional problem to a sequence of augmented two—dimensional problems,
see Chap. 16. The basic approach therefore relies on the two-dimensional case.
In differential conservation form we have

F(U), + G(U), =0, (1.127)
pu pv
2
_ | e+ | pw
e e IR I (1.128)
u(E + p) v(E + p)

As discontinuous solutions such as shock waves and slip surfaces are to be
admitted, we replace the differential form (1.127)—(1.128) by the more general
integral conservation form

%(F dy—Gdx)=0. (1.129)

The integral is to be evaluated over the boundary of the appropriate control
volume. In numerical methods this will be a computational cell.

Steady linearised models can be obtained from the steady Euler equa-
tions (1.127)—(1.128). An interesting submodel is the small perturbation, two—
dimensional steady supersonic equations

Uy — a*v, =0, v, —u, =0, (1.130)

with
9 1

a :W

(1.131)

My, = constant denotes the free-stream Mach number and u(z,y), v(z,y)
are small perturbations of the x and y velocity components respectively. In
matrix form these equations read

W, +AW, =0, (1.132)

with
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W = [ﬂ VA= [Ol _32] . (1.133)

See Sect. 18.2.2 of Chapter 18 for more information about steady supersonic
flow.

1.6.7 Viscous Compressible Flow

The one-dimensional version of the compressible Navier—Stokes equations
with heat conduction can be obtained from (1.61) by setting v = w = 0. The
result is

U, +F(U), =8, (1.134)
where
p pu 0
U=|pu| ,F=|pu>+p | ,S= 3(Nua)s . (1.135)
E u(E +p) %(T}uuz)z — (KT%)z

Burgers’s equation is the viscous version of (1.117) corresponding to a
scalar non-linear simplification of (1.135), namely

w2
Uy + <2> = QUgy , (1.136)

where « is a coefficient of viscosity. A linearised form of this is
U + Uy = Qg (1.137)

which is the viscous version of the linear advection equation (1.124).

Next we consider two examples of incompressible flow. The first concerns
inviscid incompressible flow with body forces, with special reference to free—
surface gravity flow, as in oceans and rivers for example. The second example
concerns the incompressible viscous equations with body forces and heat con-
duction neglected.

1.6.8 Free—Surface Gravity Flow

Consider the flow of water in a channel and assume the water to be in-
compressible, non—viscous, non—heat conducting and subject to gravitational
forces. We adopt the convention that the horizontal plane is given by the co-
ordinates x and z and that the vertical direction is given by y. Denote the
body force vector by g = (g1, 92,93) = (0,—g,0) where g is the acceleration
due to gravity, assumed constant. Two important boundaries of the three di-
mensional domain are the bottom of the channel, denoted by y = —h(x, z)
and assumed fixed in time, and the free surface under gravity y = n(z, z,t),
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AY free surface

/ n (x.z.t)

Y x

h(x,z)

channel bed /

Fig. 1.1. Flow in a channel with free surface under gravity

which depends on space and time. Fig. 1.1 illustrates the situation for a ver-
tical plane z = constant. The state y = 0, u = 0, w = 0 corresponds to the
rest position of equilibrium.
For an incompressible fluid the law of conservation of mass can be shown
[112] to produce
divV =uy + v, +w, =0. (1.138)

From the mass equation in (1.86) we write

D
Fi +p(divV) =0,

and from (1.138) it follows that

%:pt—i—Vgradp:O.
That is, the mass density following the fluid is constant. If in addition we
assume the water to be homogeneous, no variations in space, then it follows
that p does not change with time. Practical examples of incompressible non—
homogeneous fluids arise in Oceanography in the study of stratified flows.
From the momentum equations in (1.94) we write

%Eut+uu$ +'Uuy+wuz:_%p.’ca
%’ = Ut + UUp + 00y +wu, = *%py —-9, (1.139)
Dw

Ly, .

thwthumervaerwZ:f;

There are now four equations and four unknowns, namely u, v, w and p. In
principle, given initial and boundary conditions one should be able to solve
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(1.138)—(1.139) for u, v, w and p as functions of space z, y, z and time ¢.
Boundary conditions are required at the bottom y = —h(z, z) and on the free
surface under gravity y = n(z, z,t). Two boundary conditions are given for
the free surface

Bin—y) =0
y=n(z,z1t). (1.140)
P = Patm
For the bottom boundary one takes
D
—(h+y)=0, y=—h(z,2). (1.141)

Dt

In equation (1.140), patm is the atmospheric pressure, which for convenience
is assumed to be zero. Equation (1.141) states that the normal component
of velocity vanishes, i.e. there is no flow through the bottom of the channel.
In spite of the strong physical assumptions made, the free—surface problem
as stated remains a very difficult problem to solve numerically. Analytical
solutions are impossible to obtain. Further approximations result in more
tractable mathematical models. For general background on the topic see the
book on water waves by Stoker [465].

1.6.9 The Shallow Water Equations

The shallow water equations are an approximation to the full free—surface
problem and result from the assumption that the vertical component of the
acceleration Dv/Dt can be neglected. Inserting Dv/Dt = 0 in the second of
equations (1.139) gives

p=pg(n—y). (1.142)

This is called the hydrostatic pressure relation. Differentiation of p with respect
to z and z gives

Pa = PNz » (1.143)
P2 = PYn: (1.144)

i.e. both p, and p, are independent of y and so the x and z components of the
acceleration Du/Dt and Dw/Dt in (1.139) are independent of y. Thus, the z
and z components of velocity are also independent of y for all ¢ if they were
at a given time, ¢t = 0, say. Hence, the first and third equations in (1.139),
making use of (1.143)—(1.144), become

Uy + Ul + WUy, = —gny , (1.145)

Wy + UWy + WWw, = —gn, . (1.146)

An important step in deriving the shallow water equations now follows; we
integrate the continuity equation (1.138) with respect to y (vertical direction)
to obtain



36 1 The Equations of Fluid Dynamics

n n
/ ug dy +/ w,dy+ v|", =0. (1.147)
—h ~h

By expanding the boundary conditions (1.140) and (1.141) according to the
definition of total derivative D/Dt, see (1.64), we obtain

(e +une +wn. —v)|,_, =0, (1.148)

(uhy +wh, +v)|,__, =0, (1.149)
which, if used in (1.147), give

fjh u, dy + ffh w, dy + n;

(1.150)
+(u|y:n)nx + (w‘y:n)nz + (u|y:—h)h’l’ + (w|y:_h)hz — 0 .
Equation (1.150) can finally be expressed as
o [ o [
— d — dy=0. 1.151
m+ax/_huy+az/_hwy ( )

This follows by using the relations

9 n(z,z,t) n
ax/;@@udy:/Euww+<mrgm+wmw_mm,

o [@z) "
82/_““) wdy = /_th dy + (wl,—,)n- + (wl,—_p,)he .

Equation (1.151) can be simplified further. This follows from the observation
that both v and w are independent of y and so equation (1.151) becomes

e+ [u(n + h)], + [win +h)], =0. (1.152)

The governing two-dimensional shallow water equations are (1.145), (1.146)
and (1.152). We now express these equations in conservation law form. Since
h(z, z) is independent of time ¢ we have h; = 0 and so equation (1.152) can
be re—written as

(m+h)e + [u(n + )], + [wn+h)], =0, (1.153)
which if multiplied by « and added to (1.145), premultiplied by 1 + h, gives
[u(n + B)], + [ (n+B)], + [uw(n+h)], = —g(n+h)n. . (1.154)

In an analogous way equations (1.146) and (1.153) give
w(n+ )], + [ww(n +B)], + [y +h)]. = —g@+hym. . (1155)

The right-hand side term of (1.154) can be re-written as
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~ g+ B = gln + W)k — Sgl(n+ 17 (1.156)

and so (1.154) becomes

(pu)e + (pu® + %¢2)w + (puw), = goh, . (1.157)

Similarly, equation (1.155) becomes

(pw)s + (puw), + (pw” + %¢2)z = goh. , (1.158)

where
o=gH, H=n+h. (1.159)

H is the total depth of the fluid and ¢ is called the geopotential. The two—
dimensional shallow water equations are now written in compact conservation
form with source terms, i.e. equations (1.153), (1.157) and (1.158) can be
expressed as

U, +F(U), + G(U), =S(U), (1.160)
with
¢ du
U= |¢u| ,F=|¢u’+3¢°| ,
ow Puw
(1.161)
Pw 0
G = ouw , S= | goh,
pw? + 1¢? goh.

In equations (1.160) U is the vector of conserved variables, F(U) and G(U)
are flux vectors and S(U) is the source term vector. For many applications
there will be additional terms in the vector S(U) to account for Coriolis forces,
wind forces, bottom friction, etc. Numerical solution procedures will deal es-
sentially with the homogeneous part of (1.160). The numerical treatment of
the source terms is a relatively standard process as is the treatment of the
two—dimensional homogeneous problem. Both can be dealt with via splitting
schemes; for details see Chaps. 15 and 16. From a computational point of
view, most of the effort goes into devising schemes for the basic homogeneous
one—dimensional system

U, +F(U), =0, (1.162)

with U and F(U) given by

U= [qﬂ L F— LSUQTW} . (1.163)

The conservation laws (1.162)—(1.163) can be written in integral form as
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?{(U de —~F(U)dt) = 0. (1.164)

Equations (1.164) admit discontinuous solutions while equations (1.162)-
(1.163) do not.

See Sect. 18.2.1 of Chapter 18 for more information about the shallow
water equations. Se also the textbook [528].

1.6.10 Incompressible Viscous Flow

We assume the fluid to be incompressible, homogeneous, non-heat con-
ducting and viscous, with constant coefficient of viscosity 7. Body forces are
also neglected. We study three mathematical formulations of the governing
equations in Cartesian coordinates and restrict our attention to the two—
dimensional case.

The primitive variable formulation of the incompressible two dimen-
sional Navier—Stokes equations is given by

Ug +vy =0, (1.165)

1
Up + Uty + vuy + ;pz =V [Ugg + Uyy] » (1.166)

1
v + uvy + vuy + ;py =V [Ugz + Vyy| , (1.167)

where
v="1 (1.168)
p

is the kinematic viscosity and 7 is the coefficient of shear viscosity. We have a
set of three equations (1.165)—(1.167) for the three unknowns u, v, p, the prim-
itive variables. In principle, given a domain along with initial and boundary
conditions for the equations one should be able to solve this problem using
the primitive variable formulation.

The stream—function vorticity formulation is another way of express-
ing the incompressible Navier—Stokes equations. This formulation is attractive
for the two—dimensional case but not so much in three dimensions, in which
the role of a stream function is replaced by that of a wvector potential. The
magnitude of the vorticity vector can be written as

(=vg — Uy . (1.169)
Introducing a stream function ¥ we have
u=1v,, v=—19;. (1.170)

By combining equations (1.166) and (1.167), so as to eliminate pressure p,
and using (1.169) we obtain
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Gt + ule + ¢y = v [Coa + Cyyl » (1.171)

which is called the vorticity transport equation. This is an advection—diffusion
equation of parabolic type. In order to solve (1.171) one requires the solution
for the stream function v, which is in turn related to the vorticity ¢ via

Yoz + Pyy = —C. (1.172)

This is called the Poisson equation and is of elliptic type. There are numer-
ical schemes to solve (1.171)—(1.172) using the apparent decoupling of the
parabolic-elliptic problem (1.165)—(1.167) to transform it into the parabolic
equation (1.171) and the elliptic equation (1.172). A relevant observation,
from the numerical point of view, is that the advection terms of the left hand
side of equation (1.171) can be written in conservative form and hence we
have

G+ (uQ)z + (vQ)y =V [Coa + Gyl - (1.173)

This follows from the fact that u, + v, = 0, which was also used to obtain
(1.171) from (1.166)—(1.167).

1.6.11 The Artificial Compressibility Equations

The artificial compressibility formulation is yet another approach to for-
mulate the incompressible Navier—Stokes equations and was originally put
forward by Chorin [109] for the steady case. Consider the two-dimensional
equations (1.165)—(1.167) in non-dimensional form

U+, =0, (1.174)
Up + Uy + VUy + Pp = O [Ugg + Uyy] (1.175)
Uy F Uy + VU F Dy = @ [V + Uy (1.176)

where the following non—dimensionalisation has been used

p
PocVE

U—u/Voo, V= 0/Vo ,p

x—ua/L,y—y/L,t—tVs/L,
Vol

Voo

azl/ReLa ReL:

2

Multiplying (1.174) by the non—zero parameter ¢* and adding an artificial

compressibility term p; the first equation reads
2 2y _
pr + (uc”), + (ve), =0.

By using equation (1.174) the advective terms in (1.175)—(1.176) can be writ-
ten in conservative form, so that the modified system becomes
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pe + (uc2)m + (ch)y =0, (1.177)
up + (u2 +p)s + (W0)y = a[tgy + Uyy| | (1.178)
v+ (wv), + (v2 + )y = aVzz + vyl - (1.179)

These equations can be written in compact form as

U, +FU), +G(U), =8(U), (1.180)
where
P tu
U= |ul| ,F=|u?+p]| ,
v uv
(1.181)
v 0
G=| w y S = | a(ugs + uyy)
v> +p a (Vgz + Vyy)

Equations (1.180)—(1.181) are called the artificial compressibility equations.
Here ¢? is the artificial compressibility factor, a constant parameter. The
source term vector in this case is a function of second derivatives. Note that
the modified equations are equivalent to the original equations in the steady
state limit.

The left-hand side of the artificial compressibility equations form a non—
linear hyperbolic system. The Riemann problem can be defined and solved
exactly or approximately. See Chaps. 4, 8, 9, 10, 11 and 12 on approaches to
solve the Riemann problem. Once a Riemann solver is available one can deploy
Godunov—type numerical methods to solve the equations with general initial
data. See Chaps. 6, 7, 13, 14 and 16 for possible numerical methods. The
topic of numerical methods for the artificial compressibility equations is not
pursued in this textbook; the interested reader is referred to [514] for details
on exact and approximate Riemann solvers for the artificial compressibility
equations. Further information about the artificial compressibility equations
is found in Sect. 18.2.3 of Chapter 18.
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Notions on Hyperbolic Partial Differential
Equations

In this chapter we study some elementary properties of a class of hyperbolic
Partial Differential Equations (PDEs). The selected aspects of the equations
are those thought to be essential for the analysis of the equations of fluid
flow and the implementation of numerical methods. For general background
on PDEs we recommend the book by John [272] and particularly the one
by Zachmanoglou and Thoe [596]. The discretisation techniques studied in
this book are strongly based on the underlying Physics and mathematical
properties of PDEs. It is therefore justified to devote some effort to some
fundamentals on PDEs. Here we deal almost exclusively with hyperbolic PDEs
and hyperbolic conservation laws in particular. There are three main reasons
for this: (i) The equations of compressible fluid flow reduce to hyperbolic
systems, the Euler equations, when the effects of viscosity and heat conduction
are neglected. (ii) Numerically, it is generally accepted that the hyperbolic
terms of the PDEs of fluid flow are the terms that pose the most stringent
requirements on the discretisation techniques. (iii) The theory of hyperbolic
systems is much more advanced than that for more complete mathematical
models, such as the Navier—Stokes equations. In addition, there has in recent
years been a noticeable increase in research and development activities centred
on the theme of hyperbolic problems, as these cover a wide range of areas of
scientific and technological interest. A good source of up-to-date work in
this field is found in the proceedings of the series of meetings on Hyperbolic
Problems, see for instance [87], [184], [213]. See also [326]. Other relevant
publications are those of Godlewski and Raviart [215], Hormander [258] and
Tveito and Winther [551].

We restrict ourselves to some of the basics on hyperbolic PDEs and choose
an informal way of presentation. The selected topics and approach are almost
exclusively motivated by the theme of the book, namely the Riemann problem
and high-resolution upwind and centred numerical methods.

E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 41
DOI 10.1007/b7976-1_2, © Springer-Verlag Berlin Heidelberg 2009
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2.1 Quasi—Linear Equations: Basic Concepts

In this section we study systems of first—order partial differential equations
of the form

6ui i 8uj
5 + ;aij(x,t,uh .. ,um)a—x +bi(x, tur, . uy) =0, (2.1)
for ¢ = 1,...,m. This is a system of m equations in m unknowns u; that

depend on space x and a time-like variable ¢t. Here u; are the dependent vari-
ables and x,t are the independent variables; this is expressed via the notation
u; = wi(z,t); Ou,; /Ot denotes the partial derivative of u;(x,t) with respect to
t; similarly Ou;/0x denotes the partial derivative of w,(x,t) with respect to
x. We also make use of subscripts to denote partial derivatives. System (2.1)
can also be written in matrix form as

U, +AU, +B=0, (2.2)
with
U7 b1 a1l ... A1m
U2 bo a21 ... G2m
U= B=| |.,Aa=| " T"]. (2.3)
Um, b, am1 - - Gmm

If the entries a;; of the matrix A are all constant and the components b; of the
vector B are also constant then system (2.2) is linear with constant coefficients.
If a;; = a;;(x,t) and b; = b;(z,t) the system is linear with variable coefficients.
The system is still linear if B depends linearly on U and is called quasi-linear
if the coefficient matrix A is a function of the vector U, that is A = A(U).
Note that quasi-linear systems are in general systems of non—linear equations.
System (2.2) is called homogeneous if B = 0. For a set of PDEs of the form
(2.2) one needs to specify the range of variation of the independent variables
x and t. Usually x lies in a subinterval of the real line, namely z; < x < x,;
this subinterval is called the spatial domain of the PDEs, or just domain. At
the values xj, x, one also needs to specify Boundary Conditions (BCs). In
this Chapter we assume the domain is the full real line, —co < x < oo, and
thus no boundary conditions need to be specified. As to variations of time ¢
we assume to < t < 0o. An Initial Condition (IC) needs to be specified at the
initial time, which is usually chosen to be ¢ty = 0.

Two scalar (m = 1) examples of PDEs of the form (2.1) are the linear
advection equation

ou ou

i = 2.4
ot + e 0 (24)
and the inviscid Burgers equation
ou ou
i - — 2.
5 +u 5 0, (2.5)
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both introduced in Sect. 1.6.2 of Chap. 1. In the linear advection equation (2.4)
the coefficient a (a constant) is the wave propagation speed. In the Burgers
equation a = a(u) = u.

Definition 2.1 (Conservation Laws). Conservation laws are systems
of partial differential equations that can be written in the form

U, +FU), =0, (2.6)
where
Uy f1
U fo
U= : , F(U)= : . (2.7)
Um fm

U is called the vector of conserved variables, F = F(U) is the vector of fluzes
and each of its components f; is a function of the components u; of U.

Definition 2.2 (Jacobian Matrix). The Jacobian of the flux function
F(U) in (2.6) is the matriz

af1/0ur ... Ofy/Oum

8fa)0ur ... Dfs)Oum

A(U) = 0F /U = (2.8)

Ofm /O ... Dfm Dt

The entries a;; of A(U) are partial derivatives of the components f; of the
vector F with respect to the components u; of the vector of conserved variables
U, that is Qi = 8fz/8uj

Note that conservation laws of the form (2.6)—(2.7) can also be written in
quasi-linear form (2.2), with B = 0, by applying the chain rule to the second

term in (2.6), namely
OF(U) OF 0U
dr  oU dx
Hence (2.6) becomes
U, +A(U)U, =0,
which is a special case of (2.2). The scalar PDEs (2.4) and (2.5) can be ex-
pressed as conservation laws, namely

%4_8‘;(;) =0, f(u) =au, (2.9)
ou 0
=+ g;u) =0, f(u) = %UZ : (2.10)
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Definition 2.3 (Eigenvalues). The eigenvalues \; of a matriz A are the
solutions of the characteristic polynomial

|A — AI| = det(A — \I) =0, (2.11)

where 1 is the identity matriz. The eigenvalues of the coefficient matriz A of
a system of the form (2.2) are called the eigenvalues of the system.

Physically, eigenvalues represent speeds of propagation of information.
Speeds will be measured positive in the direction of increasing x and neg-
ative otherwise.

Definition 2.4 (Eigenvectors). A right eigenvector of a matriz A cor-
responding to an eigenvalue \; of A is a vector K(*) = [k;y),k;gl), . .,k;ﬁ,fb)]T
satisfying AK® = \;K® . Similarly, a left eigenvector of a matriz A corre-

sponding to an eigenvalue \; of A is a vector L) = [lgi),léi),...,l%)] such

that LOA = N\, L.

For the scalar examples (2.9)—(2.10) the eigenvalues are trivially found to
be A = a and \ = u respectively. Next we find eigenvalues and eigenvectors
for a system of PDEs.

Ezample 2.5 (Linearised Gas Dynamics). The linearised equations of Gas
Dynamics, derived in Sect. 1.6.2 of Chap. 1, are the 2 x 2 linear system

2] e
7?+p07u—07
(2.12)
9 29
71:4_@779 O7

where the unknowns are the density u; = p(x,t) and the speed us = u(z,t);
po is a constant reference density and a is the sound speed, a positive constant.
When written in the matrix form (2.2) this system reads

U, + AU, =0, (2.13)

- {Zj = [Z] VA= [ag(/)po poo} . (2.14)

The eigenvalues of the system are the zeros of the characteristic polynomial

|A—)\I|:det[0_)\ Po }:
a~/po Y —

with

That is, A2 = a2, which has two real and distinct solutions, namely
A =—a, \=+4a. (2.15)

We now find the right eigenvectors K1), K(?) corresponding to the eigenvalues
)\1 and )\2.
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The eigenvector K1) for eigenvalue A = \; = —a is found as follows: we
look for a vector K™ = [ky, ko]” such that K() is a right eigenvector of A,
that is AK( = \; K™, Writing this in full gives

-1

which produces two linear algebraic equations for the unknowns &y and ks

2
poky = —aky Z—kl = —aks . (2.16)
0

The reader will realise that in fact these two equations are equivalent and so

effectively we have a single linear algebraic equation in two unknowns. This

gives a one—parameter family of solutions. Thus we select an arbitrary non—

zero parameter aq, a scaling factor, and set k1 = «a; in any of the equations

to obtain ko = —aya/py for the second component and hence the first right
eigenvector becomes

1

KY =a : 2.17

! —a/po ( )

The eigenvector K(?) for eigenvalue A = Ay = +a is found in a similar manner.

The resulting algebraic equations for K(®) corresponding to the eigenvalue

Ao = +a are
2

pok‘g = ak1 , afkj = akg . (218)
Po
By denoting the second scaling factor by s and setting k1 = s we obtain
K —a,| 1 |. (2.19)
a/po

Taking the scaling factors to be oy = py and @y = pgy gives the right eigen-
vectors
KW = [po ] , K@ = [”0] . (2.20)
—a a
Definition 2.6 (Hyperbolic System). A system (2.2) is said to be hy-
perbolic at a point (z,t) if A has m real eigenvalues Ay, ..., Ay and a corre-
sponding set of m linearly independent right eigenvectors K, ... K™ The
system is said to be strictly hyperbolic if the eigenvalues \; are all distinct.

Note that strict hyperbolicity implies hyperbolicity, because real and dis-
tinct eigenvalues ensure the existence of a set of linearly independent eigen-
vectors. The system (2.2) is said to be elliptic at a point (z,t) if none of the
eigenvalues \; of A are real. Both scalar examples (2.9)—(2.10) are trivially
hyperbolic. The linearised gas dynamic equations (2.12) are also hyperbolic,
since A1 and A2 are both real at any point (x,t). Moreover, as the eigenvalues
are also distinct this system is strictly hyperbolic.
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Ezample 2.7 (The Cauchy—Riemann Equations). An example of a first—
order system of the form (2.2) with ¢ replaced by x and x replaced by y is the
Cauchy—Riemann equations

Oou  Ov Jdv  Ou

——— =0, —4+—=0, 2.21

or 0Oy ox * Jy ( )
where u; = u(x,y) and uy = v(z,y). These equations arise in the study of
analytic functions in Complex Analysis [379]. When written in matrix notation
(2.2) equations (2.21) become

U,+AU, =0, (2.22)

U= [Z] VA= [(1) 01} . (2.23)

The characteristic polynomial |A — M| = 0 gives A + 1 = 0, which has no
real solutions for A and thus the system is elliptic.

Ezample 2.8 (The Small Perturbation Equations). In Sect. 1.6.2 of Chap.
1, the small perturbation steady equations were introduced

with

Uy —a*v, =0, vy —u, =0, (2.24)
with
2 _ 1
MZ —1"
My, = constant denotes the free—stream Mach number and u(x,y), v(z,y)
are small perturbations of the x and y velocity components respectively. In
matrix notation these equations read

U, +AU, =0, (2.26)

U= [5] LA = [_01 _(ﬂ . (2.27)

The character of these equations depends entirely on the value of the Mach
number M,. For subsonic flow M, < 1 the characteristic polynomial has
complex solutions and thus the equations are of elliptic type. For supersonic
flow M., > 1 and the system is strictly hyperbolic, with eigenvalues

a (2.25)

with

AM=—-a, X=+a. (228)
It is left to the reader to check that the corresponding right eigenvectors are
1 1
1 — 2 =
K (&3] |:1/a:| s K (65 |:1/a:| 5 (229)

where a; and ag are two non—zero scaling factors. By taking the values ay =
as = a we obtain the following expressions for the right eigenvectors

w_ o] geo_|a
SRR R K
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2.2 The Linear Advection Equation

A general, time-dependent linear advection equation in three space di-
mensions reads

e +a(x,y, 2, t)ug + b(z,y, 2, t)uy + c(z,y, z,t)u. =0, (2.30)

where the unknown is u = u(z,y, z,t) and a, b, ¢ are variable coefficients. If
the coefficients are sufficiently smooth one can express (2.30) as a conservation
law with source terms, namely

up + (au)y + (bu)y + (cu), = ulag + by +c.) . (2.31)

In this section we study in detail the initial-value problem (IVP) for the
special case of the linear advection equation, namely

PDE: u+au, =0, — o< <o, t>0.
(2.32)
IC: u(z,0) = up(z) ,

where a is a constant wave propagation speed. The initial data at time ¢t =0
is a function of x alone and is denoted by wug(x). We warn the reader that
for systems we shall use a different notation for the initial data. Generally,
we shall not be explicit about the conditions —oco < x < oco; t > 0 on the
independent variables when stating an initial-value problem. The PDE in
(2.32) is the simplest hyperbolic PDE and in view of (2.9) is also the simplest
hyperbolic conservation law. It is a very useful model equation for the purpose
of studying numerical methods for hyperbolic conservation laws, in the same
way as the linear, first—order ordinary differential equation

i—i =p,x=uz(), 0= constant , (2.33)
is a popular model equation for analysing numerical methods for Ordinary
Differential Equation (ODEs). Two useful references on ordinary differential
equations are Brown [81] and Lambert [296]. In Sect. 15.4 of Chap. 15 we
study numerical methods for ODEs in connection with source terms in inho-
mogeneous PDEs.

2.2.1 Characteristics and the General Solution

We recall the definition of characteristics or characteristic curves in the
context of a scalar equation such as that in (2.32). Characteristics may be
defined as curves & = z(t) in the t—x plane along which the PDE becomes an
ODE. Cousider x = z(t) and regard u as a function of ¢, that is u = u(x(¢),t).
The rate of change of w along x = z(t) is
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du Ou  dxdu

S L 2.34
at ot dt oz (2:34)
If the characteristic curve x = x(t) satisfies the ODE
dx
P 2.
iy (2.35)
then the PDE in (2.32), together with (2.34) and (2.35), gives
du Ou ou
= — =0. 2.
dt ot + aam 0 (2:36)

Therefore the rate of change of u along the characteristic curve x = z(t)
satisfying (2.35) is zero, that is, u is constant along the curve x = x(t). The
speed a in (2.35) is called the characteristic speed and according to (2.35) it is
the slope of the curve = z(t) in the t—z plane. In practice it is more common
to use the x—t plane to sketch the characteristics, in which case the slope of the
curves in question is 1/a. The family of characteristic curves = = z(t) given by

Characteristic curve x = x + at

Initial point

0 X
/ / Xo

Fig. 2.1. Picture of characteristics for the linear advection equation for positive
characteristic speed a. Initial condition at time ¢ = 0 fixes the initial position xg

the ODE (2.35) are illustrated in Fig. 2.1 for @ > 0 and are a one-parameter
family of curves. A particular member of this family is determined when an
initial condition (IC) at time t = 0 for the ODE (2.35) is added. Suppose we
set

2(0) = xo , (2.37)
then the single characteristic curve that passes through the point (zg,0), ac-
cording to (2.35) is

T =xo+at. (2.38)

This is also illustrated in Fig. 2.1. Now we may regard the initial position x
as a parameter and in this way we reproduce the full one—parameter family
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of characteristics. The fact that the curves are parallel is typical of linear
hyperbolic PDEs with constant coefficients.

Recall the conclusion from (2.36) that u remains constant along charac-
teristics. Thus, if w is given the initial value u(x,0) = ug(z) at time t = 0,
then along the whole characteristic curve x(t) = xo + at that passes through
the initial point zg on the z—axis, the solution is

u(z,t) = up(zo) = uo(x — at) . (2.39)

The second equality follows from (2.38). The interpretation of the solution
(2.39) of the PDE in (2.32) is this: given an initial profile uo(z), the PDE will
simply translate this profile with velocity a to the right if a > 0 and to the
left if a < 0. The shape of the initial profile remains unchanged. The model
equation in (2.32) under study contains some of the basic features of wave
propagation phenomena, where a wave is understood as some recognisable
feature of a disturbance that travels at a finite speed.

2.2.2 The Riemann Problem

By using geometric arguments we have constructed the analytical solution
of the general IVP (2.32) for the linear advection equation. This is given by
(2.39) in terms of the initial data ug(x). Now we study a special IVP called
the Riemann problem

PDE: Uy + au, = 0.
. (2.40)
up, if x <0,
IC:  w(z,0) = ug(x) = {UR >0,
where uy, (left) and ug (right) are two constant values, as shown in Fig. 2.2.
Note that the initial data has a discontinuity at x = 0. IVP (2.40) is the
simplest initial-value problem one can pose. The trivial case would result
when u;, = ug. From the previous discussion on the solution of the general
IVP (2.32) we expect any point on the initial profile to propagate a distance
d = at in time t. In particular, we expect the initial discontinuity at x = 0
to propagate a distance d = at in time ¢. This particular characteristic curve
x = at will then separate those characteristic curves to the left, on which the
solution takes on the value uy,, from those curves to the right, on which the
solution takes on the value ug; see Fig. 2.3. So the solution of the Riemann
problem (2.40) is simply

up, if x —at <0,

ur if v —at >0. (241)

u(x,t) = up(x — at) = {

Solution (2.41) also follows directly from the general solution (2.39), namely
u(z,t) = up(z—at). From (2.40), ug(z—at) = ug, if r—at < 0 and ug(z—at) =
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Uq (X)
uL

Y
x

x=0

Fig. 2.2. Illustration of the initial data for the Riemann problem. At the initial
time the data consists of two constant states separated by a discontinuity at z =0

ur if x — at > 0. The solution of the Riemann problem can be represented
in the z—t plane, as shown in Fig. 2.3. Through any point xy on the z—axis
one can draw a characteristic. As a is constant these are all parallel to each
other. For the solution of the Riemann problem the characteristic that passes
through « = 0 is significant. This is the only one across which the solution
changes.

Characteristic x-at=0

x-at<0 ‘-/

u x-at>0

0

Fig. 2.3. Illustration of the solution of the Riemann problem in the z—¢ plane for
the linear advection equation with positive characteristic speed a

2.3 Linear Hyperbolic Systems

In the previous section we studied in detail the behaviour and the general
solution of the simplest PDE of hyperbolic type, namely the linear advection
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equation with constant wave propagation speed. Here we extend the analysis
to sets of m hyperbolic PDEs of the form

U, + AU, =0, (2.42)

where the coefficient matrix A is constant. From the assumption of hyper-
bolicity A has m real eigenvalues \; and m linearly independent eigenvectors
KO i=1,...,m.

2.3.1 Diagonalisation and Characteristic Variables

In order to analyse and solve the general IVP for (2.42) it is found useful to
transform the dependent variables U(z,t) to a new set of dependent variables
W (z,t). To this end we recall the following definition

Definition 2.9 (Diagonalisable System). A matriz A is said to be di-
agonalisable if A can be expressed as

A=KAK ' or A=K 'AK, (2.43)

in terms of a diagonal matriz A and a matrix K. The diagonal elements
of A are the eigenvalues \; of A and the columns K@ of K are the right
eigenvectors of A corresponding to the eigenvalues \;, that is

A ... 0
0...0 _ )

A=| . . |, K=KY . KM AK® =)\K® .  (2.44)
0 ... A\m

A system (2.42) is said to be diagonalisable if the coefficient matrix A is
diagonalisable. Based on the concept of diagonalisation one often defines a
hyperbolic system (2.42) as a system with real eigenvalues and diagonalisable
coefficient matrix.

Characteristic variables

The existence of the inverse matrix K~! makes it possible to define a new
set of dependent variables W = (w1, ws, ..., w,,)T via the transformation

W=K 'UorU=KW, (2.45)

so that the linear system (2.42), when expressed in terms of W, becomes
completely decoupled, in a sense to be defined. The new variables W are called
characteristic variables. Next we derive the governing PDEs in terms of the
characteristic variables, for which we need the partial derivatives U; and U,
in equations (2.42). Since A is constant, K is also constant and therefore these
derivatives are
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U, =KW;, U,=KW,.
Direct substitution of these expressions into equation (2.42) gives
KW, + AKW,_, =0.
Multiplication of this equation from the left by K—! and use of (2.43) gives
W, + AW, =0. (2.46)

This is is called the canonical form or characteristic form of system (2.42).
When written in full this system becomes

w1 Al ... 0 w1
Wo 0...0 Wo
+1 . . . . =0. (2.47)
W |, 0 ...\ W |,
Clearly the i—th PDE of this system is
awi 8wi .
i =0,i=1,..., 24
En + o 0,1 m (2.48)

and involves the single unknown w;(x,t); the system is therefore decoupled and
is identical to the linear advection equation in (2.32); now the characteristic
speed is \; and there are m characteristic curves satisfying m ODEs

d
d%‘::/\i’ fori=1,...,m. (2.49)

2.3.2 The General Initial-Value Problem

We now study the IVP for the PDEs (2.42). The initial condition is now
denoted by superscript (0), namely
U = (ugo) S u(o))T ,

) m

rather than by subscript 0, as done for the scalar case. We find the general
solution of the IVP by first solving the corresponding IVP for the canonical
system (2.46) or (2.47) in terms of the characteristic variables W and initial

condition W) = (w§0), ... 7uh(,?))T such that
WO = KU©® or UO = KW |

The solution of the IVP for (2.46) is direct. By considering each unknown
(0)

w;(x,t) satisfying (2.48) and its corresponding initial data w,; ' we write its

solution immediately as
wi(x, 1) :wgo)(x—/\it) Jfori=1,...,m. (2.50)

Compare with solution (2.39) for the scalar case. The solution of the general
IVP in terms of the original variables U is now obtained by transforming back
according to (2.45), namely U = KW.
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Ezample 2.10 (Linearised Gas Dynamics Revisited). As a simple example

we now study the general IVP for the linearised equations of Gas Dynamics
(2.12), namely

Uy 0 po||w _ _
+ =0, u1=p,us=u,
) [l 6] ] 0o =o e

with initial condition
u(2,0)] _ [u” (@)
uz(z,0) uéo)(x) '

We define characteristic variables
W = (w,w)? = K™ 'U,

where K is the matrix of right eigenvectors and K~! is its inverse, both given

by
K:[popo]7 K- 1 {a—po].
—a a 2apg | @ po
Since Ay = —a and A\ = a, in terms of the characteristic variables we may
write
ol [l o
wa |, 0 al |ws .
or in full 9 9 9 9
wq w1y (o) w2
— —a— =0, — —=0.
ot “ar "V T T

The initial condition satisfies

or in full

o () = 7 [aul® @) + poul? (@)] -

Fach equation involves a single independent variable and is a linear advection

equation of the form (2.48). The solution for w; and wsy in terms of their

initial data w%O), wéo), according to (2.50) is

wy(z,t) = w§0) (x+at), ws(z,t)= wéo)(x —at) ,

or in full
Yam [augo) (z +at) — poul” (x + at)| |
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wa(z, 1) [augo)(x —at) + pouéo)(z - at)} .

~ 2apy
This is the solution in terms of the characteristic variables . In order to obtain

the solution to the original problem we transform back using U = KW. This
gives the final solution as

u(z,t) = 5 [augo) (x + at) — poug)) (x + at)}

4 [ at) + pou (e~ at)]

up(w,t) = —ﬁ [augo) (x + at) — pougo) (x+ at)}

ok [0l (@ — at) + pou? ()]

Exercise 2.11. Find the solution of the general IVP for the Small Per-
turbation Equations (2.24) using the above methodology.

Solution 2.12. (Left to the reader).

We return to the expression U = KW in (2.45) used to recover the solution
to the original problem. When written in full this expression becomes

Uy = ’U}lkgl) + TUQICEQ) + ...+ wmkgm) s
w; = wlkgl) + wgkﬁz) +...+ wmkgm) ,

Uy = w1 kD + wak® + . 4w kT

o (1) (2) (m)
Uy k1 k1 klm
up k) kS k™
. = w1 ) + wao + ... twy . , (2.51)
U, k%) kffb) kr(nm)

or more succinctly

U(x,t) = Em: w;(z, 1) K@ (2.52)
i=1

This means that the function w;(z, t) is the coefficient of K() in an eigenvector
expansion of the vector U. But according to (2.50), w;(z,t) = ’U}go)(l' — Ait)

and hence
m

Uz, t) = > w® (@ - MK . (2.53)

i=1
Thus, given a point (x,t) in the z—t plane, the solution U(x,t) at this point
depends only on the initial data at the m points w(()z) = x — \;t. These are the
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intersections of the characteristics of speed \; with the xz—axis. The solution
(2.53) for U can be seen as the superposition of m waves, each of which is
advected independently without change in shape. The i—th wave has shape
wgo)(x)K(i) and propagates with speed \;.

2.3.3 The Riemann Problem

We study the Riemann problem for the hyperbolic, constant coefficient
system (2.42). This is the special IVP

PDEs: U;+ AU, =0, — o<z <o,t>0,
2.54)
Up <0 (
. 170 () — L ;
IC: U(z,0) = U (x) {UR >0
and is a generalisation of the IVP (2.32). We assume that the system is strictly
hyperbolic and we order the real and distinct eigenvalues as

A <A< .. < Ay (2.55)

The General Solution

The structure of the solution of the Riemann problem (2.54) in the a—
t plane is depicted in Fig. 2.4. It consists of m waves emanating from the
origin, one for each eigenvalue \;. Each wave ¢ carries a jump discontinuity
in U propagating with speed \;. Naturally, the solution to the left of the A\;—
wave is simply the initial data Uy, and to the right of the \,,—wave is Ug.
The task at hand is to find the solution in the wedge between the \; and
Am waves. As the eigenvectors KV ... K™ are linearly independent, we

Leftdata U Right data U

0

Fig. 2.4. Structure of the solution of the Riemann problem for a general m x m
linear hyperbolic system with constant coefficients
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can expand the data Urp,, constant left state, and Ug, constant right state, as

linear combinations of the set KM, ... K that is
U,=> aK?, Ug=> gKY, (2.56)
i=1 i=1
with constant coefficients «;, 3;, for i = 1,..., m. Formally, the solution of

the IVP (2.54) is given by (2.53) in terms of the initial data wgo)(:v) for the
characteristic variables and the right eigenvectors K(V. Note that each of the
expansions in (2.56) is a special case of (2.53). In terms of the characteristic
variables we have m scalar Riemann problems for the PDEs

8'[1)2' awl

pyiae
ot + ox

=0, (2.57)

with initial data obtained by comparing (2.56) with (2.53), that is

0, Joiifx <0,
w; (x) = {ﬁi ifr>0 (2.58)
for i = 1,...,m. From the previous results, see equation (2.50), we know that

the solutions of these scalar Riemann problems are given by

oz,;if:rfA,;t<0,

wi(z,t) = wgo)(a: —\t) = {
For a given point (z,¢) there is an eigenvalue A such that A\ < ¥ < Ary1,
that is x — \;t > 0 V¢ such that ¢ < I. We can thus write the final solution to
the Riemann problem (2.54) in terms of the original variables as

m I
Uz,t)= > oKD +> KO, (2.60)
i=I+1 i=1

where the integer I = I(z,t) is the maximum value of the sub—index 4 for
which z — \;t > 0.

The Solution for a 2 X 2 System

As an example consider the Riemann problem for a general 2 x 2 linear
system. From the origin (0,0) in the (x,t) plane there will be two waves
travelling with speeds that are equal to the characteristic speeds A1 and A,
(A1 < A2); see Fig. 2.5. The solution to the left of dz/dt = Ay is simply the
data state Uy, = a; K + a,K®) and to the right of dx/dt = A the solution
is the constant data state Ugr = ﬁlK(l) + ﬂQK(Z). The wedge between the
A1 and Ao waves is usually called the Star Region and the solution there is
denoted by U*; its value is due to the passage of two waves emerging from
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t

A T A2

* N - -

U™ : solution in star region
P (x)
a
U Ur
X
0
x(@ X

Fig. 2.5. Structure of the solution of the Riemann problem for a 2 X 2 linear system
with constant coefficients

the origin of the initial discontinuity. From the point P*(x,t) we trace back
the characteristics with speeds A\; and A\o. These are parallel to those passing
through the origin. The characteristics through P* pass through the initial
points ac(()z) = x — Aot and a:él) = & — A\t. The coefficients in the expansion
(2.60) for U(x,t) are thus determined. The solution at a point P* has the
form (2.60). It is a question of choosing the correct coefficients «; or f3;. Select
a time t* and a point zp, to the left of the slowest wave so U(xy,t*) = Uy,

see Fig. 2.6. The solution at the starting point (xy,,t*) is obviously

A1 T A2
Star region

Left data Right data

XL 0

Fig. 2.6. The Riemann problem solution found by travelling along dashed horizontal
line t =t~

2
UL = Zasz = alK(l) + OCQK(Q) s
i=1
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i.e. all coefficients are a’s, that is, the point (zr,,t*) lies to the left of every
wave. As we move to the right of (z1,,¢*) on the horizontal line ¢t = t* we cross
the wave dz/dt = Ay, hence & — A\it changes from negative to positive, see
(2.59), and therefore the coefficient «; above changes to ;. Thus the solution
in the entire Star Region, between the A\; and Ao waves, is

U*(z,t) = HKY + apyK® (2.61)

As we continue moving right and cross the Ao wave the value x — Aot changes
from negative to positive and hence the coefficient as in (2.60) and (2.61)
changes to (3, i.e the solution to the right of the fastest wave of speed A5 is,

trivially, ) ,
Ur = 1KY + 3,K®

Remark 2.15. From equation (2.56) it is easy to see that the jump in U
across the whole wave structure in the solution of the Riemann problem is

AU=Ug - UL = (61 —a)) KD + .. 4 (B — ap) K™ . (2.62)

It is an eigenvector expansion with coefficients that are the strengths of the
waves present in the Riemann problem. The wave strength of wave i is 3; — «;
and the jump in U across wave 4, denoted by (AU);, is

(AU); = (B — ;) K . (2.63)

When solving the Riemann problem, sometimes it is more useful to expand
the total jump AU = Ugr — Uy, in terms of the eigenvectors and unknown
wave strengths §; = 3; — «;.

2.3.4 The Riemann Problem for Linearised Gas Dynamics

As an illustrative example we apply the methodology described in the
previous section to solve the Riemann problem for the linearised equations of
Gas Dynamics (2.12)

U;+AU, =0,

o-[2]-[2]. a-[ins].

The eigenvalues of the system are

with

/\1:—a,/\2=—|—a,

and the corresponding right eigenvectors are

KO — [Po ] K® — [Po]
k) a *

—a
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First we decompose the left data state Uy, = [pr,, uL]T in terms of the right
eigenvectors according to equation (2.56), namely

e AR IR

Solving for the unknown coefficients a; and as we obtain

_ apL — pour __apr + pour,

a )
! 2apg : 2apg

Similarly, by expanding the right-hand data Ur = [pr,ur]? in terms of the

eigenvectors and solving for the coefficients #; and §; we obtain
QPR — POUR PR + PoUR
pr=———"—, bo=—"7F5—".
2apo 2apo

Now by using equation (2.61) we find the solution in the star region as

*
x« _ | P _ Lo Po
o =[] ] e 0]
After some algebraic manipulations we obtain the solution explicitly as
ps = 5(pr + pr) — 3(ur —ur)po/a,
(2.64)
u, = 3 (ur, +ur) — 5(pr — pr)a/po -
Fig. 2.7 illustrates the solution for p(z,t) and u(x,t) at time ¢t = 1 for the
parameter values py = 1, a = 1 and initial data p;, = 1, ur, =0, pr = % and
ur = 0. The two symmetric waves that emerge from the initial position of the
discontinuity carry a discontinuous jump in both density p and velocity u.

Density profileatt=1

S M /osition of initial discontinuity
1

1 /
Velocity profile at t=1 1

1 I
| |
Position of I% . Position of right wave

A '

1
-1 0

1

Fig. 2.7. Density and velocity solution profiles at time t=1

Remark 2.14. The exact solution (2.64) can be very useful in testing nu-
merical methods for systems with discontinuous solutions.
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2.3.5 Some Useful Definitions

Next we recall some standard definitions associated with hyperbolic sys-
tems.

Definition 2.15 (Domain of Dependence). Recall that for the linear
advection equation the solution at a given point P = (z*,t*) depends solely
on the initial data at a single point xg on the x—axis. This point is obtained
by tracing back the characteristic passing through the point P = (z*,t*). As
a matter of fact, the solution at P = (x*,t*) is identical to the value of the
initial data ug(x) at the point xg. One says that the domain of dependence
of the point P = (x*,t*) is the point xo. For a 2 X 2 system the domain
of dependence is an interval [xy,xR] on the x—axis that is subtended by the
characteristics passing through the point P = (z*,t*).

Domain of

deterrhinacy

|
*

X
Domain of dependence — *
X X
L R
Fig. 2.8. Domain of dependence of point P and corresponding domain of determi-
nacy, for a 2 by 2 system

Fig. 2.8 illustrates the domain of dependence for a 2 x 2 system with char-
acteristic speeds A1 and As, with A\; < Ao. In general, the characteristics of a
hyperbolic system are curved. For a larger system the domain of dependence is
determined by the slowest and fastest characteristics and is always a bounded
interval, as the characteristic speeds for hyperbolic systems are always finite.

Definition 2.16 (Domain of Determinacy). For a given domain of
dependence [z1,,xR], the domain of determinacy is the set of points (z,t),
within the domain of existence of the solution U(x,t), in which U(x,t) is
solely determined by initial data on [ry,, xR].

In Fig. 2.8 we illustrate the domain of determinacy of an interval [z, 2R]
for the case of a 2 x 2 system with characteristic speeds A; and Ay, with
A1 < Ag.



2.4 Conservation Laws 61

Definition 2.17 (Range of Influence). Another useful concept is that
of the range of influence of a point QQ = (x0,0) on the x—azis. It is defined
as the set of points (x,t) in the x—t plane in which the solution U(x,t) is
influenced by initial data at the point @ = (x0,0).

Fig. 2.9 illustrates the range of influence of a point = (¢, 0) for the case
of a 2 x 2 system with characteristic speeds A1 and Ay, with A\ < As.

7\-1 7\.2

Range of influence

of point Q

Fig. 2.9. Range of influence of point Q for a 2 by 2 system

2.4 Conservation Laws

The purpose of this section is to provide the reader with a succinct presen-
tation of some mathematical properties of hyperbolic conservation laws. We
restrict our attention to those properties thought to be essential to the devel-
opment and application of numerical methods for conservation laws. In Chap.
1 we applied the physical principles of conservation of mass, momentum and
energy to derive time—dependent, multidimensional non—linear systems of con-
servations laws. In this section we restrict ourselves to simple model problems.
In Sect. 2.1 we advanced the formal definition of a system of m conservation
laws

U, +FU), =0, (2.65)

where U is the vector of conserved variables and F(U) is the vector of fluxes.
This system is hyperbolic if the Jacobian matrix

OF
A(U) = —
U) =35
has real eigenvalues \;(U) and a complete set of linearly independent eigen-
vectors K (U), i = 1,...,m, which we assume to be ordered as
/\1(U) < )\Q(U) < ..., < )\m(U) s

KM (U), K@), ..., K™ (U).
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It is important to note that now eigenvalues and eigenvectors depend on U,
although sometimes we shall omit the argument U.

2.4.1 Integral Forms of Conservation Laws

As discussed in Sect. 1.5 of Chap. 1, conservation laws may be expressed
in differential and integral form. There are two good reasons for consider-
ing the integral form (s) of the conservation laws: (i) the derivation of the
governing equations is based on physical conservation principles expressed as
integral relations on control volumes, (ii) the integral formulation requires
less smoothness of the solution, which paves the way to extending the class of
admissible solutions to include discontinuous solutions.

The integral form has variants that are worth studying in detail. Consider
a one—dimensional time dependent system, such as the Euler equations intro-
duced in Sect. 1.1 of Chap. 1. Choose a control volume V = [z, zr] X [t1, t2]
on the x—t plane as shown in Fig. 2.10. The integral form, see Sect. 1.5, of the

Control

volume

XL xR

Fig. 2.10. A control volume V = [z, zr] X [t1,?2] on z—t plane

equation for conservation of mass in one space dimension is

d [*r

e 5 p(z,t)de = f(rp,t) — f(zR,t),

where f = pu is the flux. For the complete system we have
d [*®
G [ Ul de = PO, 0) - F(UGen,0) (2.66)
Ty,

where F(U) is the flux vector. This is one version of the integral form of the
conservation laws: Integral Form I. The corresponding differential form reads
as (2.65). Another version of the integral form of the conservation laws is
obtained by integrating (2.66) in time between t; and to, with ¢t; < t5. See
Fig. 2.10. Clearly,
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to d TR TR TR
/ [dt/ U(z,t) dx} dt:/ U(a:,tg)dx—/ U(z,t1) de
ty TL TL T,

and thus (2.66) becomes

JIEU( ) do = [TF Uz, tr) dz + [” F(U(ay, 1)) dt
(2.67)
t
_ tf F(U(zg,t))dt,

which we call: Integral Form II of the conservation laws.

Another version of the integral form of the conservation laws is obtained
by integrating (2.65) in any domain V' in 2—¢ space and using Green’s theorem.
The result is

7[ [Udz — F(U)dt] =0, (2.68)

where the line integration is performed along the boundary of the domain,
in an anticlock—wise manner. We call this version Integral Form III of the
conservation laws. Note that Integral Form II of the conservation laws is a
special case of Integral Form III, in which the control volume V is the rectangle
[:EL, xR] X [tl, tQ].

A fourth integral form results from adopting a more mathematical ap-
proach for extending the concept of solution of (2.65) to include disconti-
nuities. See Chorin and Marsden [112]. A weak or generalized solution U is
required to satisfy the integral relation

+o00o +oo +00
/0 /_ [6:U + ¢,F(U)] dzdt = —/ é(z,0)U(z,0)dz,  (2.69)

—00

for all test functions ¢(x,t) that are continuously differentiable and have com-
pact support. A function ¢(z,t) has compact support if it vanishes outside
some bounded set. Note that in (2.69) the derivatives of U(x,t) and F(U)
have been passed on to the test function ¢(z,t), which is sufficiently smooth
to admit these derivatives.

Remark 2.18. The integral forms (2.66)—(2.69) corresponding to (2.65) are
valid for any system (2.65), not just for the Euler equations.

Examples of Conservation Laws
Scalar conservation laws (m = 1) in differential form read
utr + f(u), =0, f(u): flux function. (2.70)

To be able to solve for the conserved variable u(z,t) the flux function f(u)
must be a completely determined algebraic function of u(z,t), and possibly
some extra parameters of the problem. As seen in Sect. 2.2 the linear advection
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equation is the simplest example, in which the flux function is f(u) = au, a
linear function of w.

The inviscid Burgers’s equation has flux f(u) = 1u?, a quadratic
function of u. Another example of a conservation law is the traffic flow
equation

2

pe+F(P)e=0, flp)=um(1—"L)p. (2.71)

m

Here the conserved variable p(z,t) is a density function (density of motor
vehicles), wu,, and p,, are parameters of the problem, namely the maximum
speed of vehicles and the maximum density, both positive constants. For de-
tails on the traffic flow equation see Whitham [582], Zachmanoglou and Thoe
[596], Toro [528] and Haberman [232]. An example of practical interest in
oil-reservoir simulation is the Buckley-Leverett equation

u2

u + f(u)e =0, f(u):mv (2.72)

where b is a parameter of the problem. More details of this equation are found
in LeVeque [308].
Systems of conservation laws are constructed, as obvious examples,
from linear systems
U,+AU, =0,

with constant coefficient matrix A. The required conservation—-law form is
obtained by defining the flux function as the product of the coeflicient matrix
A and the vector U, namely

U;+FU),=0, F(U)=AU. (2.73)
Trivially, the Jacobian matrix is A.

Ezample 2.19 (Isothermal Gas Dynamics). The isothermal equations of
Gas Dynamics, see Sect. 1.6.2 of Chap. 1, are one example of a non—linear
system of conservation laws. These are

U, +FU), =0,

o-[2)-[4]. -4

where «a is positive, constant speed of sound. The Jacobian matrix is found
by first expressing F in terms of the components w1 = p and uy = pu of the
vector U of conserved variables, namely

*O) = 2] = L ]

According to (2.8) the Jacobian matrix is

[ o } (2.74)

pu? +a?p
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OF 0 1 0 1
AU) = AU | —(uz/u1)? + a? 2uQ/u1] - {aQ —u? QU] '

It is left to the reader to verify that the eigenvalues of A are
)\1:u—a, )\2:U+a (275)

and that the right eigenvectors are

_| 1 @_| 1
=[] e[, L] o

where the scaling factors for K" and K(®) have been taken to be unity. The
isothermal equations of Gas Dynamics are thus hyperbolic.

Ezample 2.20 (Isentropic Gas Dynamics). Another non—linear example of
a system of conservation laws are the isentropic equations of Gas Dynamics

U;+F(U), =0,

o-[al=[a) r- [l S

together with the closure condition, or equation of state (EOS),
p=Cp”, C = constant . (2.78)
See Sect. 1.6.2 of Chap. 1.

Exercise 2.21. (i) Find the Jacobian matrix, the eigenvalues and the right
eigenvectors for the isentropic equations (2.77)—(2.78). (ii) Show that for a
generalized isentropic EOS, p = p(p), the system is hyperbolic if and only if
p'(p) > 0, that is, the pressure must be a monotone increasing function of p.
(iii) Show that the sound speed has the general form

a=+/p(p).
Solution 2.22. The eigenvalues are
M=u—a, a=u+a, (2.79)

and the right eigenvectors are

K(l):[ 1 },K@):{ 1 ] (2.80)

u—a

with the sound speed a as claimed.
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2.4.2 Non—Linearities and Shock Formation

Here we study some distinguishing features of non-linear hyperbolic con-
servation laws, such as wave steepening and shock formation. We restrict our
attention to the initial-value problem for scalar non-linear conservation laws,
namely

ug+ f(u)e =0, u(z,0) = ug(x) . (2.81)
A corresponding integral form of the conservation law is
d [*®
T u(z,t)de = f(u(zr,t)) — f(u(zr,t)) . (2.82)
zL

The flux function f is assumed to be a function of u only, which under certain
circumstances is an inadequate representation of the physical problem being
modelled. Relevant physical phenomena of our interest are shock waves in
compressible media. These have viscous dissipation and heat conduction, in
addition to pure advection. A more appropriate flux function for a model
conservation law would also include a dependence on ., so that the modified
conservation law would read

ur + f(u)y = Qg , (2.83)

with « a positive coefficient of viscosity. The conservation law in (2.81) may
be rewritten as

ur + AMu)ugz =0, (2.84)
where af
Mu)= 3. = f'(w) (2.85)

is the characteristic speed. In the system case this corresponds to the eigen-
values of the Jacobian matrix. For the linear advection equation A\(u) = a,
constant. For the inviscid Burgers equation A(u) = u, that is, the character-
istic speed depends on the solution and is in fact identical to the conserved
variable. For the traffic flow equation A(u) = u,, (1 — 3—:1)

The behaviour of the flux function f(u) has profound consequences on
the behaviour of the solution u(x,t) of the conservation law itself. A crucial
property is monotonicity of the characteristic speed A(u). There are essentially

three possibilities:

e \(u) is a monotone increasing function of u, i.e.

%EJ,U) = XN(u) = f"(u) > 0 (convex flux)

e \(u) is a monotone decreasing function of u, i.e.

dA(u)
du

= N(u) = f"(u) <0 (concave flux)
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e \(u) has extrema, for some u, i.e.

dA(u)
du

= XN(u) = f”(u) = 0 (non-convex, non-concave flux) .

In the case of non-linear systems of conservation laws the character of the
flux function is determined by the Equation of State. One speaks of convex,
or otherwise, equations of state. See the review paper by Menikoff and Plohr
[349]. For the inviscid Burgers equation X (u) = f”(u) = 1 > 0, the flux is
convex. For the traffic flow equation X (u) = f”(u) = —2uy/pm < 0, the flux
is concave.

Exercise 2.23. Analyse the character of the flux function for the Buckley—
Leverett equation and show that it is non—convex, non—concave.

Solution 2.24. (Left to the reader).

We study the inviscid IVP (2.81) and for the moment we assume that the
initial data u(x,0) = ug(x) is smooth. For some finite time the solution u(z, t)
will remain smooth. We rewrite the IVP as

ur + Awuz =0, AMu) = f'(u),
(2.86)
u(x,0) = uo(x) .

Note that the PDE in (2.86) is a non-linear extension of the linear advection
equation in (2.32) in which the characteristic speed is A(u) = a = constant.
We construct solutions to IVP (2.86) following characteristic curves, in much
the same way as performed for the linear advection equation.

Construction of Solutions on Characteristics

Consider characteristic curves « = z(t) satisfying the TVP

%f — A, 2(0) =z . (2.87)

Then, by regarding both u and x to be functions of ¢ we find the total deriva-
tive of u along the curve z(t), namely

— =u + AMu)u, =0. (2.88)

That is, u is constant along the characteristic curve satisfying the IVP (2.87)
and therefore the slope A(u) is constant along the characteristic. Hence the
characteristic curves are straight lines. The value of u along each curve is the
value of u at the initial point 2(0) = z¢ and we write

u(z,t) = up(zo) - (2.89)
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Fig. 2.11 shows a typical characteristic curve emanating from the initial point
xo on the z—axis. The slope A(u) of the characteristic may then be evaluated
at xo so that the solution characteristics curves of IVP (2.87) are

x = x0 + Muo(x0))t . (2.90)

Relations (2.89) and (2.90) may be regarded as the analytical solution of IVP
(2.86). Note that the point xg depends on the given point (z,t), see Fig. 2.
11, and thus z¢ = xo(x,t). The solution given by (2.89) and (2.90) is implicit,
which is more apparent if we substitute zy from (2.90) into (2.89) to obtain

u(z,t) = up(z — AMuo(xo))t) (2.91)

Note that this solution is identical in form to the solution (2.39) of the linear
advection equation in (2.32).

Fig. 2.11. Typical characteristic curves for a non-linear hyperbolic conservation
law

Next we verify that relations (2.89) and (2.90) actually define the solution.
From (2.89) we obtain the ¢ and z derivatives

ox , ox
u = ug(xo)af;’ Uy = uo(xo)a—; . (2.92)

From (2.90) the ¢ and z derivatives are found to be

Muo (o)) + [1+ X (uo(z0))ufh(z0)t] %22 =0,

r (2.93)
[1+ N (uo (o) Jup (o) ] G2 =1.
From (2.93) we obtain
Oxo _ Aug (o))

and
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al‘o 1

= = ) 2.95

Or 1+ N(ug(zo))ugh (o)t (2.95)
Substitution of (2.94)—(2.95) into (2.92) verifies that u; and wu, satisfy the
PDE in (2.86).

Wave Steepening

Recall that in the case of the linear advection equation, in which the
characteristic speed is A(u) = a = constant, the solution consists of the initial
data ug(z) translated with speed a without distortion. In the non-linear case
the characteristic speed A(u) is a function of the solution itself. Distortions
are therefore produced; this is a distinguishing feature of non—linear problems.

©]
Uy x) up

(@ j ;
0 0 o~ X
X9 X9 x®
(b) YRR I
X

Fig. 2.12. Wave steepening in a convex, non-linear hyperbolic conservation law:
(a) initial condition and (b) corresponding picture of characteristics

To explain the wave distortion phenomenon we consider initial data
up(z) as shown in Fig. 2.12. A smooth initial profile is shown in Fig. 2.12a

along with five initial points x((f) and their corresponding initial data values

uéi) = uo(xéi)). For the moment let us assume that the flux function f(u) is
convex, that is X' (u) = f”(u) > 0. In this case the characteristic speed is an
increasing function of u. Fig. 2.12b shows the characteristics 2(*) (t) emanat-
ing from the initial points x(()l) and carrying the constant initial values u(()z)
along them. Given the assumed convex character of the flux, higher values
of up(x) will travel faster than lower values of ug(z). There are two inter-
vals on the z—axis where distortions are most evident. These are the intervals
Ip = [acél)7 3383)] and I = [xég), :C(()s)]. In Iy the value u(()3) will propagate faster
than ugf) and this in turn will propagate faster that uél) . The orientation of
the respective characteristics in Fig. 2.12b makes this situation clear. At a

later time the initial data in Ig will have been transformed into a broader
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and flatter profile. We say that Iy is an expansive region. In the expansive
region the characteristic speed increases as x increases, that is A\, > 0. By
contrast the interval I¢ is compressive and A, < 0; the value ué?’) will propa-
gate faster than ué4) and this in turn will propagate faster that u(()S), as shown
by the orientation of the respective characteristics in Fig. 2.12b. The com-
pressive region will tend to get steeper and narrower as time evolves. The
wave steepening mechanism will eventually produce folding over of the solu-
tion profile, with corresponding crossing of characteristics, and triple-valued
solutions. Note that the compressive and expansive character of the data just
described reverses for the case of a concave flux, N (u) = f”(u) < 0. Before
crossing of characteristics the single—valued solution may be found following
characteristics, as described previously. When characteristics first intersect we
say that the wave breaks; the derivative u, becomes infinite and this happens
at a precise breaking time ¢}, given by

~1
)\m(xo) ’

This is confirmed by equations (2.94)—(2.95). Breaking first occurs on the
characteristic emanating from « = x¢ for which A, (x¢) is negative and |\, (z0)|
is a maximum. For details see Whitham [582].

This is an anomalous situation that may be rescued by going back to the
physical origins of the equations and questioning the adequacy of the model
furnished by (2.81). The improved model equation (2.83) says that the time
rate of change of w is not just due to the advection term f(u), but is a
competing balance between advection and the diffusion term ;. As shown
in Fig. 2.12a in the interval [x(()g),xgl)] the wave steepening effect of f(u),
is opposed by the wave-easing effect of au,,, which is negative there. In the
interval [m(()4), xé5)] the role of these contradictory effects is reversed. The more
complete description of the physics does not allow folding over of the solution.
But rather than working with the more complete, and therefore more complex,
viscous description of the problem, it is actually possible to insist on using
the inviscid model (2.81) by allowing discontinuities to be formed as a process
of increasing compression, namely shock waves. Further details are found in
Lax [301], Whitham [582] and Smoller [451].

ty, = (2.96)

Shock Waves

Shock waves in air are small transition layers of very rapid changes of
physical quantities such as pressure, density and temperature. The transition
layer for a strong shock is of the same order of magnitude as the mean—free
path of the molecules, that is about 10~7 m. Therefore replacing these waves as
mathematical discontinuities is a reasonable approximation. Very weak shock
waves such as sonic booms, are an exception; the discontinuous approximation
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here can be very inaccurate indeed, see Whitham [582]. For a discussion on
shock thickness see Landau and Lifshitz [297], pp. 337-341.

We therefore insist on using the simplified model (2.81) but in its integral
form, e.g. (2.82). Consider a solution u(x,t) such that u(z,t), f(u) and their
derivatives are continuous everywhere except on a line s = s(t) on the z—t
plane across which w(z, t) has a jump discontinuity. Select two fixed points xr,
and xr on the z—axis such that x, < s(t) < xr. Enforcing the conservation
law in integral form (2.82) on the control volume [zy,, zg] leads to

d S(t) d TR
flulnst) = Sluton ) = 3 [ wleyde+ 3 [ Sl tds.
dt /.. dt Jy
Direct use of formula (1.68) of Chap. 1 yields
flulzy,t)) = f(u(zr,t)) = [u(se,t) — u(sr,t)] S
+ f;L(t) ug(z,t) do + f:(?) ug(x,t) de ,

where u(sy,, t) is the limit of u(s(t),t) as x tends to s(¢t) from the left, u(sg,t)
is the limit of wu(s(t),t) as = tends to s(¢) from the right and S = ds/dt
is the speed of the discontinuity. As w(z,t) is bounded the integrals vanish
identically as s(t) is approached from left and right and we obtain

fu(zyr,t) — f(u(zr,t) = [u(sy, t) — u(sr,t)] S . (2.97)

This algebraic expression relating the jumps Af = f(u(zg,t)) — f(u(zn, 1)),
Au = u(zgr,t) — u(zy,t) and the speed S of the discontinuity is called the
Rankine—Hugoniot condition and is usually expressed as

Af =SAu . (2.98)
For the scalar case considered here one can solve for the speed S as
Af
S=—. 2.99
Au (2.99)

Therefore, in order to admit discontinuous solutions we may formulate the
problem in terms of PDEs, which are valid in smooth parts of the solution,
and the Rankine-Hugoniot conditions across discontinuities.

Two Examples of Discontinuous Solutions
Consider the following initial-value problem for the inviscid Burgers equa-

tion .

ut+f(u)$zo7 f(u):§u2a
up, if . <0, (2.100)
ugr if ¢ > 0.

u(@,0) = up(z) = {
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First assume that uy, > ugr. As the flux is convex X' (u) = f”(u) > 0 the
characteristic speeds on the left are greater than those on the right, that is
AL = AMur) > Ar = AMugr). Based on the discussion about Fig. 2.12 the
initial data in IVP (2.100) is the extreme case of compressive data. Crossing
of characteristics takes place immediately, as illustrated in Fig. 2.13b. The

t uL

L Uy
@ !

T > X

|t

! > X

t 4T
U, Shock of speed S

(© Ugr

o

Fig. 2.13. (a) Compressive discontinuous initial data (b) picture of characteristics
and (c) solution on xz—t plane

discontinuous solution of the IVP is

_Juy if 2 -8St<0,
u(w,t) = {uR itz St>0, (2.101)
where the speed of the discontinuity is found from (2.99) as
1
S = §(UL —|—uR) . (2.102)

This discontinuous solution is a shock wave and is compressive in nature as
discussed previously and as observed in Fig. 2.13a; it satisfies the following
condition

)\(UL) >85> )\(UR) s (2.103)

which is called the entropy condition. More details are found in Chorin and
Marsden [112], LeVeque [308], Smoller [451], Whitham [582].

Now we assume that uy, < ug in the IVP (2.100). This data is the extreme
case of expansive data, for convex f(u). A possible mathematical solution has
identical form as solution (2.101)—(2.102) for the compressive data case. See
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Fig. 2.14. However, this solution is physically incorrect. The discontinuity
has not arisen as the result of compression, A\;, < Agr; the characteristics
diverge from the discontinuity. This solution is called a rarefaction shock, or
entropy-violating shock, and does not satisfy the entropy condition (2.103);
it is therefore rejected as a physical solution. Compare Figs. 2.13 and 2.14;
in the compressive case characteristics run into the discontinuity. Given the

t uR
ug

(a) !

T > X

Lt
(b)

f = X

t »— Rarefaction shock
up

© Ug

= X

f

0

Fig. 2.14. (a) Expansive discontinuous initial data (b) picture of characteristics
and (c) rarefaction shock solution on z-t plane

expansive character of the data and based on the discussion on Fig. 2.12, it
would be more reasonable to expect the initial data to break up immediately
and to broaden with time. This actually gives another solution to be discussed
next.

Rarefaction Waves
Reconsider the IVP (2.100) with general convex flux function f(u)

ut+f(u)$:0a

U(I,O) = UO(I) — {uL if z <0 ) (2104)

ugr if x >0,

and ezpansive initial data, u;, < ugr. As discussed previously, the entropy—
violating solution to this problem is
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( t)_ up, if x — St <0,
Y=Y ug if o — St >0, (2.105)

Amongst the various other reasons for rejecting this solution as a physical
solution, instability stands out as a prominent argument. By instability it is
meant that small perturbations of the initial data lead to large changes in the
solution. As a matter of fact, under small perturbations, the whole character
of the solution changes completely, as we shall see.

Ug

o

(@)

|
[
|
|
|
'
1

! o Tail Head

(b)

1,
/ » X

Fig. 2.15. Non-centred rarefaction wave: (a) expansive smooth initial data, (b)
picture of characteristics on x—t plane

Let us modify the initial data in (2.104) by replacing the discontinuous
change from uy, to ug by a linear variation of ug(x) between two fixed points
z1, < 0 and zg > 0. Now the initial data reads

uy, if x <z,
up(z) =  ur + ok (z —ap) if o <z <uzgr, (2.106)
UR if T > TR,

and is illustrated in Fig. 2.15a. The corresponding picture of characteristics
emanating from the initial time ¢ = 0 is shown in Fig. 2.15b. The solution
u(x, t) to this problem is found by following characteristics, as discussed previ-
ously, and consists of two constant states, uy, and ur, separated by a region of
smooth transition between the data values ur, and ugr. This is called a rarefac-
tion wave. The right edge of the wave is given by the characteristic emanating
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(b)

(c) Ur

0

= X

Fig. 2.16. Centred rarefaction wave: (a) expansive discontinuous initial data (b)
picture of characteristics (¢) entropy satisfying (rarefaction) solution on z—¢ plane

from xg
x = xR + AM(ug)t (2.107)

and is called the Head of the rarefaction. It carries the value ug(zr) = ur .
The left edge of the wave is given by the characteristic emanating from xy,

x =z, + Mup)t (2.108)

and is called the Tail of the rarefaction. It carries the value ug(zr,) = ur,.

As we assume convexity, X' (u) = f”(u) > 0, larger values of ug(z) propa-
gate faster than lower values and thus the wave spreads and flattens as time
evolves. The spreading of waves is a typical non-linear phenomenon not seen
in the study of linear hyperbolic systems with constant coefficients. The entire
solution is

u(z,t) = wup, if =<,
Au) = =2 if A\ < =2 <Ay, (2.109)
u(z,t) = ug if = >R

No matter how small the size Ax = xr — xr, of the interval over which the
discontinuous data in IVP (2.104) has been spread over, the structure of the
above rarefaction solution remains unaltered and is entirely different from the
rarefaction shock solution (2.105), for which small changes to the data lead to
large changes in the solution. Thus the rarefaction shock solution is unstable.
From the above construction the rarefaction solution is stable and as x1, and
xR approach zero from below and above respectively, the discontinuous data
at = 0 in IVP (2.104) is reproduced. Therefore, the limiting case is to be
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interpreted as follows: ug(z) takes on all the values between uj, and ug at
x = 0 and consequently A(ug(x)) takes on all the values between Ar, and Ar
at x = 0. As higher values propagate faster than lower values the initial data
disintegrates immediately giving rise to a rarefaction solution. This limiting
rarefaction in which all characteristics of the wave emanate from a single point
is called a centred rarefaction wave. The solution is

u(x,t) =uy if <A,
)\(u) = % if Ap < % < AR s (2110)
u(z,t) =ur if  §>Ar,

and is illustrated in Fig. 2.16.

Now we have at least two solutions to the IVP (2.104). Thus, having
extended the concept of solution to include discontinuities, extra spurious so-
lutions are now part of this extended class. The question is how to distinguish
between a physically correct solution and a spurious solution. The anticipated
answer is that a physical discontinuity, in addition to the Rankine-Hugoniot
condition (2.98), also satisfies the entropy condition (2.103).

The Riemann Problem for the Inviscid Burgers Equation

We finalise this section by giving the solution of the Riemann problem for
the inviscid Burgers equation, namely

PDE : u; + (%), =0,

ur, <0, (2.111)
IC : u(z,O){u; >0,

From the previous discussion the exact solution is a single wave emanating
from the origin as shown in Fig. 2.17a. In view of the entropy condition this
wave is either a shock wave, when u;, > wug, or a rarefaction wave, when
uy, < ur. The complete solution is

)_ u, fx—St<0
- ur if ¢ — St >0 ifuL>uR7
S = L(ur, +ugr)

u(z,t

(2.112)
ur, if % < uy,

7 ifup <z/t <ur p ifup <ug .
up if 2/t > ug

u(x,t) =

Fig. 2.17 shows the solution of the Riemann problem for the inviscid Burgers
equation. Fig. 2.17a depicts the structure of the general solution and consists
of a single wave, Fig. 2.17b shows the case in which the solution is a shock
wave and Fig. 2.17c¢ shows the case in which it is a rarefaction wave.

Some of the studied notions for scalar conservations laws extend quite
directly to systems of hyperbolic conservations laws, as we see in the next
section.
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t t

@ (b) (©

Fig. 2.17. Solution of the Riemann problem for the inviscid Burgers equation: (a)
structure of general solution (single wave, shock or rarefaction), (b) solution is a
shock wave and (c) solution is a rarefaction wave

2.4.3 Characteristic Fields

Consider a hyperbolic system of conservation laws of the form (2.65) with
real eigenvalues \;(U) and corresponding right eigenvectors K (U). The
characteristic speed \;(U) defines a characteristic field, the \;—field. Some-
times one also speaks of the K(9)—field, that is the characteristic field defined
by the eigenvector K.

Definition 2.25 (Linearly degenerate fields). A \;—characteristic field
is said to be linearly degenerate if

VA (U)-KO(U) =0, YU e R, (2.113)
where K™ is the set of real-valued vectors of m components.

Definition 2.26 (Genuinely nonlinear fields). A \;—characteristic field
is said to be genuinely nonlinear if

VA (U)-KD(U) £0, VU e R™ . (2.114)

The symbol ‘-’ denotes the dot product in phase space. VA;(U) is the
gradient of the eigenvalue \;(U), namely

d d o\
VAU) = — iy =— iy oo, — N .
(U) (6u1 Ous Ou, )
The phase space is the space of vectors U = (uq,...,uy); for a 2 X 2 system

we speak of the phase plane u;—us. Note that for a linear system (2.42) the
eigenvalues \; are constant and therefore V\;(U) = 0. Hence all characteris-
tic fields of a linear hyperbolic system with constant coefficients are linearly
degenerate.

Exercise 2.27. Show that both characteristic fields of the isothermal
equations of Gas Dynamics (2.74) are genuinely non-linear.
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Solution 2.28. First we write the eigenvalues (2.75) in terms of the con-
served variables, namely

)\1:@—&,/\22%—&—@,
Ul U1
1\ 1\
VA1<U):(—“7) ,m(U):(_“,) .
P p P p

Therefore
a

VA (U) - KD(U) = -5 #0.

Va(U) - K (U) = % £0

and thus both characteristic fields are genuinely non—linear, as claimed.

Ezample 2.29 (Detonation Analogue). In the study of detonation waves in
high energy solids it is found useful to devise mathematical objects that pre-
serve some of the basic physical features of detonation phenomena but are
simpler to analyse than more comprehensive models. Fickett [191] proposed a
system that is essentially the inviscid Burgers equation plus a reaction model.
He called the system detonation analogue. Clarke and colleagues [118] pointed
out that this analogue is also exceedingly useful for numerical purposes. Writ-
ing the system in conservation—law form one has the inhomogeneous system
with a source term, namely

U, + F(U), = S(U), (2.115)

- {Zﬂ = [ﬂ L F = [%(02304@)} . S— [2\/1()_7&] . (2.116)

The parameter @ plays the role of heats of reaction and « is a reaction progress
variable. The mathematical character of the system is determined solely by
the homogeneous part, S = 0. The Jacobian matrix is

w- 8- [34]- 1]

“ou |00 00
Simple calculations show that the eigenvalues are
)\1 =0 5 )\2 =p (2117)
and the right eigenvectors are
1 1
KW = [ } L, K@ = [ } . 2.118
—2p/Q 0 ( )

The detonation analogue is therefore hyperbolic.

Exercise 2.30. Check that the \j—field is linearly degenerate and that
the Ao—field is genuinely non-linear.

Solution 2.31. (Left to the reader).
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Rankine-Hugoniot Conditions
Given a system of hyperbolic conservation laws
U, +F(U),=0 (2.119)

and a discontinuous wave solution of speed S; associated with the A\;,—
characteristic field, the Rankine-Hugoniot conditions state

AF = ;AU , (2.120)
with
AUEUR—UL,AFEFR—FL,FL:F(UL),FR:F(UR),

where Uy, and Uy are the respective states immediately to the left and right
of the discontinuity. Fig. 2.18 illustrates the Rankine—Hugoniot conditions.
Note that unlike the scalar case, see (2.99), it is generally not possible to

Sj
_ -
UL Ur
FL Fr

Fig. 2.18. Illustration of the Rankine—Hugoniot conditions for a single discontinuity
of speed S; connecting two constant states Ur, and Ur via a system of conservation
laws

solve for the speed S;. For a linear system with constant coefficients
U, + AU, =0,

with eigenvalues \;, for ¢ = 1,..., m, the Rankine-Hugoniot conditions across
the wave of speed S; = \; read

AF = AAU = )\, (AU); . (2.121)

See (2.63). Actually, these conditions provide a technique for finding the so-
lution of the Riemann problem for linear hyperbolic system with constant
coefficients.

Exercise 2.32. Solve the Riemann problem for the linearised equations
of Gas Dynamics using the Rankine-Hugoniot conditions across each wave.
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Solution 2.33. The structure of the solution is depicted in Fig. 2.5. The
unknowns are p, and u, in the Star Region. Recall that the vector U and the
coefficient matrix A are given by

Y= {Z;] - [Z] A= [az(/)/)o pOO]

and the eigenvalues are
AM=—a, A =+a.

Application of the Rankine-Hugoniot conditions across the A\;—wave of speed

S1 = A\ gives
0 po| [pe—pL N Ve
a0 Uy — UL Up —ur, |

Po

Expanding and solving for u, gives
a
Uy = UL — \Px —PL)— -
(ps—p )po

For the Ao—wave of speed Sy = Ay we obtain

a
we = up + (p — pr)— .
Po

The simultaneous solution of these two linear algebraic equations for the un-
knowns p, and u, is

p« = 5(pL + pr) — 5(ur —ur)po/a ,

(ur + ur) — 3(pr — pL)a/po ,

[N

Uy =

which is the solution (2.64) obtained using a different technique based on
eigenvector expansion of the initial data. The technique that makes use of the
Rankine-Hugoniot conditions is more direct.

Generalised Riemann Invariants
For a general quasi-linear hyperbolic system
W, +AW)W, =0, (2.122)

with
T
W:[UJ1,’[,U2,"'U/m] )
we consider the wave associated with the i—characteristic field with eigenvalue
A; and corresponding right eigenvector
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KO = [k K. ..ka .
The vector of dependent variables W here is some suitable set, which may
be the set conserved variables, for instance. Recall that any system of con-
servation laws may always be expressed in quasi-linear form via the Jacobian
matrix, see (2.6) and (2.8).

The Generalised Riemann Invariants are relations that hold true, for cer-
tain waves, across the wave structure and lead the following (m — 1) ordinary
differential equations

%:%:%:...:_d“()gﬂ (2.123)
KD gD o

They relate ratios of changes dw;g of a quantity w; to the respective component
kgl) of the right eigenvector K9 corresponding to a A;—wave family . For a
detailed discusssion see the book by Jeffrey [269].

Ezample 2.34 (Linearised Gas Dynamics revisited). Here we find the Gen-
eralised Riemann Invariants for the linearised equations of Gas Dynamics.
The dependent variables are

w-fal- L
w2 u
and the right eigenvectors are

KO — | Po K® — |Po
—a|’ a |’

Across the \{—wave we have

dp du

po  —a’
which leads to a

du+ —dp=0.
Po
After integration this produces
I, (p,u) =u+ ip = constant . (2.124)
Po

The constant of integration is obtained by evaluating I, (p,u) at a reference
state. Across the \o—wave we have

dp du
Po a’
which leads to a
Iz(p,u) = u— —p = constant . (2.125)
Po

Again the constant of integration is obtained by evaluating Ig(p, u) at a ref-
erence state.
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Exercise 2.35. Solve the Riemann problem for the linearised equations
of Gas Dynamics using the Generalised Riemann Invariants.

Solution 2.36. Application of I1,(p, u) across the left wave connecting the
states W, and W, gives

a a
U*-‘r*p*:ULﬁ-*PL
Po Po

Similarly, application of Ig(p,u) across the right wave connecting the states
Wrg and W, gives
a a
Usx — —Px = UR — —PR
Lo Po
and the simultaneous solution for the unknowns p, and w, gives

p« = 5(pL + pr) — 5(ur — uL)po/a

Usx = %(UL +ur) — %(PR —pr)a/po ,
which is the same solution (2.64) obtained from applying other techniques.

Exercise 2.37. Solve the Riemann problem for the Small Perturbation
Equations (2.24) using the following techniques:

e by expanding the initial data Uy, and Upg in terms of the eigenvectors, see
(2.56).
by expanding the total jump AU in terms of the eigenvectors, see (2.62).
by using the Rankine-Hugoniot Conditions across each wave, see (2.121).
by applying the Generalised Riemann Invariants, see (2.123).

Solution 2.38. Use of any of the suggested techniques will give the general
solution

u, = 3(ur, + ur) + 3a(vg —vL) ,
Vy = %(UL +UR) + ﬁ(uR - UL) .
Ezample 2.39 (Isentropic Gas Dynamics Revisited). For this example the
eigenvalues are A\; = u — a and A2 = u + a, with a = \/p/(p) = % defining
the sound speed. The corresponding right eigenvectors are given by

-] L)

u—a
Across the left A\ = u — a wave we have

dp _ d(pu)
1 uU—a

)

which after expanding differentials yields
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du + gd,o =0.
P
On exact integration we obtain
I, (p, pu) = u + / 4 dp = constant . (2.126)
p
Across the right Ay = u 4+ a wave we obtain
Ir(p, pu) = u — / a4 dp = constant . (2.127)
p
As as the sound speed a is a function of p alone we can evaluate the integral
term above exactly as
/ a 2a
—dp=
p y—1
by first noting that
-1
a=/p(p)=Cyp~L=CyppT .

Then the left and right Riemann Invariants become

I(p, pu) = u + % = constant across the A\;—wave,
(2.128)
2a

Ir(p, pu) = u — 5= = constant across the Ay-wave.

Generalised Riemann Invariants provide a powerful tool of analysis of hyper-
bolic conservation laws.

2.4.4 Elementary—Wave Solutions of the Riemann Problem

The Riemann problem for a general m x m non-linear hyperbolic system
with data Uy, Ug is the IVP
Ut + F(U)m = 0 B
Up if <0 (2.129)
—UO(g) = L J
U(z,0) = UD(z) {UR if ©>0.

The similarity solution U(z/t) of (2.129) consists of m + 1 constant states
separated by m waves, as depicted by the x—t picture of Fig. 2.19. For each
eigenvalue \; there is a wave family. For linear systems with constant coef-
ficients each wave is a discontinuity of speed S; = A; and defines a linearly
degenerate field.

For non-linear systems the waves may be discontinuities such as shock
waves and contact waves, or smooth transition waves such as rarefactions.
The possible types of waves present in the solution of the Riemann prob-
lem depends crucially on closure conditions. For the Euler equations we shall
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Fig. 2.19. Structure of the solution of the Riemann problem for a system of non—
linear conservation laws

(a) (b) (©

Fig. 2.20. Elementary wave solutions of the Riemann problem: (a) shock wave of
speed S;, (b) contact discontinuity of speed S; and (c) rarefaction wave

only consider Equations of State such that the only waves present are shocks,
contacts and rarefactions. Suppose that the initial data states Uy, Ugr are
connected by a single wave, that is, the solution of the Riemann problem
consists of a single non—trivial wave; all other waves have zero strength. This
assumption is entirely justified as we can always solve the Riemann problem
with general data and then select the constant states on either side of a par-
ticular wave as the initial data for the Riemann problem. If the wave is a
discontinuity then the wave is a shock wave or a contact wave.

Shock Wave

For a shock wave the two constant states Uy, and Uy are connected
through a single jump discontinuity in a genuinely non—linear field i and the
following conditions apply

e the Rankine-Hugoniot conditions
F(Ug) - F(Ur) = 5;(Ur — Uy) . (2.130)
e the entropy condition

)\z(UL) > 5; > )\Z(UR) . (2.131)



2.4 Conservation Laws 85

Fig. 2.20a depicts a shock wave of speed S;. The characteristic dz/dt = \; on
both sides of the wave run into the shock wave, which illustrates the compres-
sive character of a shock.

Contact Wave

For a contact wave the two data states Uy, and Uy are connected through
a single jump discontinuity of speed S; in a linearly degenerate field i and the
following conditions apply

e the Rankine-Hugoniot conditions
F(Ugr) - F(Ur) = Si(Ur — Uy) . (2.132)

e constancy of the Generalised Riemann Invariants across the wave

d d d d
ky ks kg ki
e the parallel characteristic condition
Al(UL) = Al(UR) = Sl . (2.134)

Fig. 2.20b depicts a contact discontinuity. Characteristics on both sides of the
wave run parallel to it.

Rarefaction Wave

For a rarefaction wave the two data states Uy, and Ugr are connected
through a smooth transition in a genuinely non—linear field i and the following
conditions are met

e constancy of the Generalised Riemann Invariants across the wave

dw, dws dws - dw,,

e s A (2.135)
SRR N ks
e divergence of characteristics
)\i(UL) < )\Z(UR) . (2136)

Fig. 2.20c depicts a rarefaction wave. Characteristics on the left and right of
the wave diverge as do characteristics inside the wave.

Remark 2.40. The solution of the general Riemann problem contains m
waves of any of the above type, namely: shock waves, contact discontinuities
and rarefaction waves. In solving the general Riemann problem we shall en-
force these conditions by discriminating the particular type of wave present.
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For further study we recommend the following references: Lax [301],
Whitham [582], Chorin and Marsden [112], Courant and Friedrichs [143],
Smoller [451] and LeVeque [308]. See also the papers by Lax [302] and [300].

The introductory concepts of this chapter will we used to analyse some of
the properties of the Euler equations in Chap. 3. For the time-dependent one
dimensional Euler equations we solve the Riemann problem exactly in Chap.
4, while in Chaps. 9 to 12 we present approximate Riemann solvers.



3

Some Properties of the Euler Equations

In this chapter we apply the mathematical tools presented in Chap. 2 to
analyse some of the basic properties of the time-dependent Euler equations.
As seen in Chap. 1, the Euler equations result from neglecting the effects of
viscosity, heat conduction and body forces on a compressible medium. Here we
show that these equations are a system of hyperbolic conservations laws and
study some of their mathematical properties. In particular, we study those
properties that are essential for finding the solution of the Riemann problem
in Chap. 4. We analyse the eigenstructure of the equations, that is, we find
eigenvalues and eigenvectors; we study properties of the characteristic fields
and establish basic relations across rarefactions, contacts and shock waves. It
is worth remarking that the process of finding eigenvalues and eigenvectors
usually involves a fair amount of algebra as well as some familiarity with
basic physical quantities and their relations. For very complex systems of
equations finding eigenvalues and eigenvectors may require the use of symbolic
manipulators. Useful background reading for this chapter is found in Chaps.
1 and 2.

3.1 The One-Dimensional Euler Equations

Here we study the one—dimensional time—dependent Euler equations with
an ideal Equation of State, using conservative and non—conservative formula-
tions. The basic structure of the solution of the Riemann problem is outlined
along with a detailed study of the elementary waves present in the solution.
We provide the foundations for finding the exact solution of the Riemann
problem in Chap. 4.

3.1.1 Conservative Formulation
The conservative formulation of the Euler equations, in differential form,

is

E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 87
DOI 10.1007/b7976-1_3, © Springer-Verlag Berlin Heidelberg 2009
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U, +F(U), =0, (3.1)

where U and F(U) are the vectors of conserved variables and fluxes, given
respectively by

Uy p h pu
U=|uw|=|pu|l, F=|fol=]| pu>+p | . (3.2)
us E f3 U(E +p)

Here p is density, p is pressure, u is particle velocity and FE is total energy per
unit volume

o p(%uQ te), (3.3)

where e is the specific internal energy given by a caloric Equation of State
(EOS)
e=e(p;p) - (3.4)

For ideal gases one has the simple expression

e=clp.n) = | P (3.5)

y=1)p’

with v = ¢, /¢, denoting the ratio of specific heats. From the EOS (3.5) and
using equation (1.36) of Chap. 1 we write the sound speed a as

o=\l = e, =2 (3.6)

The conservation laws (3.1)—(3.2) may also be written in quasi-linear form
U, +AU)U, =0, (3.7)
where the coefficient matrix A(U) is the Jacobian matriz

8F 8f1/8u1 8f1/8uQ 8f1/8U3
A(U) = aiU = 8f2/8u1 8f2/aU2 8f2/8U3
8f3/5‘u1 8f3/8UQ 0f3/8u3

Proposition 3.1 (Jacobian Matrix). The Jacobian matriz A is
0 1 0
AU = | He-RE®? BoaEm) a1
— 3 4 (y — ()P B - §y - 1)(2)? 1(2)
Proof. First we express all components f; of the flux vector F in terms

of the components u; of the vector U of conserved variables, namely u; = p,
Uug = pu, ug = F. Obviously f; = uy = pu. To find fo and f3 we first need
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to express the pressure p in terms of the conserved variables. From (3.3) and
(3.5) we find

p= (= Dlus — (/)]

Thus the flux vector can be written as

fl 1 u2U2
FU = |fo|=|28-MNE+0- 1)3“3
fs 7%@3-%(7—1)%

By direct evaluation of all partial derivatives we arrive at the sought result.

Exercise 3.2. Write the Jacobian matrix A(U) in terms of the the sound
speed a and the particle velocity wu.

Solution 3.3.

A(U) = 3(v = 3)u? B-2u ~y-1]. (3.8)

Often, the Jacobian matrix is also expressed in terms of the total specific
enthalpy H, which is related to the specific enthalpy h and other variables,
namely

1
H:(E+p)/p£§u2+h, h=e+p/p. (3.9)
The Jacobian matrix may also be written as

0 1 0
A(U) = 1y —3)u? B—7)u vy—1]. (3.10)

(y =V —yuB/pyE/p— (v = 1)u* ~u

Proposition 3.4 (The Homogeneity Property). The Euler equations
(8.1)-(3.2) with the ideal-gas EOS (3.5) satisfy the homogeneity property

F(U) = A(U)U . (3.11)

Proof. The proof of this property is immediate. By multiplying the Jaco-
bian matrix (3.8) by the vector U in (3.2) we identically reproduce the vector
F(U) of fluxes in (3.2).
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This remarkable property of the Euler equations forms the basis for nu-
merical schemes of the Fluz Vector Splitting type studied in Chap. 8. Note
that the relationship between the flux F, the coefficient matrix A and the
conserved variables U for the Euler equations is identical to that for linear
systems with constant coefficients, see Sect. 2.4 of Chap. 2. This property is
also satisfied by the Euler equations with an Equation of State that is slightly
more general than (3.5). See Steger and Warming [463] for details.

Proposition 3.5. The eigenvalues of the Jacobian matriz A are
M=u—a, =u, \s=u+a (3.12)

and the corresponding right eigenvectors are

1 1 1
KO = U—a , K® — u , K® = u-+a . (3.13)
H —ua %uz H +ua

Proof. Use of the expression (3.8) for A and the characteristic polynomial

A \|=0,
lead to
A =uw)(yu —N) [(2u —yu — N+
A=u)[-a® = (y—Du2+(y—Dyu?| +A=0,
where

A= %(w — A1 —y)? - %(v =~ Du? [(1 =29\ + ]

Manipulations show that A also contains the common factor (A — u), which
implies that A\ = u is a root of the characteristic polynomial and thus an
eigenvalue of A. After cancelling (A — u) the remaining terms give

N —2ul+u?—a’?=0,

with real roots
AMl=u—a,X3=u+a.

Therefore the eigenvalues are: A\ = u — a, Ao = u, \3 = u + a as claimed.
To find the right eigenvectors we look, see Sect. 2.1 of Chap. 2, for a vector
K = [ky, ka2, k3]T such that

AK = \K .

By substituting A = \; in turn, solving for the components of the vector K
and selecting appropriate values for the scaling factors we find the desired
result.
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The eigenvalues are all real and the eigenvectors K(l)7 K(2), K® form a
complete set of linearly independent eigenvectors. We have thus proved that
the time—dependent, one-dimensional Euler equations for ideal gases are hy-
perbolic. In fact these equations are strictly hyperbolic, because the eigenvalues
are all real and distinct, as long as the sound speed a remains positive. Hyper-
bolicity remains a property of the Euler equations for more general equations
of state, as we shall see in Chap. 4 for covolume gases.

3.1.2 Non—Conservative Formulations

The Euler equations (3.1)—(3.2) may be formulated in terms of variables
other than the conserved variables. For smooth solutions all formulations are
equivalent. For solutions containing shock waves however, non—conservative
formulations give incorrect shock solutions. This point is addressed via the
shallow water equations and the isothermal equations in Sect. 3.3 of this chap-
ter. In spite of this, non—conservative formulations have some advantages over
their conservative counterpart, when analysing the equations, for instance.
Also, from the numerical point of view, there has been a recent revival of the
idea of using schemes for non—conservative formulations of the equations. See
e.g. Karni [278] and Toro [508], [517].

Primitive—Variable Formulations

For smooth solutions the equations may be formulated, and solved, using
variables other than the conserved variables. For the one-dimensional case
one possibility is to choose a vector W = (p,u,p)? of primitive or physical
variables, with p given by the equation of state. Expanding derivatives in the
first of equations (3.1)—(3.2), the mass equation, we obtain

prFupy + puy, =0. (3.14)

By expanding derivatives in the second of equations (3.1)-(3.2), the momen-
tum equation, we obtain

1
wlps + upy + pug] +p {utJruuerppm} =0.
Use of (3.14) followed by division through by p gives
1
U + Uty + ;px =0. (3.15)

In a similar manner, the energy equation in (3.1)—(3.2) can be rearranged so
as to use (3.14) and (3.15). The result is

pe + patu, + upy = 0. (3.16)
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Thus, in quasi-linear form we have

W, +AW)W, =0, (3.17)
where
p u p 0
W= |u|l, AW)=1|0 u 1/p| . (3.18)
P 0 pa® u

Proposition 3.6. The system (3.17)-(3.18) has real eigenvalues
M=u—a,a=u, \3=u-+ta, (3.19)

with corresponding right eigenvectors

1 1 1
KO —a; | —a/p| K@ =y |0| , KO =ag |afp| .  (320)
a? 0 a?

where oy, s, a3 are scaling factors, or normalisation parameters, see Sect.
2.1 of Chap. 2. The left eigenvectors are

L(l) = ﬂ1(0717_p%) 9
L(Q) = 62(1707_(1%) ’ (321)

L® =33(0,1,50)

' pa
where (1, B2, B3 are scaling factors.

Proof. (Left to the reader).

Exercise 3.7. Verify that by choosing appropriate normalisation param-
eters aq, g, a3 and By, B2, B3 in (3.20) and (3.21) respectively, the left and
right eigenvectors LU) and KU) of A(W) are bi-orthonormal, that is

4 . lifi=j,
LU . KO — (3.22)
0 otherwise .

Characteristic Equations

Recall that the eigenvalues \;y = v — a, Ay = u, A3 = u + a define char-
acteristic directions da/dt = \; for i = 1,2, 3. For a set of partial differential
equations (3.17) a characteristic equation says that in a direction da/dt = A,
L® . dW = 0, or in full
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| de
LY. [du| =0. (3.23)
dp
By expanding (3.23) for L(Y, L) L) we obtain the characteristic equations
dp — padu =0 along dz/dt =\ =u—a,
dp —a?dp =0 along dz/dt = Ny = u, (3.24)
dp + padu =0 along dz/dt =X 3 =u+a.

These differential relations hold true along characteristic directions. For nu-
merical purposes, linearisation of these equations provides ways of solving
the Riemann problem for the Euler equations, approximately; see Sect. 9.3 of
Chap. 9.

Entropy Formulation

The entropy s can be written as
s=c,In(—=) + C (3.25)
(% v 0> N

where Cy is a constant. From this equation we obtain
p=Cipled/o (3.26)

where C is a constant. Now, if in the primitive-variable formulation (3.17)
we use entropy s instead of pressure p we have the new vector of unknowns

W = (p,u,s)", (3.27)
and a corresponding new way of expressing the governing equations.
Proposition 3.8. The entropy s satisfies the following PDE
st +us, =0. (3.28)

Proof. From (3.25) and the expression (3.6) for the sound speed a we have

st = % [Pt —a’pt] » so= %’ [pe — a®pa]

But from (3.16) p; = —pa®u, — up,, and hence s; + us, = 0, as claimed.

The significance of the result is that

oo, (3.29)

St +US, = 1
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and so in regions of smooth flow, the entropy s is constant along particle paths
dxz/dt = u. Hence, along a particle path one has the isentropic law given by

p=Cp”, (3.30)

where C'= C(sg) is a function of the initial entropy sp and is constant along
the path so long as the flow remains smooth; see Sect. 1.6.2 of Chap. 1. In
general of course, C' changes from path to path. When solving the Riemann
problem the initial entropy can be computed on the initial data of the Riemann
problem, which is piece-wise constant. If C' is the same constant throughout
the flow domain we speak of isentropic flow, or sometimes, homentropic flow.
This leads to the special set of governing equations (1.109)—(1.110) presented
in Chap. 1. The governing equations for the entropy formulation, written in
quasi-linear form, are

W;+AW)W, =0, (3.31)
with

SR

U 0
AW) = |a®/puile| (3.32)
0 U

S 2D

Proposition 3.9. The eigenvalues of system (3.31)-(3.32) are
M=u—a,a=u,3=u+ta (3.33)

and the corresponding right eigenvectors are

1 -~ 1
S
KU=|-a/p|, K?=] 0 |, K¥=|a/p]|. (3.34)
0 a2 0

Proof. (Left to the reader).

3.1.3 Elementary Wave Solutions of the Riemann Problem

Here we describe the structure of the solution of the Riemann problem as
a set of elementary waves such as rarefactions, contacts and shock waves, see
Sect. 2.4.4 of Chapt. 4. Each of these elementary waves are studied in detail.
Basic relations across these waves are established. Such relations will be used
in Chap. 4 to connect all unknown states to the data states and thus find the
complete solution of the Riemann problem.

The Riemann problem for the one-dimensional, time dependent Euler
equations (3.1)—(3.2) with data (Uy, Ug) is the IVP

U, +FU), =0,

U(z,0) = UO(z) = {UL if <0, (3.35)

Ugr if 2>0.
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The physical analogue of the Riemann problem is the shock—tube problem
in Gas Dynamics, in which the velocities u;, and ug on either side of the
diaphragm, here idealised by an initial discontinuity, are zero. Shock tubes
and shock—tube problems have played, over a period of more than 100 years,
a fundamental role in fluid dynamics research.

The structure of the similarity solution U(x/t) of (3.35) is as depicted in
Fig. 3.1. There are three waves associated with the three characteristic fields

(u-a) t (u+a)
+—— Star| region — o

Fig. 3.1. Structure of the solution of the Riemann problem in the x—t plane for the
time—dependent, one dimensional Euler equations. There are three wave families
associated with the eigenvalues u — a, v and u + a

corresponding to the eigenvectors K(i), i =1,2,3. We choose the convention
of representing the outer waves, when their character is unknown, by a pair of
rays emanating from the origin and the middle wave by a dashed line. Each
wave family is shown along with the corresponding eigenvalue. The three
waves separate four constant states. From left to right these are Uy, (left data
state); Uy, between the 1-wave and the 2-wave; U,g between the 2-wave
and the 3-wave and Uy (right data state). As we shall see the waves present
in the solution are of three types: rarefaction waves, contact discontinuities
and shock waves. In order to identify the types we analyse the characteristic
fields for K(i), 1 =1,2,3; see Sects. 2.4.3 and 2.4.4 of Chap. 2.

Proposition 3.10. The K —characteristic field is linearly degenerate
and the KW, K®) characteristic fields are genuinely non-linear.

Proof. For the K —characteristic field we have
V)\Q(U) - [8)\2/81“, 8)\2/8u2, 8)\2/8U3] = [—u/p, 1/p7 0] .
Hence

1
VAg - K(Q) = [_u/pa 1/p7 O] ’ u =0
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and therefore the K(?) characteristic field is linearly degenerate as claimed.
The proof that the K and K®) characteristic fields are genuinely nonlinear
is left to the reader.

The wave associated with the K(?) characteristic field is a contact disconti-
nuity and those associated with the K(!), K(3) characteristic fields will either
be rarefaction waves (smooth) or shock waves (discontinuities), see Sect. 2.4.4
of Chapt. 4. Of course one does not know in advance what types of waves
will be present in the solution of the Riemann problem. The only exception
is the middle wave, which is always a contact discontinuity. Fig. 3.2 shows a

t Contact
S, Shock
U ’,” U+g S 3

Rarefaction
u L

Fig. 3.2. Structure of the solution of the Riemann problem in the x—t plane for
the time—dependent, one dimensional Euler equations, in which the left wave is a
rarefaction, the middle wave is a contact discontinuity and the right wave is a shock
wave

0

particular case in which the left wave is a rarefaction, the middle wave is a
contact and the right wave is a shock wave. For each wave we have drawn a
pair of arrows, one on each side, to indicate the characteristic directions of
the corresponding eigenvalue. For the rarefaction wave we have

A1(UL) < \(Usp) -

The eigenvalue \; (U) increases monotonically as we cross the rarefaction wave
from left to right and the characteristics on either side diverge from the wave;
compare with Fig. 2.20 of Chap. 2. For the shock wave, characteristics run
into the wave and we have

A3(U,r) > S3 > A\3(Ur) ,

which is the entropy condition. See Sect. 2.4.4 of Chap. 2. S5 is the speed of
the 3—shock. For the contact wave we have

A2 (Usr) = Aa(Usr) = 52,

where S, is the speed of the contact wave; the characteristics are parallel to
the contact wave. Recall that this is what happens for all characteristic fields
in linear hyperbolic systems with constant coefficients. Next we study each
type of waves separately.
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Contact Discontinuities

The contact discontinuity in the solution of the Riemann problem for
the Euler equations can be analysed by utilising the eigenstructure of the
equations. In particular the Generalised Riemann Invariants will reveal which
quantities change across the wave. Recall that for a general m x m hyperbolic
system, such as (3.1)—(3.2) or (3.7), with

W = [wlwaa"'awﬂL]T )

and right eigenvectors
m )

KO — [kp,kg),...,k i)

the i—th Generalised Riemann Invariants are the (m — 1) ODEs

dw_dwy dws o dwn
DR E kW

Using the eigenstructure (3.12)—(3.13) of the conservative formulation (3.1)—
(3.2), for the K)-wave we have

dp _ dlpu) _ dE (3.36)

1 U
Manipulation of these equalities gives
p = constant, u = constant

across the contact wave. The same result follows directly by inspection of the
eigenvector K2 in (3.20) for the primitive-variable formulation (3.17)~(3.18):
the wave jumps in p, u and p are proportional to the corresponding compo-
nents of the eigenvector. These are zero for the velocity and pressure. The
jump in p is in general non—trivial. To conclude: a contact wave is a discon-
tinuous wave across which both pressure and particle velocity are constant but
density jumps discontinuously as do variables that depend on density, such as
specific internal energy, temperature, sound speed, entropy, etc.

Rarefaction Waves

Rarefaction waves in the Euler equations are associated with the K1)
and K®) characteristic fields. Inspection of the eigenvectors (3.20) for the
primitive-variable formulation reveals that p, v and p change across a rar-
efaction wave. We now utilise the Generalised Riemann Invariants for the
eigenstructure (3.33)—(3.34) of the entropy formulation (3.31)—(3.32).
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Proposition 3.11. For the Fuler equations the Generalised Riemann In-
variants across 1 and 3 rarefactions are

I, (u,a) = u+ % = constant

. constant} across \y =u—a (3.37)

— 2a_ __
Ir(u,a) = u— =4 = constant

. constant} across \s =u+a . (3.38)

Proof. Across a wave associated with A\ = u — a wave we have

G _as
1 —a/p 0

Two meaningful relations are

u+ / % dp = constant and s = constant. (3.39)
Similarly, across the A3 = u + a wave we have

u— / % dp = constant and s = constant. (3.40)

In order to reproduce (3.37) and (3.38) we need to evaluate the integrals in
(3.39) and (3.40). First we note that by inspection of the eigenvectors K1)
and K@) the condition of constant entropy across the respective waves is
immediate. We may therefore use the isentropic law (3.30) with the constant
C' evaluated at the appropriate data state (constant). Thus the integral is as
found for the isentropic equations in Sect. 2.4.3 of Chap. 2, that is

/ Cgp= 20
p v—1
and thus equations (3.37)—(3.38) are reproduced.

To summarise: a rarefaction wave is a smooth wave associated with the 1
and 3 fields across which p, u and p change. The wave has a fan—type shape and
is enclosed by two bounding characteristics corresponding to the Head and the
Tail of the wave. Across the wave the Generalised Riemann Invariants apply.
The solution within the rarefaction will be given in Chap. 4, where the full
solution of the Riemann problem is presented.

Shock Waves

Details on the Physics of shock waves are found in any book on Gas Dy-
namics. We particularly recommend Becker [35], Anderson [10], Landau and
Lifshitz [297]. The specialised book by Zeldovich and Raizer [599] is highly
recommended.
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In the context of the one—dimensional Euler equations, shock waves are
discontinuous waves associated with the genuinely non—linear fields 1 and 3.
All three quantities p, u and p change across a shock wave. Consider the K )
characteristic field and assume the corresponding wave is a right—facing shock
wave travelling at the constant speed S3; see Fig. 3.3. In terms of the primitive
variables we denote the state ahead of the shock by Wgr = (pr,ur,pr)’
and the state behind the shock by W, = (p.,u., p«)?. We are interested
in deriving relations, across the shock wave, between the various quantities
involved. Central to the analysis is the application of the Rankine-Hugoniot
conditions. It is found convenient to transform the problem to a new frame

P PR P PR
u* u R a* CIR
p* p R p* pR

(a) (b)

Fig. 3.3. Right-facing shock wave: (a) stationary frame of reference, shock has
speed Ss3; (b) frame of reference moves with speed Ss3, so that the shock has zero
speed

of reference moving with the shock so that in the new frame the shock speed
is zero. Fig. 3.3 depicts both frames of reference. In the transformed frame
(b) the states ahead and behind the shock have changed by virtue of the
transformation. Densities and pressures remain unaltered while velocities have
changed to the relative velocities ur and U, given by

ﬂ*:u*ng,ﬁR:uRng. (341)

Application of the Rankine-Hugoniot conditions in the frame in which the
shock speed is zero gives

p*ﬂ* = pRﬁR y (342)
Uy (Ey +py) = tr(Er + pr) - (3.44)

By using the definition of total energy E and introducing the specific internal
energy e the left—hand side of (3.44) may we written as

. 1
U P iuf + (ex + pi/ps)
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and the right-hand side of (3.44) as

N 1.
URPR §U2R + (er + pr/pR)
Now we use the specific enthalpy h and write
he =€x+Ds/ps, hr=er+pr/pr - (3.45)

Use of equations (3.42) and (3.44) leads to

1 1
02+ h, = 5@% + kg . (3.46)

By using (3.42) into (3.43) we write
~ ~ ~ N *'EL*
p*ui = (PRUR)UR +DPR —Px = (,O*U*)pp—R + PR — Px -

After some manipulations we obtain

@:<@>FE;&}, (3.47)
P PR — Px
In a similar way we obtain
~2 P PR — D«
ug = — | |—| . 3.48
" (pR) [PRP*] (349

Substitution of (3.47)—(3.48) into (3.46) gives

1 P+ + PR
he —hr = =(ps« — — . 4
R = o o) |0 (3.49)

Assuming the specific internal energy e is given by the the caloric equation of
state (3.4), it is then more convenient to rewrite the energy equation (3.49)
using (3.45). We obtain

ex —en = m+mﬂﬁl@}. (3.50)

1
2 P+PR

Note that up to this point no assumption on the general caloric EOS (3.4)
has been made. In what follows, we derive shock relations that apply to ideal
gases in which the ideal caloric EOS (3.5) is assumed. By using (3.5) into
(3.50) and performing some algebraic manipulations one obtains

(3.51)
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This establishes a useful relation between the density ratio p./pr and the
pressure ratio p,/pr across the shock wave.
We now introduce Mach numbers

MR == uR/aR s Ms = Sg/(lR 5 (352)

where Mpg is the Mach number of the flow ahead of the shock, in the original
frame; Mg is the shock Mach number. Manipulation of equations (3.48), (3.51)
and (3.52) leads to expressions for the density and pressure ratios across the
shock as functions of the relative Mach number Mg — Mg, namely

P (v + 1) (Mg — Ms)?

pr (7 — (Mg — Ms)2+2° (3.53)

Pe _ 2y(Mg — Ms)® — (v —1)
PR (v+1)

The shock speed S3 can be related to the density and pressure ratios across
the shock wave. In terms of the pressure ratio (3.54) we first note the following

relationship
+1 " —1
MR‘MSZ‘V(WQ) () ()
Y PR 2y

This leads to an expression for the shock speed as a function of the pressure
ratio across the shock, namely

S3 = ug + aR\/(V;Wl) (ﬁ;) + (72_71) . (3.55)

Note that as the shock strength tends to zero, the ratio p./pr tends to unity
and the shock speed S5 approaches the characteristic speed A3 = ug + ar, as
expected. We can also obtain an expression for the particle velocity u, behind
the shock wave. From (3.42) we relate u, to the density ratio across the shock,
namely

(3.54)

us = (1= pr/p«)Ss + urpr/ps - (3.56)

Ezample 3.12 (Shock Wave). Consider a shock wave of shock Mach number
Mg = 3 propagating into the atmosphere with conditions (ahead of the shock)
pr = 1.225 kg/m?3, ur = 0 m/s, pr = 101325 Pa. Assume the process is
suitably modelled by the ideal gas EOS (3.5) with v = 1.4. From the definition
of sound speed (3.6) we obtain ar = 340.294 m/s. As the shock Mach number
Mg = 3 is assumed (a parameter) then equation (3.52) gives the shock speed
as S = 1020.882 m/s. From equation (3.53) we obtain p, = 4.725 kg/m?>.
From equation (3.54) we obtain p, = 1047025 Pa and from equation (3.56)
we obtain u, = 756.2089 m/s.
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Remark 3.13. Shock relations (3.53), (3.54) and (3.56) define a state
(p*a Uy p*)T

behind a shock for given initial conditions (pr,ur,pr)? ahead of the shock

and a chosen shock Mach number Mg, or equivalently a shock speed Ss3. The

shock is associated with the 3—wave family. These relations can be useful

in setting up test problems involving a single shock wave to test numerical

methods.

The analysis for a 1-shock wave (left facing) travelling with velocity Sy
is entirely analogous. The state ahead of the shock (left side now) is denoted
by Wi, = (pr,ur,p)T and the state behind the shock (right side) by W, =
(px, Us, px)T. As done for the 3-shock we transform to a stationary frame of
reference. The relative velocities are

ﬁL:uL—Sl,d*:u*—Sl. (357)
Mach numbers are
ML = uL/aL , MS = Sl/aL . (358)
The density and pressure ratio relationship is
o (B)+(

ANEENI N,

(3.59)

In terms of the relative Mach number My, — Mg the density and pressure ratios
across the left shock can be expressed as follows

pe (v DMy — Mg)?
p. (v = 1)(My — Mg)?> +2°

pe _ 2y(Mp — Mg)® — (y = 1)

o (v+1) '
The shock speed S} can be obtained from either (3.60) or (3.61). In terms of
the pressure ratio (3.61) we have

e () G ()
N CSIARC N

Note that as the shock strength tends to zero, the ratio p./pr, tends to unity
and the shock speed S; approaches the characteristic speed \; = up, — ay,, as
expected. The particle velocity behind the left shock is

(3.60)

(3.61)

which leads to
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uy = (1= pr/ps)S1 + uLpL/ps . (3.63)

Shock relations (3.60), (3.61) and (3.63) define a state (p, u., p«)? behind
a shock for given initial conditions (pr,ur,pr)? ahead of the shock and a
chosen shock Mach number Mg, or equivalently a shock speed S;. The shock
is associated with the 1-wave family.

3.2 Multi-Dimensional Euler Equations

In the previous section we analysed the one—dimensional, time—dependent
Euler equations. Here we study a few basic properties of the two and three
dimensional cases. In differential conservation—law form the three—dimensional
equations are

U, + F(U), + G(U), + H(U), =0, (3.64)
with
p pu
pu pu? +p
U=|pw|, F= puv ,
pw puw
E w(E +p)
(3.65)
pv pw
puv puw
G=|p?+p |, H= pUW
pow pw? +p
v(E +p) w(E +p)

Here E is the total energy per unit volume
L2
E= p(§V +e), (3.66)

where %VQ = %V -V = %(u2 + 0% 4+ w?) is the specific kinetic energy and e is
specific internal energy given by a caloric equation of state (3.4).
The corresponding integral form of the conservation laws (3.64) is given

. i///VUdV—f—//AH-ndAzo, (3.67)

where V' is a control volume, A is the boundary of V, H = (F, G, H) is the
tensor of fluxes, n is the outward unit vector normal to the surface A, dA is
an area element and H - ndA is the flux component normal to the boundary
A. The conservation laws (3.67) state that the time-rate of change of U inside
volume V depends only on the total fluz through the surface A, the boundary
of the control volume V. Numerical methods of the finite volume type, see
Sect. 16.7.3 of Chap. 16, are based on this formulation of the equations. For
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details of the derivation of integral form of the conservation laws see Sects.
1.5 and 1.6.1 of Chap. 1.

In the next section we study some properties of the two—dimensional Euler
equation in conservation form

3.2.1 Two—Dimensional Equations in Conservative Form

The two—dimensional version of the Euler equations in differential conser-
vative form is

U, +FU),+G(U), =0, (3.68)
with
p ,20u pv
U= |P¥ R pu”+p . G= p2uv ' (3.69)
pU puv pUe+p
E w(E + p) v(E +p)
Eigenstructure

Here we find the Jacobian matrix of the x—split equations, its eigenvalues
and corresponding right eigenvectors. We also study the types of characteristic
fields present.

Proposition 3.14. The Jacobian matriz A(U) corresponding to the fluzx
F(U) is given by

0 1 0 0
—w?+ 3=V B-u  —(y-1v y-1
A(U) = . (3.70)
—uv v U 0
_u[%('yfl)szH} H—(y—1u? —(y—Duv ~u }

The eigenvalues of A are

/\1:11,70,, /\2:>\3:U, )\4:’UJ+(1, (371)
with corresponding right eigenvectors
1 1
KO | v—a K® —
v ’ v ’
H—au %VQ
(3.72)
0 1
K® - |0 K® uta
1] v
v H + ua
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Proof. Exercise.

Rotational Invariance

We next prove an important property, called the rotational invariance
of the Euler equations. The property allows the proof of hyperbolicity in
time for the two—dimensional equations (3.68)—(3.69) and can also be used for
computational purposes to deal with domains that are not aligned with the
Cartesian directions, see Sect. 16.7.3 of Chap. 16. We first note that outward
unit vector n normal to the surface A in the two—dimensional case is given by

n = (n1,n2) = (cosf,sinb) , (3.73)

where 6 is the angle formed by x—axis and the normal vector n; 6 is measured
in an anticlockwise manner and lies in the range 0 < 0 < 2x. Fig. 3.4 depicts
the situation. The integrand of the surface integral in (3.67) becomes

(F,G) -n=cosF(U) +sin0G(U) . (3.74)

Tangent to surface A
Normal n

0

x-direction

/

Boundary A of control volume V

X

Fig. 3.4. Control volume V on z—y plane; boundary of V' is A, outward unit normal
vector is n and 6 is angle between the x—direction and n

Proposition 3.15 (Rotational Invariance). The two—dimensional Eu-
ler equations (3.68)—(3.69) satisfy the rotational invariance property

cos OF(U) +sin 0G(U) = T 'F (TU) , (3.75)

for all angles 6 and vectors U. Here T = T(0) is the rotation matriz and
T—1(0) is its inverse, namely

1 0 0 0 1 0 0 O
T— 0 cosf sinf 0 T 0 cos@ —sinf 0
|0 —sinfcosf0| ’ ~ | 0sin® cosf 0

0 0 0 1 0 0 0 1

(3.76)
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Proof. First we calculate U = TU. The result is
U =TU = [p, pit, pi, E] ",

with @ = ucos @ + vsinf, = —usinf + v cos f. Next we compute F = F(U)
and obtain . R .
F =F(U) = [pi, pi® + p, ptid, a(E + p)] " .

Now we apply T~! to F(U). The result is easily verified to be

Pl

) cos§ (pi® + p) — sin (pid)
T 'F = = cosOF +sin G .
sin (pti? 4 p) + cos 6 (pad)

u(E + p)

This is clearly satisfied for the first and fourth components. Further manipu-
lation show that it is also satisfied for the second and third flux components
and the proposition is thus proved.

Hyperbolicity in Time

Here we use the rotational invariance property of the two—dimensional
time dependent Euler equations to show that the equations are hyperbolic in
time.

Definition 3.16 (Hyperbolicity in time). System (3.68)-(5.69) is hy-
perbolic in time if for all admissible states U and real angles 0, the matrix

A(U,0) = cosA(U) 4 sin B(U) (3.77)

is diagonalisable. Here A(U) and B(U) are respectively the Jacobian matrices
of the fluzes F(U) and G(U) in (3.68).

Proposition 3.17. The two-dimensional Euler equations (3.68)—(3.69)
are hyperbolic in time.

Proof. We want to prove that the matrix A(U,0) in (3.77) is diagonalis-
able, see Sect. 2.3.2 of Chap. 2. That is we want to prove that there exist a
diagonal matrix A(U,#) and a non-singular matrix K(U, 6) such that

A(U,0) =K(U,0H)A(U,0)K (U, . (3.78)
By differentiating (3.75) with respect to U we have

A(U,0) = cos0A(U) +sinB(U) = T(0) "' A (T(0)U) T() .
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But the matrix A(U) is diagonalisable, it has four linearly independent eigen-
vectors K (U) given by (3.72). Therefore we can write

A(U) =K(U)A(U)K™(U),
where K(U) is the non-singular matrix the columns of which are the right
eigenvectors K (U), K~1(U) is its inverse and A(U) is the diagonal matrix

with the eigenvalues \;(U) given by (3.71) as the diagonal entries. Then we
have

A(U,0)=T(6) " {K(T(®)U)A(T()U)K " (T(9)U)} T(0)
= {T(6)'K (T())U)} A (T()U) {T(6) 'K (T())U)} '
Hence the condition for hyperbolicity holds by taking
K(U,0) =T (0K (TH)U), A(U,0) =A(T(O)U) .

We have thus proved that the time-dependent, two dimensional Euler
equations are hyperbolic in time, as claimed.

Characteristic Fields

Next we analyse the characteristic fields associated with the four eigenvec-
tors given by (3.72).

Proposition 3.18 (Types of Characteristic Fields). For i = 1 and
i = 4 the KO (U) characteristic fields are genuinely non—linear, while for
1 =2 and i = 3 they are linearly degenerate.

Proof. The proof that the fields ¢ = 2 and ¢ = 3 are linearly degenerate is
trivial. Clearly
VA =VAs = (—u/p,1/p,0,0) .

By inspecting K?)(U) and K®)(U) it is obvious that
Vi - K@(U) =V - K®(U)=0

and therefore the 2 and 3 characteristic fields are linearly degenerate as
claimed. The proof for ¢ = 1,4 involves some algebra. The result is
(v+ Da (v+1)a

VA -KOU) = -~ #£0, VA, - KD(U) = o
1%

0
2p 7

and thus the 1 and 4 characteristic fields are genuinely non—linear as claimed.

In the context of the Riemann problem we shall see that across the 2
and 3 waves both pressure p and normal velocity component u are constant.
The 2 field is associated with a contact discontinuity, across which density
jumps discontinuously. The 3 field is associated with a shear wave across
which the tangential velocity component jumps discontinuously. The 1 and 4
characteristic fields are associated with shock waves and rarefaction waves.
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3.2.2 Three—Dimensional Equations in Conservative Form

Here we extend previous results proved for the two—dimensional equations,
to the time-dependent three dimensional Euler equations. Proofs are omitted,
they involve elementary but tedious algebra.

Eigenstructure

The Jacobian matrix A corresponding to the flux F(U) in (3.64) is given
by

0 1 0 0 O
oF FH-uw?—a® (B—yu —v —fw 4

A= 30 = —uv v u o 0], (3.79)
—uw w 0 U 0

ful(y = 3)H — a®] H — 4u® —fuv —Juw yu
where

(v—1)

The x—split one-dimensional system is hyperbolic with real eigenvalues

1
H:(E+p)/p:§V2—|— V2= ot w?  A=y—1. (3.80)

AM=u—a,=A3=M=u, A\s=u+ta. (3.81)

The matrix of corresponding right eigenvectors is

1 1 00 1
u—a u 00 u+a
K= v v 10 v . (3.82)
w w 01 w

H — ua %VQUwHJrua
We also give the expression for the inverse matrix of K, namely

H+zu—a)—(ut+g) —v-—w 1
—2H + za 2u v 2w —2

—1
K1 — (’72a2 ) JTG 2 0 (3.83)
— 2wa” 0 0 2© o
Y Y
H-%u+a) —u+g —v-wl

Rotational Invariance

We now state the rotational invariance property for the three-dimensional
case.
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Proposition 3.19. The time—dependent three dimensional Euler equa-
tions are rotationally invariant, that is they satisfy

cos 0 cos 0 F(U) + cos 8 sin 03 G(U) + sin 0¥ H(U) = T™'F (TU) ,
(3.84)
for all angles 0%, 8%) and vectors U. Here T = T(0W),0()) is the rotation
matrix

1 0 0 0 0
0 cosf@ cosf  cosf® sin =) sinh® 0
T=10 —sin (%) cos 0(%) 0o of, (3.85)
0 —sin 0 cos %) —sin W) sin ) cos ¥ 0
0 0 0 0 1

and is the product of two rotation matrices, namely
T =T(HW, %) =TWTE (3.86)

with ~

1 0 0 0 O
0 cosf® 0sinf® 0
TW = T(y)(g(y)) =10 0 1 0 0f,
0 —sinf® 0 cos ¥ 0
K 0 0o 0 1
(3.87)
! 0 0 00
0 cosf®) sinf®) 00
TG =TE(OF) = | 0 —sinh®) cos*) 00
0 0 0 10
1 0 0 0 01

More details of the rotational invariance and related properties of the
three—dimensional Euler equations are found in Billett and Toro [64].

3.2.3 Three—Dimensional Primitive Variable Formulation

As done for the one—dimensional Euler equations, we can express the two
and three dimensional equations in terms of primitive variables.

Proposition 3.20. The three—dimensional, time—dependent FEuler equa-
tions can be written in terms of the primitive variables W = (p,u, v, w,p)”
as
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pt + upy +vpy +wps + p(ug + vy +wz) =0,
ut+uuz+vuy+wuz+%pz:07
vy + uvy + Vv, + W, + %py =0, (3.88)

wt+uwz+va+wwz+%pz:07

Pt + upy + vpy + wp, + pa(ug + vy +w.) =0.

Proof. To prove this result one follows the same steps as for the one—
dimensional case leading to equations (3.14)—(3.16).

Equations (3.88) can be written in quasi-linear form as
W+ AW)W, +BW)W,+C(W)W, =0, (3.89)
where the coefficient matrices A(W), B(W) and C(W) are given by

p 00 0
u 001/p
0 w0 0 |, (3.90)
0 Ou O

U
0
AW)=10
0
0pa200 u

(3.91)

o
<
o< OO

—_
S O~ 0O O
S

(3.92)

o
o
e
S
[NV}
S oo O o000

—
E ~o oo

B

Q

Il
oo o o8&
[\v]

OO OE& D
oo oo

X
S

Proposition 3.21. The eigenvalues of the coefficient matric A(W) in
(3.90) are given by

AM=u—a,=N3=\=u, \s=u-+a. (393)

with corresponding right eigenvectors



3.2 Multi-Dimensional Euler Equations 111

p 1 p
—a 0 0
KO =1 0 KO = o] KO =]1],
0 w w
pa’? 0 0
(3.94)

P P

0 a

K® v| ,K® =10

1 0

0 pa’?

Proof. The proof involves the usual algebraic steps for finding eigenvalues
and eigenvectors. See Sect. 2.1 of Chap. 2.

3.2.4 The Split Three—Dimensional Riemann Problem

When solving numerically the two or three dimensional Euler equations
by most methods of the upwind type in current use, one requires the solution
of split Riemann problems. The z—split, three-dimensional Riemann problem

is the IVP
U, +FU), =0,

U if <0 (3.95)
_yo(y ~ J UL )
U(#,0) = UP(z) {UR if >0,
where
P pu
pu pu® +p
U= ||, FU)= puv . (3.96)
pw puw
E uw(E +p)

The structure of the similarity solution is shown in Fig. 3.5 and is almost
identical to that for the one-dimensional case shown in Fig. 3.1. Both pres-
sure and normal particle velocity u are constant in the Star Region, across the
middle wave. There are two new characteristic fields associated with A3 = u
and \y = u, arising from the multiplicity 3 of the eigenvalue u; these cor-
respond to two shear waves across which the respective tangential velocity
components v and w change discontinuously. For the two-dimensional case
we proved in Sect. 3.2.1 that the A3—field is linearly degenerate. This result
is also true for the A\;—field in three dimensions. The 1 and 5 characteristic
fields are genuinely non-linear and are associated with rarefactions or shock
waves, just as in the one-dimensional case. By inspecting the eigenvectors
K® and K® in (3.94) we see immediately that the Generalised Riemann
Invariants across 1 and 5 rarefaction waves give no change in the tangential
velocity components v and w across these waves, see Fig. 3.5. In fact this is



112 3 Some Properties of the Euler Equations

Fig. 3.5. Structure of the solution of the three-dimensional split Riemann problem

also true when these waves are shock waves. Consider a right shock wave of
speed S associated with the 5 field. By transforming to a frame of reference in
which the shock speed is zero and applying the Rankine-Hugoniot conditions
we obtain the same relations (3.42)—(3.44) as in the one-dimensional case plus
two extra relations involving v and w. The three relevant relations are

pi(us — §) = pr(ur — 5) , (3.97)
Pt — S)(ve = 5) = pr(ur — ) (vr — 5), (3.98)
pi(ts — S)(ws — S) = pr(urg — S)(wg — 5) . (3.99)

Application of the shock condition (3.97) into equations (3.98) and (3.99)
gives directly v, = vg and w, = wr. A similar analysis for a left shock wave
gives an equivalent result. Hence the tangential velocity components v and
w remain constant across the non—linear waves 1 and 5, irrespective of their
type.

Therefore finding the solution of the Riemann problem for the split three—
dimensional equations is fundamentally the same as finding the solution for the
corresponding one-dimensional Riemann problem. The solution for the extra
variables v and w could not be simpler: it consists of single jump discontinuities
across the shear waves from the values vr,, wy, on the left data state to the
values vg, wg on the right data state. This simple behaviour of the tangential
velocity components in the solution of split Riemann problems is sometimes
incorrectly modelled by some approzimate Riemann solvers.

3.3 Conservative Versus Non—Conservative Formulations

The specific purpose of this section is first to make the point that under
the assumption of smooth solutions, conservative and non—conservative for-
mulations are not unique. It is vitally important to scrutinise the conservative
formulations carefully, as these may be conservative purely in a mathematical
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sense. The key question is to see what the conserved quantities are in the for-
mulation and whether the conservation statements they imply make physical
sense. The second point of interest here is to make the reader aware of the fact
that in the presence of shock waves, formulations that are conservative purely
in a mathematical sense will produce wrong shock speeds and thus wrong so-
lutions. We illustrate these points through the one-dimensional shallow water
equations, see Sect. 1.6.3 of Chap. 1,

¢ Pu
[¢U}t+[¢uz+§¢2]$0' (3.100)
They express the physical laws of conservation of mass and momentum. Under
the assumption of smooth solutions we can expand derivatives so as to write
the equations in primitive—variable form

o1 + upy + Pu, =0, (3.101)
Up + Uty + ¢ =0 . (3.102)

It is tempting to derive new conservation—law forms of the shallow water
equations starting from equations (3.101)—(3.102). One possibility is to keep
the mass equation as in (3.101) and re—write the momentum equation (3.102)
as

u + (2u + )y = (3.103)
Now we have an alternative conservative form of the shallow water equations,
namely
L)
+ =0. 3.104
M) (3.104)

Mathematically, see Chap. 2, this is a system of conservation laws. It expresses
conservation of mass, as in (3.101), and conservation of particle speed u. Phys-
ically, this second conservation law does not make sense. A critical question
is this : can we use the conservation—law form (3.104) for the shallow water
equations. The anticipated answer is : yes we can, if and only if solutions are
smooth. In the presence of shock waves formulations (3.100) and (3.104) lead
to different solutions, as we now demonstrate.

Without loss of generality we consider a right facing shock wave in which
the state ahead of the shock is given by the variables ¢r, ugp.

Proposition 3.22. A right—facing shock wave solution of (3.100) has
shock speed

S = ;
o TQ/or s (3.105)
while a right—facing shock wave solution of (3.104) has speed
S UR + Q/(j)R 3
(3.106)

Q= 5t] e
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Proof. This is left to the reader as an exercise. Use contents of Chap. 2
and those of Sect. 3.1.3 of Chap. 3.

Remark 3.23. Clearly the shock speeds S and S are equivalent only when
¢« = @R, that is when the shock wave is trivial. In general

S$<8S (3.107)

and thus shock solutions of the new (incorrect) conservation laws (3.104) are
slower than shock solutions of the conventional (correct) conservation laws
(3.100). Note also that the conservative form (3.104) is non—unique.

Consider now the isothermal equations of Gas Dynamics, see Sect. 1.6.2
of Chap. 1. In conservation—law form these equations read

p pu _
2] +[] 0. s

x

where the sound speed a is constant. These conservation laws state that mass
and momentum are conserved, which is in accord with the laws of conservation
of mass and momentum studied in Chap. 1. Let us now assume that solutions
are sufficiently smooth so that partial derivatives exist; we expand derivatives
and after some algebraic manipulations obtain the primitive—variable formu-
lation

pt +upy + puy =0, (3.109)

a2
ug +uuz+?pm =0. (3.110)

This is a perfectly acceptable formulation, valid for smooth flows.
New conservation laws can be constructed, starting from the primitive
formulation (3.109)—(3.110) above. One such possible system of conservation

laws is
P pu _
o]l fen] -0 .

Mathematically, these equations are a set of conservation laws, see Sects. 2.1
and 2.4 of Chap. 2. Physically however, they are useless, they state that mass
and velocity are conserved !

Exercise 3.24. Using the contents of Sect. 3.1.3 for isolated shock waves,
compare the shock solutions of the two conservative formulations (3.108) and
(3.111). Which gives the fastest shock ? Find other conservative formulations
corresponding to (3.109)—(3.110).
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The Riemann Problem for the Euler Equations

In his classical paper of 1959, Godunov [216] presented a conservative ex-
tension of the first-order upwind scheme of Courant, Isaacson and Rees [144]
to non-linear systems of hyperbolic conservation laws. The key ingredient of
the scheme is the solution of the Riemann problem. The purpose of this chap-
ter is to provide a detailed presentation of the complete, exact solution to the
Riemann problem for the one—dimensional, time—dependent Euler equations
for ideal and covolume gases, including vacuum conditions. The methodology
can then be applied to other hyperbolic systems.

The exact solution of the Riemann problem is useful in a number of ways.
First, it represents the solution to a system of hyperbolic conservation laws
subject to the simplest, non—trivial, initial conditions; in spite of the sim-
plicity of the initial data the solution of the Riemann problem contains the
fundamental physical and mathematical character of the relevant set of con-
servation laws. The solution of the general IVP may be seen as resulting
from non-linear superposition of solutions of local Riemann problems [212].
In the case of the Euler equations the Riemann problem includes the so called
shock—tube problem, a basic physical problem in Gas Dynamics. For a detailed
discussion on the shock—tube problem the reader is referred to the book by
Courant and Friedrichs [143]. The exact Riemann problem solution is also an
invaluable reference solution that is useful in assessing the performance of nu-
merical methods and to check the correctness of programs in the early stages
of development. The Riemann problem solution, exact or approximate, can
also be used locally in the method of Godunov and high—order extensions of
it; this is the main role we assign to the Riemann problem here. A detailed
knowledge of the exact solution is also fundamental when utilising, assessing
and developing approximate Riemann solvers.

There is no exact closed—form solution to the Riemann problem for the
Euler equations, not even for ideal gases; in fact not even for much simpler
models such as the isentropic and isothermal equations. However, it is possible
to devise iterative schemes whereby the solution can be computed numerically
to any desired, practical, degree of accuracy. Key issues in designing an exact

E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 115
DOI 10.1007/b7976-1_4, © Springer-Verlag Berlin Heidelberg 2009
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Riemann solver are: the variables selected, the equations used, the number
of equations and the technique for the iterative procedure, the initial guess
and the handling of unphysical iterates, such as negative pressure. Godunov is
credited with the first exact Riemann solver for the Euler equations [216]. By
today’s standards Godunov’s first Riemann solver is cumbersome and compu-
tationally inefficient. Later, Godunov [218] proposed a second exact Riemann
solver. Distinct features of this solver are: the equations used are simpler, the
variables selected are more convenient from the computational point of view
and the iterative procedure is rather sophisticated. Much of the work that fol-
lowed contains the fundamental features of Godunov’s second Riemann solver.
Chorin [110], independently, produced improvements to Godunov’s first Rie-
mann solver. In 1979, van Leer [559] produced another improvement to Go-
dunov’s first Riemann solver resulting in a scheme that is similar to Godunov’s
second solver. Smoller [451] proposed a rather different approach; later, Dutt
[179] produced a practical implementation of the scheme. Gottlieb and Groth
[222] presented another Riemann solver for ideal gases; of the schemes they
tested, theirs is shown to be the most efficient. Toro [498] presented an exact
Riemann solver for ideal and covolume gases of comparable efficiency to that
of Gottlieb and Groth. More recently, Schleicher [430] and Pike [384] have
also presented new exact Riemann solvers which appear to be the fastest to
date. For gases obeying a general equation of state the reader is referred to
the pioneering work of Colella and Glaz [135]. Other relevant publications are
that of Menikoff and Plohr [349] and that of Saurel, Larini and Loraud [429].

In this chapter we present a solution procedure of the Riemann problem
for the Euler equations for both ideal and covolume gases. The methodology
is presented in great detail for the ideal gas case. We then address the issue
of vacuum and provide an exact solution for the three cases that can occur.
Particular emphasis is given to the sampling of the solution; this will be useful
to provide the complete solution and to utilise it in numerical methods such as
the Godunov method [216] and Glimm’s method or Random Choice Method
[212], [110]. The necessary background for this chapter is found in Chaps. 1,
2 and 3.

4.1 Solution Strategy

The Riemann problem for the one-dimensional time-dependent Euler
equations is the Initial Value Problem (IVP) for the conservation laws

U, +FU), =0,

p pu (4.1)
U= |pu|, F=|pi>+p |,
FE u(E +p)

with initial conditions (IC)
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U if 2<0,

U(2,0) = U () = {UR if 2> 0.

(4.2)

The domain of interest in the x—¢ plane are points (x,t) with —oo <
x < oo and t > 0. In practice one lets x vary in a finite interval [z, xR]
around the point x = 0. In solving the Riemann problem we shall frequently
make use of the vector W = (p,u,p)? of primitive variables, rather than
the vector U of conserved variables, where p is density, u is particle velocity
and p is pressure. The Riemann problem (4.1)—(4.2) is the simplest, non—
trivial, IVP for (4.1). Data consists of just two constant states, which in
terms of primitive variables are Wy, = (pr,ur,pr)? to the left of z = 0
and Wy = (pr,ur,pr)? to the right of x = 0, separated by a discontinuity
at x = 0. Physically, in the context of the Euler equations, the Riemann
problem is a slight generalisation of the so called shock—tube problem: two
stationary gases (u, = ug = 0) in a tube are separated by a diaphragm.
The rupture of the diaphragm generates a nearly centred wave system that
typically consists of a rarefaction wave, a contact discontinuity and a shock
wave. This physical problem is reasonably well approximated by solving the
shock—tube problem for the Euler equations. In the Riemann problem the
particle speeds ur, and ug are allowed to be non—zero, but the structure of
the solution is the same as that of the shock—tube problem. In general, given

(u-a) t (u+a)

Fig. 4.1. Structure of the solution of the Riemann problem on the x-t plane for the
one—dimensional time-dependent Euler equations

the conservation equations (4.1) for the dynamics, it is left to the statements
about the material, the equation of state, to determine not only the structure
of the solution of the Riemann problem but also the mathematical character of
the equations. In this chapter we restrict our attention to ideal gases obeying
the caloric Equation of State (EOS)

(4.3)

and covolume gases obeying
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_ p(1—bp)
(y=Dp’

where 7 is the ratio of specific heats, a constant, and b is the covolume, also
a constant. See Sects. 1.2.4 and 1.2.5 of Chap. 1. For the case in which no

(4.4)

t

1
1
1
1
\

0
Case (a) Case (b)

Case (€) Case (d)

Fig. 4.2. Possible wave patterns in the solution of the Riemann problem: (a) left
rarefaction, contact, right shock (b) left shock, contact, right rarefaction (c) left
rarefaction, contact, right rarefaction (d) left shock, contact, right shock

vacuum is present the exact solution of the Riemann problem (4.1), (4.2) has
three waves, which are associated with the eigenvalues \1 = v —a, Ao = u
and A3 = u + a; see Fig. 4.1. Note that the speeds of these waves are not, in
general, the characteristics speeds given by the eigenvalues. The three waves
separate four constant states, which from left to right are: Wy, (data on the
left hand side), W1, W.g and Wg (data on the right hand side).

The unknown region between the left and right waves, the Star Region,
is divided by the middle wave into the two subregions Star Left (W,y,) and
Star Right (W.r). As seen in Sect. 3.1.3 of Chap. 3, the middle wave is
always a contact discontinuity while the left and right (non-linear) waves are
either shock or rarefaction waves. Therefore, according to the type of non—
linear waves there can be four possible wave patterns, which are shown in
Fig. 4.2. There are two possible variations of these, namely when the left or
right non-linear wave is a sonic rarefaction wave; these two cases are only of
interest when utilising the solution of the Riemann problem in Godunov—-type
methods. For the purpose of constructing a solution scheme for the Riemann
problem it is sufficient to consider the four patterns of Fig. 4.2.

An analysis based on the eigenstructure of the Euler equations, Sect. 3.1.3
Chap. 3, reveals that both pressure p, and particle velocity u, between the
left and right waves are constant, while the density takes on the two constant
values p,1, and p.r. Here we present a solution procedure which makes use of
the constancy of pressure and particle velocity in the Star Region to derive a
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single, algebraic non—linear equation for pressure p,. In summary, the main
physical quantities sought are p., uy, p«1, and pir.

4.2 Equations for Pressure and Particle Velocity

Here we establish equations and solution strategies for computing the pres-
sure p, and the particle velocity u. in the Star Region.

Proposition 4.1 (solution for p. and w.). The solution for pressure p.
of the Riemann problem (4.1), (4.2) with the ideal gas Equation of State (4.3)
is given by the root of the algebraic equation

f(0, WL, Wg) = fu(p, W) + fr(p, Wr) + Au =0, Au=ur —u,, (4.5)

where the function f1, is given by

(p—pL) {pfﬁL} : if p> pL (shock) ,

fulp, W) = . (4.6)
(72“%1) {(p’i) - 1} if p < pr, (rarefaction) ,
the function fr is given by
1
(-pe) [725]"  ifp>pr (shock)
fr(p, Wgr) = - (4.7)
(3‘3}) [(pi) - 1} if p < pr (rarefaction)
and the data—dependent constants Ay, By, Ar, Br are given by
_ 2 _ (y=1)
AL = oL ° By, = (1) PL s
(4.8)
— 2 _ (=1
AR = G Br = GamPR
The solution for the particle velocity us in the Star Region is
1 1
Us = §(UL +ur) + 3 [fr(p«) — fu(ps)] - (4.9)

Remark 4.2. Before proceeding to prove the above statements we make
some useful remarks. Once (4.5) is solved for p, the solution for u, follows as in
(4.9) and the remaining unknowns are found by using standard gas dynamics
relations studied in Chap. 3. The function fi, governs relations across the left
non—linear wave and serves to connect the unknown particle speed u, to the
known state W, on the left side, see Fig. 4.3; the relations depend on the type
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of wave (shock or rarefaction). The arguments of fi, are the pressure p and the
data state W1,. Similarly, the function fr governs relations across the right
wave and connects the unknown w, to the right data state Wg; its arguments
are p and Wg. For convenience we shall often omit the data arguments of the
functions f, fr and fr. The sought pressure p, in the Star Region is the root
of the algebraic equation (4.5), f(p) = 0. A detailed analysis of the pressure
function f(p) reveals a particularly simple behaviour and that for physically
relevant data there exists a unique solution to the equation f(p) = 0.

Fig. 4.3. Strategy for solving the Riemann problem via a pressure function. The
particle velocity is connected to data on the left and right via functions fi, and fr

Proof. Here we derive expressions for fi, and fr in equation (4.5). We do
this by considering each non—linear wave separately.

4.2.1 Function fi, for a Left Shock

We assume the left wave is a shock moving with speed Si, as shown in Fig.
4.4a; pre-shock values are pr,, u;, and py, and post—shock values are p,y,, u.
and p.

As done in Sect. 3.1.3 of Chap. 3, we transform the equations to a frame
of reference moving with the shock, as depicted in Fig. 4.4b. In the new frame
the shock speed is zero and the relative velocities are

ﬁL:uL—SL,ﬁ*:u*—SL. (410)
The Rankine-Hugoniot Conditions, see Sect. 3.1.3 of Chap. 3, give
pLUL = pyp s (4.11)

pLaE, + pL = purlil + pa (4.12)
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SL 0
—
PL P PL P
u, Us u, u,
P P P P

(@) (b)

Fig. 4.4. Left wave is a shock wave of speed Sp: (a) stationary frame, shock speed
is S¢ (b) frame of reference moving with speed St, shock speed is zero

We introduce the mass flux Qr,, which in view of (4.11) may be written as
QL = prin = parls - (4.14)
From equation (4.12)
(pLan) s + pr = (Parls) i + pic -
Use of (4.14) and solving for @y, gives

Q=2 (4.15)
Uy — UL,

But from equation (4.10) 4y, — @, = ur, — u. and so Qr, becomes

Q=2 (4.16)
Uy — UL,
from which we obtain
vy — g — PP (4.17)
QL

We are now close to having related u, to data on the left hand side. We seek
to express the right hand side of (4.17) purely in terms of p. and Wr,, which
means that we need to express (1, as a function of p, and the data on the left
hand side. We substitute the relations

. Qu Qu

ur, ) ’a* = )
PL P+L

obtained from (4.14) into equation (4.15) to produce

P« — PL

PxL PL

As seen in Sect. 3.1.3 of Chap. 3, the density p.1, is related to the pressure p.
behind the left shock via
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(=) + (%)

P I GV UV 4.19
P=L PL (E) (&) 1 ( )
Y+1 pL
Substitution of p,p, into (4.18) yields
«+ B
OL = [p :; L} , (4.20)
L
which in turn reduces (4.17) to
ux = ur, — fr(pe, W) , (4.21)
with .
A, 2
*7W - * 5
fulp L) = (p« —pL) [p* T BL]
and ) ( D
N —
A, =-———, BpL= .
ROV ENCES e

Thus, the sought expression for fi, for the case in which the left wave is a
shock wave has been obtained.

4.2.2 Function fi, for Left Rarefaction

Now we derive an expression for fi, for the case in which the left wave
is a rarefaction wave, as shown in Fig. 4.5. The unknown state Wy, is now
connected to the left data state W, using the isentropic relation and the
Generalised Riemann Invariants for the left wave. As seen in Sect. 3.1.2 of

. Contact

Rarefaction t discontinuity

P ,'

U= V4

V4
p|_ p*l
V4
uL ’
4
P «
0

Fig. 4.5. Left wave is a rarefaction wave that connects the data state W, with the
unknown state W, in the star region to the left of the contact discontinuity

Chap. 3, the isentropic law
p=Cp7, (4.22)

where C' is a constant, may be used across rarefactions. C' is evaluated at the
initial left data state by applying the isentropic law, namely
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pL=Cpl ,
and so the constant C' is
C= pL/p’ﬂ )
from which we write )
P 5
PL

In Sect. 3.1.3 of Chap. 3 we showed that across a left rarefaction the Gener-
alised Riemann Invariant I1,(u, a) is constant. By evaluating the constant on
the left data state we write

2aL 2(1*[,
= u*

uL+'y—1 7—1’

(4.24)

where ar, and a,p, denote the sound speed on the left and right states bounding
the left rarefaction wave. See Fig. 4.5.
Substitution of p,1, from (4.23) into the definition of a.r, gives

~—1
W
a1, = ar, <p> , (4.25)
pL
and equation (4.24) leads to
Usx = UL — fL(p*;WL) ) (426)
with
2a p ko
G W) = —=& () —1] .
fL(p L) ('Y_ 1) [ L

This is the required expression for the function fi, for the case in which the
left wave is a rarefaction wave.

4.2.3 Function fr for a Right Shock

Here we find the expression for the function fr for the case in which the
right wave is a shock wave travelling with speed Sg. The situation is entirely
analogous to the case of a left shock wave. Pre—shock values are pr, ur and
pr and post-shock values are p.r, u, and p.. In the transformed frame of
reference moving with the shock, the shock speed is zero and the relative
velocities are

ﬁR:uR—SR,ﬁ*:u*—SR. (427)

Application of the Rankine-Hugoniot conditions gives

psRUx = PRUR ,
P«RUZ + Py = pRUZ + PR (4.28)

ﬁ*(E*R +p*) = aR(ER +pR) .
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Now the mass flux is defined as
QR = —p*R’LAL* = —pR'&R . (429)

By performing algebraic manipulations similar to those for a left shock we
derive the following expression for the mass flux

.+ Br]?
On = {Z’XR} . (4.30)
R
Hence the particle velocity in the Star Region satisfies
U = ur + fr(P+; WR) , (4.31)
with )
AR 2
ws WR) = (P« — —
Ir(p r) = (P« —Pr) [p*JrBR]
2 (-1
AR = ————, = .
A N CE S D

This is the sought expression for fr for the case in which the right wave is a
shock wave.

4.2.4 Function fr for a Right Rarefaction

The derivation of the function fr for the case in which the right wave is
a rarefaction wave is carried out in an entirely analogous manner to the case
of a left rarefaction. The isentropic law gives

1

Px \7

PR = PR () (4.32)
Pr

and the Generalised Riemann Invariant Ig(u,a) for a right rarefaction gives

2a*R 2aR
— = ug — . 4.
~ = 1 UR - 1 ( 33)

U

Using (4.32) into the definition of sound speed a.r gives

y—1

W
4R = OR (p) , (4.34)
Pr
which if substituted into (4.33) leads to
us = ur + fr(p«, WR) , (4.35)

with
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fr(ps, WR) = 20n Kp*)%l —1] :

v—1[\pr

The functions f1, and fg have now been determined for all four possible wave
patterns of Fig. 4.2. Now by eliminating u, from equations (4.21) or (4.26)
and (4.31) or (4.35) we obtain a single equation

f(pe; WL, WR) = fL(p+, WL) + frR(P+, WR) + Au =0, (4.36)

which is the required equation (4.5) for the pressure. This proves the first
part of the proposition. Assuming this single non—linear algebraic equation is
solved (numerically) for p, then the solution for the particle velocity u. can
be found from equation (4.21) if the left wave is a shock (p. > pr,) or from
equation (4.26) if the left wave is a rarefaction (p, < pr,) or from equation
(4.31) if the right wave is a shock (p. > pr) or from equation (4.35) if the
right wave is a rarefaction wave (p. < pr). It can also be found from a mean
value as

Uy = %(uL + ur) + % [fr(ps) = fL(pd)]

which is equation (4.9), and the proposition has thus been proved.

4.3 Numerical Solution for Pressure

The unknown pressure p, in the Star Region is found by solving the single
algebraic equation (4.5), f(p) = 0, numerically. Any standard technique can
be used. See Maron and Lopez [337] for background on numerical methods
for algebraic equations. The behaviour of the pressure function f(p) plays a
fundamental role in finding its roots numerically.

4.3.1 Behaviour of the Pressure Function

Given data pr,, ur, pr and pr, ur, pr the pressure function f(p) behaves
as shown in Fig. 4.6. It is monotone and concave down as we shall demonstrate.
The first derivatives of fx (K=L,R) with respect to p are

1/2
A — .
(B{%) {1 _ 2(1;3151:1))} if p > px (shock) ,
(4.37)

—
x\
|

1 ( » )*(er)/?v

PKAK ;;

if p < pk (rarefaction) .

As " = f[ + fk and by inspection f{, > 0, the function f(p) is monotone
as claimed. The second derivatives of the functions fk are
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f(p)

Il |2 I3
(au),

fu (Au),
0 v / p

.
/*1 p.,Tp,

0 p p

m M

Fig. 4.6. Behaviour of the pressure function in the solution of the Riemann problem

1/2
—i( Ak ) |:4BK+3P+PK:| lfp > P (ShOCk) ,

Bk +p (Bx+p)2
[k = o) (4.38)
—(3y+1)/2v
_% ( pLK ) if p < pk (rarefaction) .
K
Since f” = f{' + f§ and f} < 0 the function f(p) is concave down as an-

ticipated. From equations (4.37) and (4.38) it can be seen that fi; — 0 as
p — oo and ff{ — 0 as p — oo. This behaviour of fk, and thus of f(p), has
implications when devising iteration schemes to find the zero p, of f(p) = 0.
The velocity difference Au = ur — uy, and the pressure values pr,, pr are the
most important parameters of f(p). With reference to Fig. 4. 6 we define

Pmin = min(Ph pR) y  Pmax = max(pLa pR) 5

fmin = f(pmin) ) fmax = f(pmax) .

For given pr,, pr it is the velocity difference Au which determines the value
of p,. Three intervals I;, I and I3 can be identified:

yzs lies in Il = (07 pmin) if fmin >0 and fmax >0 )
D« lies in IQ - [pmina prnax] 1f fmin S O and fmax 2 0 ) (439)

Py lies in I3 = (Pmaxs 00) i fnin < 0 and fipax < 0.

For sufficiently large Au, as (Au); in Fig. 4.6, the solution p. is as p.1,
which lies in I; and thus p, < pr, ps« < pr; so the two non-linear waves are
rarefaction waves. For Au as (Au)s in Fig. 4.6 p. = p.2 lies between pr, and
pr and hence one non-linear wave is a rarefaction wave and the other is a
shock wave. For sufficiently small values of Au, as (Au)sz in Fig. 4.6, p. = p.3
lies in I3, that is p, > pr, p« > pr, which means that both non-linear waves
are shock waves. The interval where p, lies is identified by noting the signs of
Smin and fiax; see 4.39.
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Another observation on the behaviour of f(p) is this: in I; both f/(p)
and f”(p) vary rapidly; this may lead to numerical difficulties when searching
for the root of f(p) = 0. As p increases the shape of f(p) tends to resemble
that of a straight line. For non—vacuum initial data Wp,, Wg there exists a
unique positive solution p, for pressure, provided Auw is sufficiently small. As
a matter of fact, even for the case in which the data states are non-vacuum
states, values of Au larger than a critical value (Au)qit lead to vacuum in the
solution of the Riemann problem. The critical value can be found analytically
in terms of the initial data. Clearly for a positive solution for pressure p.
we require f(0) < 0. Direct evaluation of f(p) gives the pressure positivity

condition
2aL + 2aR

y-1 v—1
Vacuum is created by the non—linear waves if this condition is violated. The

structure of the solution in this case is different from that depicted in Fig. 4.1
and so is the method of solution, as we shall see in Sect. 4.6 of this chapter.

(AU)erit = > UR — UL, - (4.40)

4.3.2 Iterative Scheme for Finding the Pressure

Given the particularly simple behaviour of the pressure function f(p) and
the availability of analytical expressions for the derivative of f(p) we use
a Newton-Raphson [337] iterative procedure to find the root of f(p) = 0.
Suppose a guess value py for the true solution p. is available; since f(p) is a
smooth function we can find an approximate value of f(p) at a neighbouring
point pg + 0 via a Taylor expansion

f(po+8) = f(po) +8f'(po) +O(6%) . (4.41)
If the pp + J is a solution of f(p) = 0 then
f(po) +0f'(po) =0, (4.42)

and so the corrected value p1 = pg + ¢ is

f(po)
T Fpo) 443)
The above procedure generalises to
f (p(k—l))

Dk) = P(k—1) — ; 4.44
(k) = Plk=1) ~ i ™ 3 (4.44)
where p() is the k-th iterate. The iteration procedure is stopped whenever

the relative pressure change

IP(k) — Pe—1)]

CHA = - ,
3 [Py + D))

(4.45)
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is less than a prescribed small tolerance TOL. Typically TOL = 1075,

In order to implement the iteration scheme (4.44) we need a guess value
po for the pressure. Given the benign behaviour of f(p) the choice of pq is
not too critical. An inadequate choice of pg results in a large number of itera-
tions to achieve convergence. A difficulty that requires special handling in the
Newton—Raphson method arises when the root is close to zero (strong rarefac-
tion waves) and the guess value py is too large: the next iterate for pressure
can be negative. This is due to the rapid variations of the first and second
derivatives of f(p) near p = 0. We illustrate the effect of the initial guess value
by considering four possible choices. Three of these are approximations to the
solution p, for pressure, see Chap. 9 for details. One such approximation is
the so called Two—Rarefaction approximation

-1

ar, +ar — 5(y — 1) (ur — ur)

PTR = (4.46)

71 -1 >
2 2
ar,/py” +ar/pg”

and results from the exact function (4.5) for pressure under the assumption
that the two non—linear waves are rarefaction waves. If the solution actually
consists of two rarefactions then prr is exact and no iteration is required.
A second guess value results from a linearised solution based on primitive
variables. This is

po = max(TOL, ppv) ,

(4.47)
ppv = 5(pr + pr) — 3 (ur —ur)(pL + pr)(aL + ar) -
A third guess value is given by a Two-Shock approximation
po = max(TOL,prs) ,
_ gL(®)pL+gr(P)pr—Au
PTs = T B ton () (4.48)

1
2
ocr) = (5%52)"

where Ak and Bk given by (4.8). Here p is an estimate of the solution; the
value p = po given by (4.47) works well. Note that approximate solutions may
predict, incorrectly, a negative value for pressure, even when condition (4.40)
is satisfied. Thus in order to avoid negative guess values we introduce the
small positive constant TOL, as used in the iteration procedure. As a fourth
guess value we utilise the arithmetic mean of the data, namely

1

Po = §(PL + PR) - (4.49)

Next, we carry out some tests on the effect of the various guess values for pg
on the convergence of the Newton-Raphson iterative scheme for finding the
pressure pi.
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4.3.3 Numerical Tests

Five Riemann problems are selected to test the performance of the Rie-
mann solver and the influence of the initial guess for pressure. The tests are
also used to illustrate some typical wave patterns resulting from the solution
of the Riemann problem. Table 4.1 shows the data for all five tests in terms
of primitive variables. In all cases the ratio of specific heats is v = 1.4. The
source code for the exact Riemann solver, called HE-E1RPEXACT, is part of
the library NUMERICA [519]; a listing is given in Sect. 4.9.

Test 1 is the so called Sod test problem [453]; this is a very mild test and
its solution comnsists of a left rarefaction, a contact and a right shock. Fig.
4.7 shows solution profiles for density, velocity, pressure and specific internal
energy across the complete wave structure, at time ¢ = 0.25 units. Test 2,
called the 123 problem, has solution consisting of two strong rarefactions and
a trivial stationary contact discontinuity; the pressure p, is very small (close
to vacuum) and this can lead to difficulties in the iteration scheme to find p,
numerically. Fig. 4.8 shows solution profiles. Test 2 is also useful in assessing
the performance of numerical methods for low density flows, see Einfeldt et.
al. [182]. Test 3 is a very severe test problem, the solution of which contains a
left rarefaction, a contact and a right shock; this test is actually the left half
of the blast wave problem of Woodward and Colella [584], Fig. 4.9 shows solu-
tion profiles. Test 4 is the right half of the Woodward and Colella problem; its
solution contains a left shock, a contact discontinuity and a right rarefaction,
as shown in Fig. 4.10. Test 5 is made up of the right and left shocks emerging
from the solution to tests 3 and 4 respectively; its solution represents the col-
lision of these two strong shocks and consists of a left facing shock (travelling
very slowly to the right), a right travelling contact discontinuity and a right
travelling shock wave. Fig. 4.11 shows solution profiles for Test 5.

Test| pr, ur, PL PR UR PR
1 1.0 0.0 1.0 0.125 0.0 0.1
1.0 -2.0 0.4 1.0 2.0 0.4
1.0 0.0 1000.0 1.0 0.0 0.01
1.0 0.0 0.01 1.0 0.0 100.0
5.99924(19.5975|460.894(5.99242|-6.19633|46.0950

[SAI RN OV] B )

Table 4.1. Data for five Riemann problem tests

Table 4.2 shows the computed values for pressure in the Star Region by
solving the pressure equation f(p) = 0 (equation 4.5) by a Newton—Raphson
method. This task is carried out by the subroutine STARPU, which is contained
in the FORTRAN 77 program given in Sect. 4.9 of this chapter.
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Test|  p. PTR PPV prs_ |3(pL + pR)
1 [0.303130.30677(3)[0.55000(5)|0.31527(3)| 0.55(5)
9 10.00189] exact(1) | TOL(8) | TOL(8) | 0.4(9)
3 [460.894(912.449(5) |500.005(4)|464.108(3)| 500.005(4)
4 146.0950(82.9831(5)| 50.005(4) [46.4162(3)| 50.005(4)
5 |1691.64(2322.65(4)|781.353(5)|1241.21(4)|253.494(6)

Table 4.2 Guess values pg for iteration scheme. Next to each guess
is the required number of iterations for convergence (in parentheses).
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Fig. 4.7. Test 1: Exact solution for density, velocity, pressure and specific internal
energy at time t = 0.25 units

The exact, converged, solution for pressure is given in column 2. Columns
3 to 6 give the guess values prr, ppv, prs and the arithmetic mean value of
the data. The number in parentheses next to each guess value is the number
of iterations required for convergence for a tolerance TOL = 1076, For Test 1,
prr and prs are the best guess values for pg. For Test 2, prr is actually the
exact solution (two rarefactions). By excluding Test 2, prg is the best guess
overall. Experience in using hybrid schemes suggests that a combination of two
or three approximations is bound to provide a suitable guess value for py that
is both accurate and efficient. In the FORTRAN 77 program provided in Sect.
4.9 of this chapter, the subroutine STARTE contains a hybrid scheme involving
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Fig. 4.8. Test 2: Exact solution for density, velocity, pressure and specific internal
energy at time t = 0.15 units

ppv, prr and prs. In a typical application of the exact Riemann solver to
a numerical method, the overwhelming majority of Riemann problems will
consist of nearby states which can be accurately approximated by the simple

value ppy.

Having found p,, the solution wu, for the particle velocity follows from
(4.9) and the density values p.y,, p«r follow from appropriate wave relations,
as detailed in the next section. Table 4.3 shows exact solutions for pressure p,,
speed u,, densities p,1, and p.g for tests 1 to 5. These quantities may prove
of some use for initial testing of programs.

Test| p. U PxL P+R
1 10.30313|0.92745 |0.42632|0.26557
2 10.00189] 0.00000 [0.02185]0.02185
3 1460.894] 19.5975 [0.57506|5.99924
4 146.0950(-6.19633(5.99242|0.57511
5 [1691.64| 8.68975 (14.2823|31.0426

Table 4.3. Exact solution for pressure, speed and densities for tests 1 to 5.
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Fig. 4.9. Test 3: Exact solution for density, velocity, pressure and specific internal
energy at time t = 0.012 units

4.4 The Complete Solution

So far, we have an algorithm for computing the pressure p, and particle
velocity wu, in the Star Region. We still dot not know the sought values p.1,
and p,g for the density in this region; these are computed by identifying the
types of non—linear waves, and can be done by comparing the pressure p, to
the pressures pr, and pgr, and then applying the appropriate conditions across
the respective waves. Another pending task is to determine completely the left
and right waves. For shock waves we only need to find the density behind the
wave and the shock speed. For rarefaction waves there is more work involved:
we need p behind the wave, equations for the Head and Tail of the wave and
the full solution inside the rarefaction fan.

There are two cases. First we consider the case in which the sampling point
(z,t) lies to the left of the contact discontinuity, as in Fig. 4.12. Again, there
are two possibilities; these are now studied separately.

Left Shock Wave

A left shock wave, see Fig. 4.12a, is identified by the condition p. > pr.
We know p, and u,. From the pressure ratio, see Sect. 3.1.3 of Chap. 3, we
find the density according to
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Fig. 4.10. Test 4: Exact solution for density, velocity, pressure and specific internal
energy at time t = 0.035 units

Pe 4 =1
PL+W+1

=1 ps
Y+1 pL +1

P+L = PL (4.50)

The shock speed Sy, is also a function of the pressure p,. From (4.10) and
(4.14) we deduce the shock speed as

Sy, =ur — Qu/pL (4.51)

where the mass flux @y, is given by (4.20). More explicitly, see Sect. 3.1.3 of
Chap. 3, one has

1
2
yflp - 11% (4.52)
2y pL 2y
We have therefore completely determined the solution for the entire region
to the left of the contact discontinuity in the case in which the left wave is a
shock wave.

SL = up, — ay,

Left Rarefaction Wave

A left rarefaction wave, see Fig. 4.12b, is identified by the condition p, <
pL. The pressure p, and the particle velocity u, in the Star Region are known.
The density follows from the isentropic law as
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Fig. 4.11. Test 5: Exact solution for density, velocity, pressure and specific internal
energy at time t = 0.035 units

X/t=ST|_ t

xit=s X/t~ X/t=u..

r Wig

Case (a) Case (b)

Fig. 4.12. Sampling the solution at a point to the left of the contact: (a) left wave
is a shock (b) left wave is a rarefaction

N\ 7
paL, = pIL. <p> . (4.53)

pL
The sound speed behind the rarefaction is
a=1
pe\
A1, = A, () . (454)
pL

The rarefaction wave is enclosed by the Head and the Tail, which are the
characteristics of speeds given respectively by

SHL = ur, —ay, , STL = Uy — Ay, - (455)
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We now find the solution for W, = (p,u,p)” inside the left rarefaction fan.

This is easily obtained by considering the characteristic ray through the origin
(0,0) and a general point (z,t) inside the fan. The slope of the characteristic

is
dr =z
@l
where u and a are respectively the sought particle velocity and sound speed
at (x,t). Also, use of the Generalised Riemann Invariant I1,(u,a) yields
2ar, 2a

uL+7—1:u+7—1’

The simultaneous solution of these two equations for w and a, use of the
definition of the sound speed a and the isentropic law give the result

p=r [ + i (= )]

Writan = U = (,./7_2;'_1) |:aL + (’ygl) ur, + %:| s (456)

2y

p=r [ty + e (w-9)]

Next we consider the solution at a point (x,t) to the right of the contact
discontinuity for the two possible wave configurations of Fig. 4.13.

x/t=Sg . XM=S 1R
t o pe =u At
xft=u / \ T XM=SHr
“W*R
\
W*L‘\\ WR WRfan
X X
0 0
Case (a) Case (b)

Fig. 4.13. Sampling the solution at a point to the right of the contact: (a) right
wave is a shock (b) right wave is a rarefaction

Right Shock Wave

A right shock wave, see Fig. 4.13a, is identified by the condition p, > pg.
We know the pressure p, and the particle velocity u.. The density p,g is found

to be .
Px Y=
PR + y+1

=1 px
v+1pr +1

PR = PR (4.57)
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and the shock speed is
SR = ur + QR/pR R (458)

with the mass flux Qr given by (4.30). More explicitly we have

G+)p. , (=D]F

4.59
2y pr 2y (4.59)

SRZUR-l-aR

Right Rarefaction Wave

A right rarefaction wave, see Fig. 4.13b, is identified by the condition
P« < pr. The pressure p, and velocity u, in the Star Region are known. The
density is found from the isentropic law as

1
por = pr (p> , (4.60)

Pr

from which the sound speed follows as

L=
asR = OR (p*) . (4.61)

Pr
The speeds for the Head and Tuail are given respectively by
SHR = UR + AR , STR = Usx + AR - (4.62)

The solution for W rga, inside a right rarefaction fan is found in an analogous
manner to the case of a left rarefaction fan. The solution is

— 2 (=1 AN
p=rn |ty ~ e (= 9]

WRfan = u = ﬁ |:_aR + @UR + %] y (463)

— 2 (=1 z) [t
p=rr [ — e (= 9]

4.5 Sampling the Solution

We have developed a solver to find the exact solution of the complete
wave structure of the Riemann problem at any point (x,t) in the relevant
domain of interest x, < x < zg; t > 0, with 2, < 0 and zgr > 0. We now
provide a solution sampling procedure which, apart from being a summary of
the solution, may also prove of practical use when programming the solution
algorithm. Suppose we wish to evaluate the solution at a general point (z,t).
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We denote the solution of the Riemann problem at (z,t) in terms of the
vector of primitive variables W = (p, u,p)T. As the solution W is a similarity
solution we perform the sampling in terms of the speed S = x/t. When the
solution at a specified time ¢ is required the solution profiles are only a function
of space x. In sampling the complete solution there are two cases to consider.

4.5.1 Left Side of Contact: S = z/t < u,

As shown in Fig. 4.12 there are two possible wave configurations. Fig.
4.12a shows the case in which the left wave is a shock wave. In this case the
complete solution on the left hand side of the contact wave is

Weheif 5, < £ <,

Wi(z,t) = (4.64)
Wi, if % <S5,
where S, is the shock speed given by (4.52), Wsho = (psho v, p,)T with phe

given by (4.50) and W7, is the left data state. If the left wave is a rarefaction,
as depicted by Fig. 4.12b, then the complete solution on the left hand side of
the contact consists of three states, namely

Wy if § <SnL,
W(:Cﬂf) =< Wian if Syp, < % < St1,, (4.65)

Wi if Spp < £ <y,

where Sy, and Sty, are the speeds of the head and tail of the rarefaction given
by (4.55), Wi = (pfan 4 p.) with pfa given by (4.53), Wi, is the state
inside the rarefaction fan given by (4.56) and W7y, is the left data state. Fig.
4.14 shows a flow chart for sampling the solution at any point (z,t) to the left
of the contact discontinuity. An analogous flow chart results from the case in
which the point (x,t) lies to the right of the contact discontinuity; the reader
is encouraged to draw the flow chart for this case.

4.5.2 Right Side of Contact: S = z/t > u.

As shown in Fig. 4.13 there are two possible wave configurations. Fig.
4.13a shows the case in which the right wave is a shock wave. In this case the
complete solution on the right hand side of the contact wave is

Wi}ll{o lfU*S%SSRa
Wz, t) = (4.66)
Wgr if § > 5k,

where Sk is the shock speed given by (4.59), Wshe = (psho y, p, )T with
PO given by (4.57) and Wg is the right data state. If the right wave is a
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Fig. 4.14. Flow chart for sampling the solution at a point (z,t) to the left of the
contact discontinuity % = u.; S = z/t

rarefaction, as depicted by Fig. 4.13b, then the complete solution on the right
hand side of the contact consists of three states, namely

Wiaﬁl lfu*S%SSTRa
W(x,t) = WRfan if STR S % S SHR , (467)
Wgr if § > Sur,

where Sgyr and STr are the speeds of the head and tail of the rarefaction
given by (4.62), Wi = (pfan o, p )T with pfl given by (4.60), Wrap is
the state inside the right rarefaction fan given by (4.63) and Wy is the right
data state.

Exercise 4.3. Write a flow chart for sampling the solution at any point
(2,t) to the right of the contact discontinuity %% = u,.

Solution 4.4. (Left to the reader).

In Sect. 4.9 we give a program for finding the complete solution of the
Riemann problem for ideal gases, excluding the cases in which vacuum is
present.
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4.6 The Riemann Problem in the Presence of Vacuum

The admission of flowing material adjacent to vacuum plays an important
role in a number of practical applications. Loosely, vacuum is characterised by
the condition p = 0. It follows that the total energy per unit mass also van-
ishes, F¥ = 0. Values of pressure and particle velocity in vacuum are discussed
later. Naturally, in vacuum regions the Euler equations, or any other math-
ematical model based on the continuum assumption, are no longer a valid
description of the physics. Here we discuss solutions of the Euler equations in
domains adjacent to regions of vacuum. As for the non—vacuum case described
previously, the simplest problem involving the vacuum state is furnished by
the Riemann problem. There are two obvious cases to consider. One is that
in which the left non—vacuum state is adjacent to a right vacuum state at
the initial time ¢ = 0. The second case is simply the previous case reversed,
the right non—vacuum state is adjacent to a left vacuum state. There is a
third case, in which both left and right data states are non—vacuum states,
but the vacuum state is generated in the interaction of the data states via
the Riemann problem. The solution of the Riemann problem in the presence
of vacuum involves the computation of free boundaries separating vacuum
regions from those in which material exists.

In the presence of vacuum the structure of the solution of the Riemann
problem is different from that of the conventional case shown in Fig. 4.1; the
Star Region does no longer exist. Attempts at using the pressure equation
(4.5) and an iterative scheme to solve it will fail, simply because the scheme
would be assuming a solution structure that does not exist. The temptation to
use small values of density and pressure to simulate vacuum with the Riemann
solver for the non—vacuum case will also prove frustrating. If this is done in
approximate Riemann solvers, then one is effectively changing the local wave
structure of the solution.

Concerning the admissible elementary waves present in the structure of the
solution of the Riemann problem including the vacuum state, an important
observation is that a shock wave cannot be adjacent to a vacuum region. This
is stated in the following proposition

Proposition 4.5. A shock wave cannot be adjacent to a vacuum region.
Proof. Let us consider a left non—vacuum constant state Wi, = (pr,, ur,, pL)T
adjacent to a right vacuum state Wq = (po, ug, po)” at the initial time ¢ = 0,
where py = 0. Assume these states are connected by a discontinuity of speed
S. Application of the Rankine-Hugoniot conditions, see Sect. 3.1.3 of Chap.
3, gives

prur, — pouo = S(pL — po) , (4.68)

pLut, + pr — (poug + po) = S(pLuw — pouo) , (4.69)
UL(EL +pL) — uO(E() +p0) = S(EL — E()) . (470)
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As Ey = 0 and assuming ug to be finite, manipulation of the equations gives
ur, = ug =S, pr = po - (4.71)

It follows that a shock wave cannot be adjacent to a region of vacuum, py, = py.
The proposition is thus proved.

From the result (4.71) it also follows that a contact discontinuity can be
adjacent to a region of vacuum, ur, = ug = .S, which makes perfect physical
sense. This wave separates a region of material from a region of no material
and is therefore a boundary. The velocity ug of the front is also the maximum
particle velocity across the wave system connecting a non—vacuum state with
the vacuum state and is called the escape wvelocity. It turns out that wug is
completely determined by the data on the non—vacuum state. As to the pres-
sure pg we note that the previous result is independent of the specification of
po- However, in order to determine the solution of the Riemann problem ad-
mitting regions of vacuum it is necessary to make some statements regarding
pressure p and sound speed a. This is most conveniently done by specifying
an equation of state. As the only possible waves are contacts and rarefactions,
it is reasonable to adopt an isentropic-type equation of state and assume that
this is valid all the way up to the boundary separating material from vacuum.
We take the EOS

p=p(p), (4.72)

subject to the following conditions, see Liu and Smoller [373],
p(0)=0, p'(0)=0, p'(p) >0, p’(p) >0. (4.73)
Thus from now on we denote the vacuum state by Wq = (pg, ug,po)? =

(0,u0,0)T. From equation (4.71) the velocity ug is the speed of the boundary
between the region of material and the region of vacuum. As pointed out in
solving the Riemann problem including Wy there are three cases to consider.
The structure of the solution of the Riemann problem for each of the three
cases is depicted in Figs. 4.15, 4.16 and 4.17 respectively. We now study each
case in detail.

4.6.1 Case 1: Vacuum Right State
In this case the Riemann problem has data of the type

WL #Wyifz <0,
W(z,0) = (4.74)
Wy (vacuum) if z > 0,

with Wi, = (pr, ur,pr,)? and Wq = (0, ug,0)7.
This problem may be seen as a mathematical model for the following
physical situation: a shock tube of constant cross sectional area is filled with
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a gas at uniform conditions. Assume the right—hand boundary is a piston of
speed up = 0 at time ¢ = 0. Suppose the piston is instantaneously accelerated
to a speed up > 0 (to the right). Clearly if up > ug vacuum will take place.
The incipient cavitation case is up = ug. The structure of the solution of the

Head of
rarefaction t
x/t=u -a

\

Vacuum front
X/t=S*L
e

W, : Vacuum
X

Fig. 4.15. Riemann problem solution for a right vacuum state

Riemann problem with initial data (4.74) is shown in Fig. 4.15 and consists of
a left rarefaction wave and a contact wave that coalesces with the tail of the
rarefaction. Obviously across the contact, Au = Ap = 0. Note that the right
non-linear wave of Fig. 4.1 is absent in Fig. 4.15. The physical interpretation
of this is that there is no medium for this wave to propagate through. The
exact solution follows directly from the methods of previous sections if the
speed of the contact front is known. Application of the Generalised Riemann
Invariant Iy, (u, a) to connect a point on the left data state with a point along
the contact gives

(4.75)

From the assumptions (4.73) on the equation of state and the definition of
sound speed we find that the sound speed vanishes along the contact, that is,
ag = 0. Use of (4.73) with ap = 0 gives the speed of the front as

QaL

g (4.76)

S.1, = up = ug, +
It is worth remarking that the conditions pg = 0, pp = 0 do not, in general,

imply ag = 0. The value of ay depends on the particular equation of state.
The complete solution W (x,t) can now be written as

WL if%SUL—aL,
WL(J(:L‘,t) =< Wi if up, —ap, < % < S.L, (4.77)
WO if % 2 S*L 9

where Wi, is the solution inside the left rarefaction fan given by (4.56).
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4.6.2 Case 2: Vacuum Left State
In this case the Riemann problem has data of the type
Wy (vacuum) if 2 <0,
Wgr #Wyifx>0.

The structure of the solution in the z— plane is illustrated in Fig. 4.16.

Head of rarefaction

Vajuu;n front t xlt=ug+ag
XIM=S g
NG ~
W, : Vacuum Wr
X
0

Fig. 4.16. Riemann problem solution for a left vacuum state

Compared with the regular Riemann problem case of Fig. 4.1, the left non—
linear wave is missing and the contact wave separating the vacuum state from
the non—vacuum state coalesces with the tail of the right rarefaction wave.
The speed of the contact is found to be

Sir = uRr — % , (4.79)
and thus the complete solution is given by
Wy if £ < Sir,
Wro(z,t) = ¢ Wrean if Sur < § <ur +ar , (4.80)

Wr if § > ur +ar ,

where Wt is the solution inside the right fan and is given by (4.63).

4.6.3 Case 3: Generation of Vacuum

This case has general data Wy, = (pr, ur,, p)” # Wo, Wr = (pr, ur,pr)? #
W but combinations of particle and sound speeds are such that vacuum is
generated as part of the interaction between Wy, and Wg. The structure of
the solution for this case is depicted in Fig. 4.17. There are two rarefaction
waves and two contact waves of speeds S,1, and S,y that enclose the generated
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Vacuum front Vacuum front
Head of ~ X/t=Sx_ X/t=S+g  Head of
left rarefaction \\ t right rarefaction
-

Generated vacuum

0

Fig. 4.17. Riemann problem solution for non-vacuum data states that do not
satisfy the pressure positivity condition. Vacuum is generated in the middle of two
rarefaction waves

vacuum state. The speeds S,p, and S,g are as given by equations (4.76) and
(4.79) respectively. The full solution reads
Wio(z,t) if ¥ < S,p,
W(z,t) = ¢ Wq (vacuum) if Sip, < § < Sir, (4.81)
Wro(z,t) if §> Sir,

where Wig(z,t) and Wgg(z,t) are the solutions for the two previous cases
given by (4.77) and (4.80) respectively. Note that for solution (4.81) to apply
the condition S, < S,g must be valid. This implies

2 2
a IR < ug — g, (4.82)

A crit = —=
(Aterie y—1 ~v—-17

which is consistent with the pressure positivity condition (4.40). The vacuum
condition (4.82), which is stated purely in terms of the data values for particle
velocity and sound speed, can be very useful in practical applications of the
Riemann problem to numerical methods of the Godunov type. A note of cau-
tion is in order: it is also possible to determine a vacuum generating condition
for approximate Riemann solvers, but this will in general be different from
the exact condition (4.82). Two useful references concerning vacuum are the
papers by Munz [358] and Munz et. al. [359].

4.7 The Riemann Problem for Covolume Gases

A small perturbation of the ideal gas equation of state (4.3) is the covolume
EOS (4.4). For details on the Thermodynamics of covolume gases see Sect.
1.2.2 of Chap. 1. We now solve the Riemann problem for the Euler equations
(4.1)-(4.2) for covolume gases. The solution methodology [498] applied is the
same as for the ideal gas case and we shall therefore omit much of the detail.

The sound speed for covolume gases is
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=/t —epfen =\ [T (4.83)

The structure of the solution in the x—t plane is identical to that for the
Riemann problem with the ideal gas EOS (4.3), in which b = 0. The solution
procedure presented for the ideal gas case applies directly to the covolume
case, except for finding the solution inside rarefaction waves. No closed—form
solution can be found in this case and an extra iterative step is required.

4.7.1 Solution for Pressure and Particle Velocity.

In solving the Riemann problem we need to determine the flow quantities
in the Star Region, see Fig. 4.1. The first step is to find the pressure and
particle velocity.

Proposition 4.6 (Solution for p, and w.). The solution for pressure p.
and particle velocity u, of the Riemann problem (4.1), (4.2) with the covolume
gas Equation of State (4.4) in the unknown Star Region is given by the root
of the algebraic equation

(0, W, Wg) = fu(p, Wr)+ fa(p, Wr)+Au =0, Au=ur—uy, (4.84)

where the function fi, is given by

1
(p—pL) [pf}gL] ’ if p> pL (shock) ,
fulp, W) = - (4.85)
w [(;;) i 1] if p < pv (rarefaction)

the function fr is given by

1
(p —pr) [prR} ’ if p> pr (shock) ,

fR(pawR) = - (486)
w |:(pl;) - 1] ifp <pr (Taf’efaction) ,

and the data—dependent constants Ay, By, Ar, Br are given by

A = 2A=boL) p (y=1)

L= e P T APl

(4.87)

An — 2(1—bpr) Br — (v=1)

R = Gien 0 PR = GrPR -

The particle velocity in the Star Region is given by

o = o+ ) + 3 ) = f(02)] (4.58)
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Proof. As for the case of ideal gases the derivation of the function f,
requires the analysis of the left non-linear wave, which can either be a shock
wave or a rarefaction wave. Similarly for the function fg.

We first consider fi, and assume the left wave is a shock wave of speed
Sr. Application of the Rankine-Hugoniot Conditions yields the following re-
lations of interest: The density p.r, is related to the pressure p, behind the
left shock via

D +,1£%
pL ¥
= 4.
psL = PL (m)&+m (4.89)
v+1 DL ~+1
The mass fluz
Qu= -1 (4.90)
Uyx — UL,
is worked out to be 1
«+ Br|?
CQL = [1);214} , (4.91)
L
with Ay, and By, as given by (4.87). From (4.90) we obtain
Uy = UT, — fL(p*,WL) 5 (4.92)
with 1
Ag, 2
*7VV— - * -
fulp L) = (p« —pL) {p* +BL]
and 21— i) ( :
AinpL’ BL:LPL,
(v+ 1oL (y+1)

This is the sought expression for fi, for the case in which the left wave is a
shock wave.

When the left wave is a rarefaction we apply the I (u,a) Generalised
Riemann Invariant to obtain

2a*L
v—1

2
ur, + % (1 —bpr) = us + (1—bp.L) , (4.93)

where aj, and a1, denote the sound speed on the left and right states bounding
the left rarefaction wave. Now the isentropic law gives

1
<L = R — . 4.94
PL PL(l_pr oL (4.94)
Substitution of p,1, from (4.94) into the definition of a.;, reduces equation

(4.93) to
ue = ur, — fL(p«, WL) , (4.95)

with
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g = 280 (27

(v—=1) pL

which is the required expression for the function fi, for the case in which the
left wave is a rarefaction wave.

We now determine the function fr. For a right shock wave of speed Sgr
we find

Px _,_L:
PR v
R = 4.
P+R = PR <7—1+2pr) pe | atl=2bpg (4.96)
y+1 PR y+1
The mass flux
Qg = "R (4.97)
Uy — UR
becomes .
«+ Brl?2
On = {pz R] (4.98)
R
and leads to
Uy = ur + fr(Px, WR) , (4.99)
where .
AR 2
*;W - * - 5
fr(p R) = (P« — PR) [p*—l—BR}

with Ar and Bg as given by (4.87). This is the sought expression for fg for
the case in which the right wave is a shock wave.

When the right wave is a rarefaction we apply the Iy (u, a) Generalised
Riemann Invariant to obtain

2a4r
v—1

2(ZR
_ 1-b = Uy —
UR ,7_1( pR) u

(1—bp.r) (4.100)

where a,r and ar denote the sound speed on the left and right states bounding
the right rarefaction wave. Now the isentropic law gives

1
i) ()
R = _— — . 4.101
PR = PR ( 1— bpn PR ( )
Substitution of p,r from (4.101) into the definition of a.j, reduces equation
(4.100) to

Uyx = UR + fR(p*7WR) ) (4102)
with -
~ 2agr(1 — bpr) (m)“_
falpn Wr) = (v—1) [ PR 11 ’

which is the required expression for the function fr for the case in which the
right wave is a rarefaction wave.
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The numerical solution of the algebraic equation f(p) = 0 given by (4.84)
yields the pressure p,. The particle velocity u, may be computed from (4.92)
if p. > pr, or from (4.95) if p. < pp, or from (4.99) if p,. > pr or from (4.102)
if p, < pr. It can also be found from a mean value as

Uy = %(UL +ur) + %(fR(p*) — fL(p+))

and the proposition is thus proved.

4.7.2 Numerical Solution for Pressure

The numerical solution of the pressure equation is carried out by a
Newton—Raphson iteration scheme, as done for the ideal gas case in Sect.
4.3. This requires the calculation of the derivative of the function f(p). De-
tails of this are found in [498]. A possible guess value py for the iteration
scheme is given by a Two—Rarefaction approximation to p., namely

(1—bpr)ar + (1 — bpr)ag — 3(v = D(ur —ur) |

-1 ’

ﬁ ad—-
(1 —=bpr)ar/p” + (1 —bpr)ar/pg”

PTR = (4.103)

and results from the exact function (4.84) for pressure under the assumption
that the two non-linear waves are rarefaction waves. If the solution actually
consists of two rarefactions then prr is exact and no iteration is required.
A second guess value results from a linearised solution based on primitive
variables. This is

po = max(TOL, ppy) ,
(4.104)
ppv = 3(pL + pr) — % (ur — ur)(pL + pr)(aL + ar) -

It is worth remarking here that the form of the ppy approximation for co-
volume remains identical to that for the ideal gas case. The equation of state
makes its input through the sound speeds ar, and ag. The Two—Shock approx-
imation is applied in exactly the same way as in the ideal gas case with the
appropriate definitions for the quantities involved. See Sect. 9.4 of Chapt. 9.

4.7.3 The Complete Solution

So far, we know how to find p, and w.. The density values p,1, and p.r
follow from the appropriate (determined by the value of p,) left and right
wave relations. If the left wave is a shock wave, p. > pr,, then p,p, follows from
(4.89). As in the ideal gas case the shock speed Sy, is

St =ur, — Qu/pL »
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where the mass flux @y, is given by (4.91). If the left wave is a rarefaction
wave, p. < pr, ps1, follows from (4.94). The rarefaction fan is enclosed by the
characteristics of speeds

SHL = ur, — ar, , STL = Uy — Au, -
For a right shock wave, p. > pr, p.1 is given by (4.96) and the shock speed is

Sr = ur + Qr/pR ,

where the mass flux Qg is given by (4.98). For a right rarefaction, p. < pg,
p«1 follows from (4.101) and the wave is enclosed by the characteristics of
speeds

STR = Usx + axr , SHR = UR + GR -

Solution values inside rarefaction fans cannot be obtained directly, as in the
ideal gas case. For covolume gases an extra iterative procedure is needed.

4.7.4 Solution Inside Rarefactions

Unlike the ideal gas case the solution inside rarefaction waves for covolume
gases is not direct. An extra iterative procedure is needed. Here we give the
details for the case of a left rarefaction. Consider a general point (x,t) inside
a left rarefaction fan and a characteristic ray through the origin and the point
(z,t). The slope of the characteristic is

%:u—a. (4.105)

Use of the I, (u, a) Generalised Riemann Invariant allows us to write

a [1+,y31(1bp)} = Iy(up,ar) — % (4.106)

where p, u and a are the sought solution values at (z,t) inside the left rar-
efaction wave. Use of the isentropic relation for the covolume EOS gives

1_pr v p v
= . 4.1
! pL( pL ) (1—60 (4.107)

Further algebraic manipulations lead to a non—linear algebraic equation for
the density p at the point (z,t) inside the left rarefaction fan, namely

Zi(p)=p My +1=2bp) = Br(1—bp)*1 =0, (4.108)

where the constant 0, is given by

{(v = DI (ur, ar) — 2]}

oL = A = bpr) el

, (4.109)
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where I, (uy,, ar,) is the left Riemann invariant evaluated on the left data state.
Equation (4.108) is solved numerically for p using a Newton—-Raphson
iteration, for which one needs the derivative

Z1(p) = (v + DBAL(L = bp)7 + (v + 1 = 2bp)(y — 1 = 2bp)p” 2] . (4.110)

Once p has been found to a given accuracy the pressure p follows immediately
from equation (4.107). The sound speed a follows from definition (4.83) and
the velocity u follows directly from (4.105).

The solution at a point (z,t) inside the right rarefaction fan is found in
an entirely analogous way. In this case the density function Zg(p) is

Zr(p) = p (v +1=2bp)* = Br(1 = bp)"*! =0, (4.111)

where the constant Ogr is given by

{(y = D)Ir(ug,ar) — 2]}
vpr((1 = bpr)/pR]

Or = (4.112)
where Iy (ur,ar) is the right Riemann invariant evaluated on the right data
state.

The solution W = (p,u,p)" of the Riemann problem for the Euler equa-
tions with the covolume equation of state is now known at any point (z,t) in
the relevant domain. The solution sampling procedure is entirely analogous
to the ideal gas case of Sect. 4.5 and is omitted.

)T

Exercise 4.7. Write a flow chart for sampling the solution of the Riemann
problem for covolume gases at any point (z,t) in a domain of interest xy, <
r < xR, t>0, with z;, < 0 and zg > 0.

Solution 4.8. (Left to the reader).

4.8 The Split Multi-Dimensional Case

For the purpose of using the Riemann problem solution in conjunction
with numerical methods of the Godunov type, see Chaps. 5, 6, 14 and 16, it
is useful to solve the split multi-dimensional Riemann problem. See Chap. 3.
The z—split Riemann problem is the IVP for

U, +FU), =0,

p pu
pu pu* +p (4.113)
U=|pv |, FU)= puv )
pw puw

E u(E +p)
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with initial conditions

UL ifz <0,
U(z,0) = (4.114)
Ugifz>0.

We note here that the x—direction will in general be understood as the direc-
tion normal to the boundary of a domain in two or three-dimensional space,
see Sect. 3.2.4 of Chap. 3 and Sect. 16.7.3 of Chap. 16.

Fig. 4.18. Structure of the solution of the Riemann problem for the split three-
dimensional case

As seen in Sect. 3.2.4 of Chap. 3 the exact solution to this problem is
virtually identical to that of the genuine one-dimensional problem discussed
previously. Fig. 4.18 shows the structure of the solution in terms of primitive
variables W = (p,u,v,w,p)T. The outer non-linear waves are exactly the
same as in the one-dimensional case. The multiplicity 3 of the eigenvalue
A = u generates three, coincident middle waves. So effectively there are three
waves that separate four constant states Wrp,, W,y,, W,r and Wg. In the
Star Region between the left and right waves the solution for pressure, normal
velocity and density is exactly the same as in the one-dimensional case. The
two extra quantities v and w (tangential velocity components) only jump
across the middle wave from their left data values to their right data values.

In summary, the solution to the x—split three-dimensional Riemann prob-
lem (4.113), (4.114) is exactly the same as that for the one-dimensional Rie-
mann problem for the quantities p, v and p; for ¢ = v and ¢ = w we have, in
addition,

qL if % < Uy ,
q(z,t) = (4.115)

qRif%>U*.

As a matter of fact, for any passively advected quantity ¢(x,y,z,t) by the
fluid, that is
4t + ugz +vgy +wg: =0, (4.116)
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one can, by making use of the continuity equation, derive a new conservation
law

(pq)t + (upq)z + (vpg)y + (wpq). =0 . (4.117)
When this conservation law is added to the set of one-dimensional Euler equa-
tions the z—split Riemann problem has solution for p, u and p as described
earlier and the solution for the advected quantity ¢ is as given by (4.115).
One may have several advected quantities such as ¢. In chemically reactive
compressible flows the quantity ¢ may stand for the concentration of a chem-
ical species, the progress variable of a chemical reaction or a fluid interface
parameter.

Finally, we remark that although the exact solution to the split three—
dimensional Riemann problem for any passively advected quantity, such as
the tangential velocity components or concentration of chemical species, is so
simple, approximate Riemann solvers may produce solutions for these quan-
tities that are completely incorrect.

A highly relevant reference on the general theme of this chapter is the paper
by Zhang [601]. Exact and approximate Riemann solvers for compressible
liquids with various equations of state are given in [263]. For exact Riemann
solvers for real gases see Colella and Glaz [135] and Menikoff and Plohr [349].
Approximate Riemann solvers for the ideal Euler equations are presented in
Chaps. 9 to 12.

The methodology can be applied quite directly to solve the Riemann prob-
lem for other hyperbolic systems. For the steady supersonic Euler equations,
exact Riemann solvers have been given by, amongst others, Marshall and Plohr
[340]; Honma, Wada and Inomata [257]; Dawes [151]; Toro and Chou [533] and
Toro and Chakravarthy [532]. Approximate Riemann solvers for the steady
supersonic Euler equations have been given by Roe [407], Pandolfi [374], Toro
and Chou [533] and Toro and Chakravarthy [532].

4.9 FORTRAN Program for Exact Riemann Solver

A listing of a FORTRAN 77 program to compute the exact solution to
the Riemann problem for the one—dimensional time—dependent Euler equa-
tions for ideal gases is now given. The data file is called exact.ini. The main
program calls two routines: STARPU and SAMPLE. The first routine solves it-
eratively for the pressure p, and then computes the particle speed u,; the
guessed value for the iteration is provided by the subroutine GUESSP. The
subroutine SAMPLE finds, for given p., u, and S = z/t, the solution of the
Riemann problem at the point (z,t). This routine can then be utilised in nu-
merical methods to solve the general initial boundary value problem for the
Euler equations. For the Godunov first-order method, see Chap. 6, one calls
SAMPLE with S = 0. For Glimm’s method, see Chap. 7, one calls SAMPLE with
S = Ox/t, where 0 is a random number. The source code is also part of the
library NUMERICA [519].
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*  *

EXACT RIEMANN SOLVER
FOR THE EULER EQUATIONS

Name of program: HE-E1RPEXACT

Purpose: to solve the Riemann problem exactly,
for the time dependent one dimensional
Euler equations for an ideal gas

Input file: exact.ini
Output file: exact.out (exact solution)

Programer: E. F. Toro
Last revision: February 1st 1999
Theory is found in Chapter 4 of Reference 1

1. Toro, E. F., "Riemann Solvers and Numerical
Methods for Fluid Dynamics"
Springer-Verlag,
Second Edition, 1999

This program is part of

NUMERICA

A Library of Source Codes for Teaching,
Research and Applications,

by E. F. Toro

Published by NUMERITEK LTD,

Website: www.numeritek.com

¥ QOO OO ¥ Q¥ QOO ¥ Q ¥ Q¥ Qx QO ¥ QO ¥ Q ¥ QQ %

A
*
IMPLICIT NONE
*
C Declaration of variables:
*
INTEGER I, CELLS
*

REAL GAMMA, G1, G2, G3, G4, G5, G6, G7, G8,
& pL, UL, PL, CL, DR, UR, PR, CR,

¥ X X X X X X X X X K K XK X X X X X X X X X X X K X X X X X X X ¥
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DIAPH, DOMLEN, DS, DX, PM, MPA, PS, S,

TIMEOUT, UM, US, XPOS

153

COMMON /GAMMAS/ GAMMA, G1, G2, G3, G4, G5, G6, G7, G8
COMMON /STATES/ DL, UL, PL, CL, DR, UR, PR, CR

OPEN(UNIT = 1,FILE = ’exact.ini’,STATUS = ’UNKNOWN’)

Initial data and parameters are read in

READ (1 ,*) DOMLEN
READ (1,*)DIAPH
READ(1,*)CELLS
READ (1, %) GAMMA
READ (1, %) TIMEQUT

Domain length
Initial discontinuit
Number of computing
Ratio of specific he
Output time

READ(1,*)DL
READ (1, *)UL
READ(1,*)PL
READ(1,*)DR
READ(1,*)UR
READ(1,*)PR
READ (1, *)MPA

CLOSE(1)

Initial density on
velocity on
pressure on
density on
Initial velocity on
Initial pressure on
Normalising constant

Initial
Initial
Initial

Compute gamma related constants

Gl =
G2 =
G3 =
G4 =
G5 =
G6 =
G7 =
G8 =

Compute sound speeds

CL
CR

(GAMMA - 1.0)/(2.0%GAMMA)
(GAMMA + 1.0)/(2.0*GAMMA)
2.0*GAMMA/ (GAMMA - 1.0)
2.0/(GAMMA - 1.0)
2.0/(GAMMA + 1.0)

(GAMMA - 1.0)/(GAMMA + 1.0)
(GAMMA - 1.0)/2.0

GAMMA - 1.0

SQRT (GAMMA*PL/DL)
SQRT (GAMMA*PR/DR)

y position
cells
ats

left state
left state
left state
right state
right state
right state

The pressure positivity condition is tested for

IF (G4* (CL+CR) .LE. (UR-UL) ) THEN
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The initial data is such that vacuum is generated.
Program stopped.

WRITE(6,*)

WRITE(6,*) ***xVacuum is generated by datax*x’
WRITE(6,*)’**x*Program stopped***’

WRITE(6, *)

STOP
ENDIF

Exact solution for pressure and velocity in star
region is found

CALL STARPU(PM, UM, MPA)
DX = DOMLEN/REAL (CELLS)
Complete solution at time TIMEOUT is found

OPEN(UNIT = 2,FILE = ’exact.out’,STATUS = ’UNKNOWN’)

DO 10 T = 1, CELLS
XPOS = (REAL(I) - 0.5)*DX
S = (XPOS - DIAPH)/TIMEOUT

Solution at point (X,T) = ( XPOS - DIAPH,TIMEQUT)
is found

CALL SAMPLE(PM, UM, S, DS, US, PS)
Exact solution profiles are written to exact.out.
WRITE(2, 20)XP0S, DS, US, PS/MPA, PS/DS/G8/MPA
CONTINUE
CLOSE(2)
FORMAT (56(F14.6, 2X))

END
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SUBROUTINE STARPU(P, U, MPA)
IMPLICIT NONE

Purpose: to compute the solution for pressure and
velocity in the Star Region

Declaration of variables

INTEGER I, NRITER

REAL pL, UL, PL, CL, DR, UR, PR, CR,
& CHANGE, FL, FLD, FR, FRD, P, POLD, PSTART,

& TOLPRE, U, UDIFF, MPA

COMMON /STATES/ DL, UL, PL, CL, DR, UR, PR, CR
DATA TOLPRE, NRITER/1.0E-06, 20/

Guessed value PSTART is computed

CALL GUESSP (PSTART)

POLD = PSTART

UDIFF = UR - UL

WRITE(6,%) ? == === === === m = mmm e
WRITE(6,*)’  Iteration number Change
WRITE (6, %) ? ==m=mmmmmmmmmmm e m e e

DO 10 T = 1, NRITER

CALL PREFUN(FL, FLD, POLD, DL, PL, CL)

CALL PREFUN(FR, FRD, POLD, DR, PR, CR)

P = POLD - (FL + FR + UDIFF)/(FLD + FRD)
CHANGE = 2.0%ABS((P - POLD)/(P + POLD))
WRITE(6, 30)I, CHANGE

IF (CHANGE.LE.TOLPRE)GOTO 20

IF(P.LT.0.0)P = TOLPRE

POLD = P

CONTINUE

WRITE(G,*)’Divergence in Newton-Raphson iteration’

155
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20  CONTINUE
C Compute velocity in Star Region

U = 0.5%(UL + UR + FR - FL)

WRITE(6,*) ? == === === === mmmmm oo )
WRITE(6,*)’ Pressure Velocity’

WRITE(6,%) ? ==—= == == === ——m—m oo oo ’
WRITE(6,40)P/MPA, U

WRITE(6,%) > == =———==— === ——mmmmmmmmm oo )

30  FORMAT(5X, I5,15X, F12.7)
40  FORMAT(2(F14.6, 5X))

RETURN
END

SUBROUTINE GUESSP(PM)

Purpose: to provide a guess value for pressure
PM in the Star Region. The choice is made
according to adaptive Riemann solver using
the PVRS, TRRS and TSRS approximate
Riemann solvers. See Sect. 9.5 of Chapt. 9
of Ref. 1

¥ QOO x

IMPLICIT NONE

*

C Declaration of variables

REAL DL, UL, PL, CL, DR, UR, PR, CR,

& GAMMA, G1, G2, G3, G4, G5, G6, G7, G8,
& Cup, GEL, GER, PM, PMAX, PMIN, PPV, PQ,
& PTL, PTR, QMAX, QUSER, UM

COMMON /GAMMAS/ GAMMA, G1, G2, G3, G4, G5, G6, G7, G8
COMMON /STATES/ DL, UL, PL, CL, DR, UR, PR, CR

QUSER = 2.0

C Compute guess pressure from PVRS Riemann solver
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CUP = 0.25%(DL + DR)*(CL + CR)

PPV = 0.5%(PL + PR) + 0.5%(UL - UR)*CUP
PPV = AMAX1(0.0, PPV)

PMIN = AMIN1(PL, PR)

PMAX = AMAX1(PL, PR)

QMAX = PMAX/PMIN

IF(QMAX.LE.QUSER.AND.
& (PMIN.LE.PPV.AND.PPV.LE.PMAX))THEN

Select PVRS Riemann solver
PM = PPV
ELSE

IF(PPV.LT.PMIN) THEN

Select Two-Rarefaction Riemann solver
PQ = (PL/PR)x**G1
UM = (PQ*UL/CL + UR/CR +

& G4*(PQ - 1.0))/(PQ/CL + 1.0/CR)
PTL = 1.0 + G7*(UL - UM)/CL
PTR = 1.0 + G7*x(UM - UR)/CR
PM = 0.5%(PL*PTL**G3 + PR*PTR**G3)

ELSE

Select Two-Shock Riemann solver with
PVRS as estimate

GEL = SQRT((G5/DL)/(G6*PL + PPV))
GER = SQRT((G5/DR)/(G6*PR + PPV))
PM (GEL*PL + GER*PR - (UR - UL))/(GEL + GER)
ENDIF
ENDIF

RETURN
END

SUBROUTINE PREFUN(F, FD, P, DK, PK, CK)

Purpose: to evaluate the pressure functions
FL and FR in exact Riemann solver
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IMPLICIT NONE

C Declaration of variables
*
REAL AK, BK, CK, DK, F, FD, P, PK, PRAT, QRT,
& GAMMA, G1, G2, G3, G4, G5, G6, G7, G8
*
COMMON /GAMMAS/ GAMMA, G1, G2, G3, G4, G5, G6, G7, G8
*
IF(P.LE.PK)THEN
*
C Rarefaction wave
*
PRAT = P/PK
F = GA*CK#* (PRAT**G1 - 1.0)
FD = (1.0/(DK*CK))*PRAT*x*(-G2)
ELSE
*
C Shock wave
*
AK = G5/DK
BK = G6xPK
QRT = SQRT(AK/(BK + P))
F = (P - PK)*QRT
FD = (1.0 - 0.5%(P - PK)/(BK + P))*QRT
ENDIF
*
RETURN
END
*
A
*
SUBROUTINE SAMPLE(PM, UM, S, D, U, P)
*
C Purpose: to sample the solution throughout the wave
C pattern. Pressure PM and velocity UM in the
C Star Region are known. Sampling is performed
C in terms of the ’speed’ S = X/T. Sampled
C values are D, U, P
*
C Input variables : PM, UM, S, /GAMMAS/, /STATES/
C Output variables: D, U, P
*

IMPLICIT NONE
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Declaration of variables

REAL DL, UL, PL, CL, DR, UR, PR, CR,
GAMMA, G1, G2, G3, G4, G5, G6, G7, G8,
C, CML, CMR, D, P, PM, PML, PMR, S,
SHL, SHR, SL, SR, STL, STR, U, UM
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COMMON /GAMMAS/ GAMMA, G1, G2, G3, G4, G5, G6, G7, G8

COMMON /STATES/ DL, UL, PL, CL, DR, UR, PR, CR
IF(S.LE.UM) THEN

Sampling point lies to the left of the contact
discontinuity

IF(PM.LE.PL) THEN
Left rarefaction
SHL = UL - CL
IF(S.LE.SHL) THEN

Sampled point is left data state

D = DL
U = UL
P = PL
ELSE
CML = CL*(PM/PL)**G1
STL = UM - CML

IF(S.GT.STL) THEN

Sampled point is Star Left state

D = DL*(PM/PL)**(1.0/GAMMA)
U = UM
P = PM

ELSE

Sampled point is inside left fan

U
C

G5*(CL + G7*UL + S)
G5x(CL + G7*(UL - S))
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D
P
ENDIF
ENDIF
ELSE

DL* (C/CL) **G4
PL*(C/CL) **G3

C Left shock

PML
SL

PM/PL
UL - CL*SQRT(G2*PML + G1)

IF(S.LE.SL)THEN
C Sampled point is left data state
D = DL
U = UL
P =PL

ELSE

C Sampled point is Star Left state

D = DL*(PML + G6)/(PML*G6 + 1.0)
U = UM
P =PM
ENDIF
ENDIF
ELSE

Sampling point lies to the right of the contact
discontinuity

¥ Q Q %

IF (PM.GT.PR) THEN

*

C Right shock

PMR
SR

PM/PR
UR + CR*SQRT(G2*PMR + G1)

IF(S.GE.SR)THEN
C Sampled point is right data state

D = DR
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U = UR
P = PR
ELSE

Sampled point is Star Right state

D = DR*(PMR + G6)/(PMR*G6 + 1.0)
U =1UM
P = PM

ENDIF

ELSE
Right rarefaction
SHR = UR + CR
IF(S.GE.SHR) THEN

Sampled point is right data state

D = DR
U = UR
P = PR
ELSE
CMR = CR*(PM/PR)**G1
STR = UM + CMR

IF(S.LE.STR) THEN

Sampled point is Star Right state

D = DR*(PM/PR)**(1.0/GAMMA)
U = UM
P = PM

ELSE

Sampled point is inside left fan

U = G5*%(-CR + G7*UR + S)
C = G5%(CR - G7x(UR - S))
D = DR*(C/CR)**G4
P = PR*(C/CR) *%*G3
ENDIF
ENDIF

ENDIF

161
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ENDIF
*
RETURN
END
*
K
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Notions on Numerical Methods

We assume the reader to be familiar with some basic concepts on numeri-
cal methods for partial differential equations in general. In particular, we shall
assume the concepts of truncation error, order of accuracy, consistency, mod-
ified equation, stability and convergence. For background on these concepts
the reader may consult virtually any standard book on numerical methods
for differential equations. As general references, useful textbooks are those of
Smith [450], Anderson et. al. [7], Mitchell and Griffiths [352], Roache [405],
Richtmyer and Morton [402], Hoffmann [253] and Fletcher [192]. Very relevant
textbooks to the main themes of this book are Sod [454], Holt [254], Hirsch
Volumes I [251] and II [252], LeVeque [308], Godlewski and Raviart [215],
Kroéner [291] and Thomas [484].

The contents of this chapter are designed specifically to provide the nec-
essary background for the application of high—resolution upwind and centred
numerical methods to hyperbolic conservation laws. Our prime objective is
to present the basic Godunov method [216] in a simple setting so as to make
the application of upwind methods to non—linear systems of conservation laws
an easier task in the forthcoming chapters. Essential background material is
given in Chap. 2. For those who are absolute beginners in the field I would
recommend the following self study programme as a way of obtaining more
benefit from this text book: (a) read chapters 2 to 4 of the book by Hoffmann
[253] and do exercises, (b) read chapters 7 to 10 of the book by Hirsch Vol. I
[251] and do exercises.

5.1 Discretisation: Introductory Concepts

Our concern is the utilisation of numerical methods for solving partial dif-
ferential equations (PDEs). Numerical methods replace the continuous prob-
lem represented by the PDEs by a finite set of discrete values. These are ob-
tained by first discretising the domain of the PDEs into a finite set of points
or volumes via a mesh or grid. The corresponding discretisation of the PDEs

E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 163
DOI 10.1007/b7976-1_5, © Springer-Verlag Berlin Heidelberg 2009
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on the grid results in discrete values. In the Finite Difference approach one
regards these values as point values defined at grid points. The Finite Volume
approach regards these discrete values as averages over finite volumes. We are
mostly interested in the second approach but for the purpose of introducing
some of the basic concepts in numerical methods we also consider the Finite
Difference approach. For most of this chapter we restrict the discussion to
model problems, such as the model PDE

us + aug, =0,

with u = u(x,t) and a # 0 a constant wave propagation speed. See Sect. 2.1
of Chap. 2. In this equation there are two partial derivatives, namely a time
derivative u; and a spatial derivative u,.

5.1.1 Approximation to Derivatives

Given a sufficiently smooth function g(z), by using Taylor’s theorem, we
can always find the value of g(x) at any neighbouring point xo+ Az of x = xq
if we know g(z) and all its derivatives g*)(z) at = = x, that is

T k
oo + A2) = glao) + 30 B0 ) (5.1
D

By truncating the Taylor series one can obtain approximations to g(zo+ Ax).
Also one can obtain approximations to derivatives of g(x). Consider a function
g(z) and three equally—spaced points xg — Az, z¢ and zy + Az, as shown in
Fig. 5.1. As an illustrative example we shall derive three approximations to
the first derivative of g(x) at the point xo. By neglecting terms of third order
and higher, O(Az?), we can write

g(zo + Az) = g(xo) + Amg(l)(xo) + @9(2) (o) + O(Ax?’) (5.2)

and

(Az)?
2

g(zo — Az) = g(w) — Azg™ (z0) + 9@ (o) +O(A2%) . (5.3)

Neglecting second order terms in (5.2) leads immediately to an approximation
to the first derivative g™ (z) of g(z), that is

zo + Az) — g(x0)
Az

g
g W (z0) = ( + O(Ax) . (5.4)
This is a first-order approximation to g™ (z) at = z¢, the leading term in
the remaining part contains Az to the power unity. It is a one—sided approxi-
mation to the first derivative of g(x), usually called a forward finite difference
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approximation; the points used by the approximation are zo (the point at
which the derivative is sought) and its neighbour zy + Az on the right hand
side. From (5.3) we can also obtain a backward first—order approximation

1 _ g(x0) — g(zg — Ax)
g( )(fco) _ 0 A:CO

Note that by subtracting (5.3) from (5.2) we obtain

+0(Az) . (5.5)

9(x) o
True derivative

S~

R ~— Forward

» approximation
'~ Central !

' approximation

. Backward |
" approximation '
= AX T AX =
© D D X
X, = AX X, Xt AX

Fig. 5.1. Finite difference approximations to the first derivative of a function g(x)
at the point xo: backward, centred and forward

(w0 + Az) — g(z0 — A2)
2Ax

gD (z0) = Z L O0(A?) . (5.6)
This is a central finite-difference approximation to ¢(Y)(zg) and is second-
order accurate; it uses the left and right hand side neighbours of z = xg. It
can also be obtained by taking a mean value of the forward and backward
approximations (5.4) and (5.5). For the problems of our concern here the dis-
tinction between one—sided and central approximations is significant. Upwind
Methods may be viewed as one-sided differencing schemes. The question of
which side is also of paramount importance.

5.1.2 Finite Difference Approximation to a PDE

Consider the Initial Boundary Value Problem (IBVP) for the linear advec-
tion equation in the domain [0, L] x [0,7] on the z—¢ plane. This consists of
a PDE together with initial condition (IC) and boundary conditions (BCs),
namely

PDE : u; + au, =0,

IC:  wu(x,0)=up(z), (5.7)

BCs: u(0,t) = w(t), u(L,t)=u.(t).
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Solving this IBVP means evolving the solution wu(z,t) in time starting from
the initial condition ug(z) at time ¢ = 0 and subject to boundary conditions.
For the moment we assume that the boundary constraints take the form of
prescribed boundary functions u)(t) and w,(t). The application of boundary
conditions is intimately linked to the physics of the problem at hand. A more
meaningful discussion is presented in Chap. 6 in the context of physically more
meaningful systems of PDEs.

A possible finite difference mesh for discretising the domain is depicted
in Fig. 5.2. This is a regular grid of dimensions Az (spacing of grid points
in the ax—direction) by At (spacing in the ¢-direction). In general if [0, L] is
discretised by M equally spaced grid points then

L
M-—-1"
The points of the mesh are positioned at (iAz,nAt) on the x—t plane, with
i =0,...,M and n = 0,.... Often we shall use the notation z; = iAxz,

t" = nAt. The discrete values of the function u(z,t) at (iAx,nAt) will be
denoted by

Ax = (5.8)

up = u(iAz,nAt) = u(z;, t") .
The superscript n refers to the time discretisation and is called the time
level. The subscript 4 refers to the space discretisation and designates the
spatial position in the mesh. We shall also use the symbol u} to denote an
approximation to the exact mesh value u(iAz, nAt). The distinction will be
made at appropriate places. If the IBVP (5.7) has given data at a time level

t

T |
1 L+l
‘ o —fn
AX At
‘ : n-1
1 ' X

i- i i+
=0 i-1 i i+1 el

Fig. 5.2. Finite difference discretisation of domain on z—¢ plane. Regular mesh of
dimensions Az x At is assumed

n, say, this can be represented by a set of discrete values }',i = 0,..., M.
Solving (5.7) requires finding the solution at the next time level n + 1, that
is, we want to find the set u?“,i =0,...,M. The extreme boundary points
ugy, uly; are determined by the particular boundary conditions to be applied.

For the moment we simply assume that these are prescribed for all time levels.
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Consider now approximations to the time derivative u; at the grid point
(24,t™). A first-order forward approximation gives

uTH_ 1_ u

Up = ——+ . 5.9
=t (5.9)
For the spatial derivatives one could use the second—order central approxima-
tion

7“’*12;;”—1 . (5.10)

By replacing u; and u, in the PDE in (5.7) by their respective approximations
(5.9) and (5.10) we obtain

Uy =

n+l
)

At

u,

n n
Ta [Ui+1 - “i—1]

=0. 5.11
2Azx (5.11)
This is the discrete analogue of the PDE in (5.7). The differential equation
has been replaced by a finite difference equation. As all values at the time
level n in (5.11) are prescribed data values at the initial time, or have already

been computed, we can solve for the single unknown u;“rl at the new time
level as .
ul Tt =l — 3¢ [l y —ulq] (5.12)
where At
a a
=—=—-— 5.13
Ax  Ax/At (5.13)

is a dimensionless quantity known as the Courant number; it is also known as
the Courant—Friedrichs—Lewy number, or CFL number. This quantity can be
regarded as the ratio of two speeds, namely the wave propagation speed a in
the partial differential equation in (5.7) and the grid speed Ax/At defined by
the discretisation of the domain. Formula (5.12) provides an explicit scheme
for evolving the solution in time and has resulted from approximating the
time and space derivatives of the PDE in (5.7) by first and second order finite
differences respectively. This appears to be a reasonable step.

It is disappointing however, and perhaps surprising, to realise that the
resulting scheme (5.12) is totally useless. It is unconditionally unstable. This
can be seen by performing a von Neumann stability analysis. Consider the
trial solution ul = A"e’®. A is the amplitude, § = PAz is the phase angle,
P is the wave number in the x—direction, A = 27/P is the wave length and
I = \/—1 is the unit complex number. Substitution of the trial solution into
the scheme (5.12) gives A = 1 — Ic¢sin@. For stability one requires [|A| < 1.
But note that ||A|| = 1+ ¢?sin?# > 1 and thus the scheme is unstable under
all circumstances, unconditionally unstable.
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5.2 Selected Difference Schemes

We study some of the most well-known finite difference schemes, of first
and second order of accuracy.

5.2.1 The First Order Upwind Scheme

One way of remedying our failed attempt at devising a useful numerical
method for the PDE in (5.7) is to replace the central finite difference approx-
imation to the spatial derivative u, by a first—order one—sided approximation.

Two choices are n n
Uy — Uiy

u s (5.14)
Us'y g — Uy

= ——— 5.15

u e (5.15)

It turns out that only one of these yields a useful numerical scheme. The
correct choice of either (5.14) or (5.15) will depend on the sign of the wave
propagation speed a of the differential equation in (5.7). Suppose a is positive,
then (5.14) together with (5.9) give the scheme

nL— o —e(ul —ul ) . (5.16)

u’L (3

A von-Neumann stability analysis of (5.16) gives
JAI> = (1—¢)* +2c(1 —¢)cosh + ¢,

from which it follows that the scheme is stable if the CFL number c lies
between zero and unity; it is conditionally stable with stability condition

0<ec<1. (5.17)

Recall that the CFL number depends on the speed a, the mesh spacing Ax and
the time step size At. Of these, a is prescribed at the outset, Ax is chosen on
desired accuracy or on computing resources available. We are left with some
freedom to choose At, the time step size. The stability restriction (5.17) on ¢
means a restriction on At and thus we are not free to choose the time step at
our will, at least for the schemes under discussion.

Scheme (5.16) is called the first-order upwind method and is due to
Courant, Isaacson and Rees [144]; we shall also call it the CIR scheme. The
key feature of this numerical method is the fact that the discretisation has
been performed according to the sign of the wave propagation speed a in the
differential equation. The physics and mathematics embodied in the PDE are
intimately linked to the discretisation procedure. The term upwind, or up-
stream, refers to the fact that spatial differencing is performed using mesh
points on the side from which information (wind) flows; see Fig. 5.3. For pos-
itive a the upwind side is the left side and for negative a the upwind side is
the right side.
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Suppose that for positive a we use the downwind information to perform
the spatial differencing. This gives the downwind scheme

up ™t =l = e(uyy —uf), (5.18)

which can easily be checked to be unconditionally unstable. Thus, in order to
obtain a useful one—sided scheme one must perform the spatial differencing
according to the sign of the speed a of the PDE. For negative speed a the
upwind scheme is (5.18).

In order to formulate the upwind scheme, in a unified manner, for both
positive and negative wave speeds a we introduce the following notation

a’ = max(a,0) = %(a—&— |a]), @& =min(a,0)= %(a— lal), (5.19)
where | a | denotes the absolute value of a, that is,
la|=aifa>0, |al=—-aifa<0.
It can easily be verified that for any value of the speed a the speeds a™ and

a~ satisfy
at >0 , a <0.

Clearly, for @ > 0 one has a™ = a and a= = 0; for a < 0 one has a™ = 0 and
a~ = a. Based on the speeds a* and a~ we define Courant numbers
¢t = Atat JAx, ¢ = Ata” Az . (5.20)

Using the above notation the first—order upwind scheme can be expressed in
general form as

uptt = — et (uf —ufy) = (ufyy —uf) (5.21)

For a > 0 the second difference term vanishes leading to (5.16); if a < 0
we obtain (5.18). The idea of splitting the difference into positive and nega-
tive components can be generalised to systems of conservation laws. Now the
stability condition for the upwind scheme (5.21) is

0<|ec|<1. (5.22)

The stencil of the first-order upwind scheme for the case a > 0 is shown in Fig.
5.3. It has a triangular shape, the three mesh points involved define a triangle.
The base of the triangle defines the numerical domain of dependence of the
scheme. This is generally different from the (true) domain of dependence of
the PDE, see Sect. 2.3.5 of Chap. 2. One can relate the meaning of the scheme
and its stability condition to the exact behaviour of the differential equation
in (5.7).

Consider the characteristic of speed a through the mesh point (z;,¢"*!) in
Fig. 5.3, at which a numerical solution u” "' is sought. Since the exact solution

i
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Fig. 5.3. Stencil of first-order upwind scheme (CIR) for positive speed a of wave
propagation. Upwind direction lies on the left hand side.

of the PDE in (5.7) is constant along characteristics of speed dz/dt = a, see
Sect. 2.2 of Chap. 2, the true solution at (z;,t" 1) is

u(xi,t"“) = u(zp, t") , (5.23)

with x, between z;_; and x;. Unfortunately, the only values at time level
n available to us are those at the grid points and thus we could not set
ul ™ = u(zp, t"), unless ¢ = 1 of course.

One may however utilise the information at the mesh points x; 1 and x;
at the time level n to produce an estimate of the data at the point z,. For
instance we can construct a linear interpolation function u(x) based on the
two points (x;—1,u} ;) and (x;, u}). From Fig. 5.3, the distance d between z,,
and x; is

d:Ata:@Agc:cAaj7
Az
and thus

zp=(i—1)Az+ (1 —c)Az.

The linear interpolant is then

which if evaluated at © = x,, gives

u(wp) = uif —c(uf® —uiq) .
This is precisely the first—order upwind scheme (5.16), which can then be seen
as a linear interpolation scheme. Fig. 5.3 is also useful for interpreting the

stability condition (5.17), which states
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a
<——<1
O_Ax/At_

Thus for stability, the grid speed Az/At must be larger than the speed a in
the PDE. In the context of Fig. 5.3 this means that the characteristics

dz dz

E:Az/At, — =a,
must be as shown. That is the numerical domain of dependence must contain
the true domain of dependence of the PDE, which is in fact the single point
Tp.

A truncation error analysis reveals that the CIR scheme is first—order

accurate in space and time. Moreover, the corresponding modified equation is

Gt + aqz = QcirQux (524)

where v, is the numerical viscosity coefficient of the CIR scheme and is given
by

1
Qeiy = §Axa(1— lel). (5.25)

The advection—diffusion equation (5.24) is the actual equation solved by the
numerical scheme, to second-order accuracy in fact; see LeVeque [308]. The
viscous term iy ¢z, is responsible for the production of the artificial or nu-
merical viscosity of the scheme. This vanishes when Az = 0, which is impos-
sible in practice. It also vanishes when | ¢ |= 1, which is only of the academic
importance, as for non-linear systems it is impossible to enforce this CFL
number unity condition. The case a = 0 is interesting, as it allows for the per-
fect resolution of stationary discontinuities. In general a.;, > 0 and one of the
consequences is that discontinuities in the solution tend to be heavily spread
or smeared and extreme values tend to be clipped. This is a disadvantage of
the CIR scheme, which is in fact common to all first-order methods, with the
exception of the Random Choice Method, see Chap. 7.
Scheme (5.21) is part of a wider class of methods that can be written as

n+1l __ n n
U, —H(ui_lL,...,uiHR) ,

(5.26)
l n
=Dty beulyy

with [;, and [z two non—negative integers; by, k = —l,...,lr are the coef-
ficients of the scheme and uj,, are data values at time level n. For the CIR
scheme (5.21) the coefficients are given by

b_l = C+ s bo = (17 | Cc |) , b1 = —Cc . (527)
Under the CFL stability condition (5.22) we see that
b, >0, Vi, (5.28)

i.e. all coefficients (5.27) are positive or zero.
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Definition 5.1 (Monotone Schemes). A scheme of the form (5.26) is
said to be monotone if all coefficients by are positive or zero. An alternative
definition is given in terms of the function H in (5.26); this is required to

satisfy
OH

—>0,Vk. 5.29

oup — ( )

The class of monotone schemes form the basis of modern schemes for con-

servation laws. Monotone schemes are, however, at most first-order accurate;
high—order extensions are studied in Chaps. 13, 14 and 16.

5.2.2 Other Well-Known Schemes

Another first-order scheme is that of Lax and Friedrichs. The scheme
is sometimes also called the Lax Method [299], or the scheme of Keller and
Lax. This does not require the differencing to be performed according to
upwind directions and can be seen as a way of stabilising the unstable scheme
(5.12) obtained from forward in time and central in space approximations to
the partial derivatives. The Lax-Friedrichs scheme results if ] in the time
derivative (5.9) is replaced by

1
5 (u?fl + U?ﬂ) )

a mean value of the two neighbours at time level n. Then the modified scheme
becomes

1 1
U?H =5 (uznfl + u:‘bﬂ) —5¢ (U:‘LH - U;Ll)
or

K2

1 1
uttt = 5(1 +oul  + 5(1 —o)uiyy - (5.30)

A von Neumann stability analysis reveals that scheme (5.30) is stable
under the stability condition (5.22) and a truncation error analysis says that
the scheme is first-order accurate. The modified equation is like (5.24) with
numerical viscosity coefficient given by

o == (1~ ). (5.31)

By comparing o) with a.; we see that the Lax—Friedrichs scheme is consid-
erably more diffusive than the CIR scheme; in fact for 0 < ¢ < 1 we have

1+c

2 < ai/acr = c

< 00.

When written in the form (5.26) the coefficients of the Lax—Friedrichs scheme
are found to be
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b—l - %(14’6)7 bO:O7 b1 = %(176) .
Under the stability condition (5.22) all coefficients by in the Lax-Friedrich
scheme (5.30) are positive or zero. Therefore the scheme is monotone.

A scheme of historic as well as practical importance is that of Lax
and Wendroff [302]. For a comprehensive treatment of the family of Lax—
Wendroff schemes see Hirsch [252], Chap. 17. The basic Lax—Wendroff scheme
is second-order accurate in both space and time. There are several ways of
deriving the scheme for the model equation in (5.7). A rather unconventional
derivation is this: for the time derivative u; insist on the first—order forward
approximation (5.9); for the space derivative u, take an average of the upwind
(stable if @ > 0) and downwind (unstable if a > 0) approximations (5.14) and
(5.15) respectively, that is

. Ui — Ui Uy — g
Uz = By Az + B2 A . (5.32)
If the coefficients 31, B2 are chosen as
1 1
61:§(1+C), ﬁ2:§(1fc)v (533)

the resulting scheme is the Lax—Wendroff method

ul Tt = %c(l +o)ul  + (1 —cA)ul — %c(l —C)uiyy - (5.34)
This scheme is second—order in space and time although all finite difference
approximations used to generate it are first—order accurate. Moreover, one of
the terms in the spatial derivative originates from an unconditionally unstable
scheme and yet the Lax—Wendroff scheme is stable with stability condition
(5.22). This scheme is a good example to show that the order of accuracy of
the scheme cannot in general be inferred from the order of accuracy of the
finite difference approximations to the partial derivatives involved.

When written in the form (5.26) the Lax—Wendroff scheme (5.34) has
coefficients

(I-2¢) .

ab0:1_02;b1:_ 2

(I+c¢)c
b =—"—
2
Therefore this scheme is not monotone. Not all coefficients in (5.34) are pos-
itive or zero. The fact that a scheme is not monotone is associated with the
phenomenon of spurious oscillations in the numerical solution in the vicinity

of sharp gradients, such as at discontinuities; see Chap. 13.
Another second-order accurate scheme for (5.7) is the upwind method of
Warming and Beam [574]. For positive speed a it reads

1 1
ul Tt = 50(0 —Dul 5 +c(2—c)ul 4 + i(c —1)(c—2)ul. (5.35)
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Note that the scheme is fully one—sided in the sense that all the mesh points
involved, other than the centre of the stencil, are on the left hand side of
the centre of the stencil. There is an equivalent scheme for negative speed a.
Clearly the Warming—Beam scheme is not monotone. The stability restriction
for this scheme is

0<|el<2. (5.36)

The enlarged stability range means that one may advance in time with a larger
time step At, which has a bearing on the efficiency of the scheme.

Yet another second order scheme is the Fromm scheme [195]. For the
linear advection equation in (5.7), for a > 0, the scheme reads

u?‘H = —%(1 —c)eul 5+ i(5 —c)eul 4
(5.37)
+1(1 =)@+ uy — (1 —c)eup,, ,

which has stability restriction (5.22). Also, it can be easily verified that the
Fromm scheme is not monotone.

Second-order schemes such as the Lax—Wendroff, Warming—Beam and
Fromm schemes have modified equation of the form

which is a dispersive equation. See LeVeque [308] for details.

5.3 Conservative Methods

Computing solutions containing discontinuities, such as shock waves, poses
stringent requirements on (i) the mathematical formulation of the governing
equations and (ii) the numerical schemes to solve the equations. As seen in
Chaps. 2 and 3 the formulation of the equations can be differential or integral.
Also, there are various choices for the set of variables to be used. One obvious
choice is the set of conserved variables. In Sect. 3.3 of Chap. 3, through an
example, we highlighted the fact that formulations based on variables other
than the conserved variables (non—conservative variables) fail at shock waves.
They give the wrong jump conditions; consequently they give the wrong shock
strength, the wrong shock speed and thus the wrong shock position. Recent
work by Hou and Le Floch [259] has shown that non—conservative schemes
do not converge to the correct solution if a shock wave is present in the
solution. The classical result of Lax and Wendroff [302], on the other hand,
says that conservative numerical methods, if convergent, do converge to the
weak solution of the conservation law. Therefore, it appears as if there is
no choice but to work with conservative methods if shock waves are part of
the solution. There are alternative special procedures involving shock fitting
[355], [353] and adaptive primitive-conservative schemes [508], [279]. Some
primitive-variable schemes are presented in Sect. 14.6 of Chap. 14.
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5.3.1 Basic Definitions

Here we shall study conservative shock capturing methods. Of the class
of conservative methods we are particularly interested in upwind methods,
but not exclusively. This section is designed to introduce some basic concepts
in the simple setting of model problems. Consider a scalar conservation law
written in differential form

us + f(u), =0, (5.39)

where f = f(u) is the flux function. The choice of flux f(u) = au reproduces
the linear advection equation in (5.7). In order to include weak solutions of
(5.39) we must use the integral form of the equations. Two possibilities are

f(u dz — fdt) =0 (5.40)
and
/:2 u(z,ta) dz = /"” u(x,tl)der/ttQ f(u(xl,t))dt/ttQ Fu(a, 1)) dt
| 1 1 1 (5.41)

for any rectangular control volume [x1, 23] X [t1,t2]. See Sect. 2.4 of Chap. 2.

Definition 5.2 (Conservative Method). A conservative scheme for the
scalar conservation law (5.39) is a numerical method of the form

LA
UZT.L+1 = U, + E |:fi—% - fi_;'_%:l 5 (542)
where
fi+% = fi+% (U:'ZlL,...,U?dHR) ) (543)

with lr, lg two non-negative integers; fi+% is called the numerical flux, an
approzimation to the physical flux f(u) in (5.59).
For any particular choice of numerical flux f; 1a corresponding conserva-

tive scheme results. A fundamental requirement on the numerical flux is the
consistency condition

fﬂ_%(v, o) = f(v) . (5.44)

This means that if all arguments in (5.43) are equal to v then the numerical
flux is identical to the physical flux at u = v. See LeVeque [308].

Exercise 5.3. Verify that the choice of numerical flux

1
fivy = fiys(ui uiyy) = §(fz" + fif)

with f7* = f(u}), fi'1 = f(u},,), when substituted into the conservative
formula (5.42), reproduces the unconditionally unstable scheme (5.12), when
applied to the linear advection equation, in which f(u) = au.
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Fig. 5.4. Discretisation of domain [0, L] into M finite volumes I; (computing cells)

Solution 5.4. (Left to the reader).

The conservative scheme (5.42) requires a redefinition of the discretisation
of the domain. Now one is concerned with cell averages defined over finite
volumes. A domain [0, L] x [0,T] in the z—t plane is discretised as shown in
Fig. 5.4. The spatial domain of length L is subdivided into M finite volumes,
called computing cells or simply cells, given as

i1 =(-1Ar<z<idz=wz,,. (5.45)

=3

The extreme values z; 1 and x; 41 of cell I; define the position of the inter-
cell boundaries at Wthh the correspondlng intercell numerical fluxes must be
specified. The size of the cell is

szxi+%—xi_%zﬂ. (5.46)
Obviously one may discretise the domain into cells of irregular size. For sim-
plicity we assume regular meshes in this chapter. The average value of u(z,t)
in cell 7, the cell average, at a fixed time ¢t = t" = nAt is defined as

1 [Tk
ult = E/z tz u(z, t")de . (5.47)

2

Note here that although within cell i one may have spatial variations of u(z,t)
at time ¢t = ¢", the integral average value v}’ given above is constant. We shall
assign that constant value at the centre of the cell, which gives rise to cell-
centred conservative methods. Computationally, we shall deal with approxi-
mations to the cell averages ', which for simplicity we shall still denote as
ul’. The set of cell averages (5.47) defines a piece-wise constant distribution
of the solution at time t"; see Fig. 5.5.
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1 i-1 i i+1 M

Fig. 5.5. Piece—wise constant distribution of data at time level n

5.3.2 Godunov’s First—Order Upwind Method

Godunov [216] is credited with the first successful conservative extension
of the CIR scheme (5.21) to non-linear systems of conservation laws. When
applied to the scalar conservation law (5.39) with f(u) = au, Godunov’s
scheme reduces to the CIR scheme, allowing for appropriate interpretation of
the values {u]'}.

Godunov’s first-order upwind method is a conservative method of the
form (5.42), where the intercell numerical fluxes f; 1 are computed by using
solutions of local Riemann problems. A basic assumption of the method is
that at a given time level n the data has a piece—wise constant distribution
of the form (5.47), as depicted in Fig. 5.5. The data at time level n may be
seen as pairs of constant states (uj',uj, ;) separated by a discontinuity at the
intercell boundary x; 1 Then, locally, one can define a Riemann problem

PDE : u; + f(u), =0.
IC:  wu(x,0) =up(z) = {

u  ifx <0,
n

K3
uyy ifx >0,
This local Riemann problem may be solved analytically, if desired. Thus, at a
given time level n, at each intercell boundary z; 1 we have the local Riemann
problem RP(uj,uj, ) with initial data (u},uj, ;). What is then needed is a
way of finding the solution of the global problem at a later time level n + 1.

First Version of Godunov’s Method

Godunov proposed the following scheme to update a cell value u' to a new

value u}*': solve the two Riemann problems RP(u?_ |, u?) and RP(ul,ul' ;)
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for the conservation law (5.39), take an integral average in cell i of the com-
bined solutions of these two local problems and assign the value to u?“. Fig.
5.6 illustrates the situation for the special case f(u) = au, a > 0. The exact
solution of RP(ul_,,ul) for a > 0, see Sect. 2.2.2 of Chap. 2, is

Jurifzft<a,
Ui—é(l'/t)_{un if:r/t>a,

K2

(5.48)

where the local origin of the Riemann problem is (0, 0). Likewise the solution
ui+%(x/t) of RP(uj,uj}, ) is given by

Jup ifz/t<a,
ui+%(x/t) - {u?+1 ifx/t >a. (5.49)

The Godunov scheme defines the updated solution as

. RP(U]y.u) - RPU] L L)
| A B IC D |
| & © |
| NA i
| dx/dt=a LAt
6 5 5
e o A

Fig. 5.6. Illustration of Godunov’s method for the linear advection equation for
positive speed a. Riemann problem solutions are averaged at time ¢ = At inside cell
I;

7‘L+1 _ 1

= (5.50)

u

%Az 0
/ ui_%(x/At)dx—F/ w1 (x/At) dw
0

1
5Ax

This integral is evaluated at time At (local time) between the points A and
D in Fig. 5.6. Note that we only use the right half of the solution u; 1 (x/t)

and the left half of the solution w; 1 (z/t). The reader should realise that each

solution has its own local frame of reference with origin (0,0) corresponding
with the intercell boundaries at x; 1 and x,,1. In order to evaluate the

i—i

integral we impose a restriction on the size of the time step At. We set

aAt
c=——¢<

= (5.51)

1
5"
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The first term in (5.50) involves the intervals AB and BC' these have lengths
respectively given by
1

lap =cAzx , lpc = (5 — o)Az .

The integrand is give by (5.48) and (5.49); hence we have

1[4 1
2z ), w1 (x/At)de = cui y + (5 —c)ul .

The second term gives

L werana= e
e w1 (x T = Su -

R TAY
Hence (5.50) becomes
W = ey — ), (552

which is identical to the CIR first order upwind method (5.16) for positive
speed a. The conservative character of the Godunov method is self evident:
the updated solution is obtained by integral averaging, a conservative process,
of local exact solutions of the conservation law.

Exercise 5.5. Using geometric arguments, show that the Godunov ap-
proach described above also reproduces the CIR scheme for negative a.

Solution 5.6. (Left to the reader).

Second Version of Godunov’s Method

A second interpretation of the Godunov method leads directly to the con-
servative formula (5.42), which is easier to apply in practice and avoids the
over-restrictive CFL-like condition (5.51). The integral average (5.50) of the
solution of the Riemann problems RP(uj ;,uj) and RP(uj,u}, ) can also
be written as

T, 1
= A%: / i, At) da (5.53)

1
2
where u(z,t) is understood as the combined solution of RP(u} ,,u}) and
RP(uj,uf,_ ). Since @(x,t) is an exact solution to the original conservation
law (5.39) we can make use of it in its integral form (5.41), say, in the control

volume [z;_1,x;,1] x [0, At] to write

T,
f i
T,

i—

iz, At)da = [

i—

a(w,0)da + [ fla(e,_1,t))dt

2

= o
NI o

(5.54)
A F(aaga 1) dt

2



180 5 Notions on Numerical Methods

Using the definition of cell averages (5.47) into equation (5.54) followed by
division through by Az we reproduce the conservative formula

At
ul =l 4 T [fi,; _ fi+%] , (5.55)

2

with the intercell fluxes defined as time integral averages, namely

= | Feyp )t Sy =5 | g, 0)dt. (5.50)

fiey = 0

Nl

Thus, by invoking the integral form of the conservation laws on a control
or finite volume [z;_1, ;1] x [0, At] in 2—t space we have arrived at the
conservative formula (5.55) with intercell fluxes (5.56); these are time integral
averages of the physical flux f(u) evaluated at the intercell boundaries. The
integrand f(a(xz,t)) at each cell interface depends on the exact solution @(x,t)
of the Riemann problem along the t—axis (local coordinates); this is given by

Wiy t) =y (0) Wiy t) = iy (0) (5:57)

and the intercell fluxes f; 1 and f;; 1 become

Joy = F (), froy = Fluip3(0)) (5.58)
In general, one expresses the Godunov intercell numerical flux as
Y = Flugy1(0) (5.59)

where ;1 (0) denotes the exact solution u; 1 (z/t) of the Riemann prob-
lem RP(ui,uj, ) evaluated at x/t = 0, i.e. the solution is evaluated along
the intercell boundary, which coincides with the t—axis in the local frame of
the Riemann problem solution. We have thus defined the second version of
Godunov’s method for a general scalar conservation law (5.39), as the con-
servative formula (5.55) together with the intercell numerical flux (5.59). For
the special conservation law with flux f(u) = au, a > 0, we have

fifé =aujq, fi+% = auj’ , (5.60)

which if substituted in the conservative formula (5.55) reproduce the CIR
scheme. The second version (5.55), (5.59) of Godunov’s method is the one
that is mostly used in practice.

Exercise 5.7. Verify that the second version of the Godunov method
based on the conservative formula (5.55) and the Godunov intercell flux (5.59)
also reproduces the CIR scheme when applied to (5.39) with flux f(u) = au
and a < 0.

Solution 5.8. (Left to the reader).



5.3 Conservative Methods 181
5.3.3 Godunov’s Method for Burgers’s Equation

As a way of illustrating Godunov’s method in the context of non-linear
PDEs we apply the scheme to the inviscid Burgers equation

u+ f(u), =0, f(u)= %zﬁ : (5.61)

We adopt the second version (5.55) with numerical flux given by (5.59).
We need the solution w; 1 (z/t) of the Riemann problem RP(ui,uj). As
seen in Sect. 2.4.2 of Chap 2, the solution is a shock wave, When up > uly g,
and a rarefaction wave when v}’ < uf, ;. The complete solution is
ul S >/t

K2

Uiy (/1) = {“?H it S <a/t > iful >ul,,

(5.62)
ul ifx/t <wul

Upps(z/t)=q x/t 1fuf <z/t<up, o iful <upp,
uy ifx/t >uly,

The Godunov’s flux requires u, 1 (0); this is the solution u; 1 (z/t) evaluated
along the intercell boundary x; 1, that corresponds to 2/t = 0 in the frame of
the local Riemann problem. The second stage is to identify all possible wave
patterns in the solution of the Riemann problem. For Burgers’s equation there
are five possibilities. These are illustrated in Fig. 5.7. If the solution is a shock

S t t s
Godunov
flux
X X
0 0
(@) (b)
t t t
Godunov
S flux —~ Godunov
flux
X X X
0 0 0

(© (d) (e)

Fig. 5.7. Five possible wave patterns in the solution of the Riemann problem for
the inviscid Burgers equations, when evaluating the Godunov flux

wave then cases (a) and (b) can occur. The sought value u; 1 (0), on the ¢~
axis, depends on the sign of the shock speed S. If the solution is a rarefaction
wave then the three possible cases are illustrated in Figs. 5.7c, 5.7d and 5.7e.
Applying terminology from Gas Dynamics to the rarefaction cases, Fig. 5.7¢c
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is called supersonic to the left and that of Fig. 5.7d supersonic to the right.
The case of Fig. 5.7e is that of a transonic rarefaction or sonic rarefaction; as
the wave is crossed, there is a sign change in the characteristic speed u and
thus there is one point at which v = 0, a sonic point. The complete sought
solution is summarised as follows

w0y = {8 if $>0
HrW T Ly S <0 piful >l
S=Z(ul+ul,) 56
w0 <}
w1 (0) =140 iful<0<ulyy o iful <uly,
uityy 10> uilyy

Naturally, Godunov’s method can also be implemented using approximate
solutions to the Riemann problem. For a review on the Godunov scheme in the
context of two well-known approximations to the Riemann problem solution
for Burgers’s equation, the reader is referred to the paper by van Leer [562].

In applying Godunov’s scheme to solve Burgers’s equation there are two
more issues to consider. One concerns the application of boundary conditions
and the other is to do with the choice of the time step At.

Boundary Conditions

The conservative formula (5.55) can be applied directly to all cells 4, for
i =2,...,M—1. The two required intercell fluxes at z; 1 and z; 4} are deﬁned
in termb of the corresponding Riemann problems. For cach of the cells 1 and
M, which are adjacent to the left and right boundaries respectively, we only
have one intercell flux. Some special procedure needs to be implemented. Let
us consider the left boundary x = 0. One possibility is to assume a boundary
function wu(¢t) prescribed there. Then we could define an intercell flux at the
boundary by setting f1 = f(ui(t)).

A more attractive alternative is to specify a fictitious cell 0 to the left of the
boundary x = 0 together with a cell average ug, at each time level n, so that
a Riemann problem RP(uy,u}) can be posed and solved to find the missing
intercell flux f 1 For the right boundary we prescribe a fictitious cell M +1 and
a cell average uf, ; to find the intercell flux f), e The prescription of the
fictitious states depends entirely on the physics of the particular problem at
hand. Provisionally, for the inviscid Burgers’s equation we apply the boundary
conditions

wy =uy, U = Uy (5.64)

Note that the fictitious states here are given in terms of the data at the states
within the computational domain adjacent to the boundaries. This particular
type of boundary conditions will cause no disturbance at the boundaries;
waves will hopefully go through the boundaries as if the boundaries were not
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there. Often one speaks of transparent or transmissive boundary conditions,
in this case.

Choosing the Time Step

As seen for the linear case, the choice of the size of the time step At in
the conservative formula is related to the stability condition of the particular
scheme. For Godunov’s method (the CIR scheme in this case) the choice of At
depends on the restriction on the Courant number ¢. For non-linear problems,
at each time level, there are multiple wave speeds and thus multiple associated
Courant numbers. In deriving the second version of Godunov’s method we
made the implicit assumption that the value of the local Riemann problem
solution along the intercell boundary is constant. This means that the fastest
wave at a given time travels for at most one cell length Az in the sought time
step At. Denoting by S the maximum wave speed throughout the domain

max

at time level n we define the maximum Courant number C.q

Cog = ALS", / Az, (5.65)

max

where At is such that
0<Cqg<1.

We shall often call C.q the CFL coefficient or the Courant number coefficient.
The time step At follows as

At = CeqAz/S™,, . (5.66)

A matter of crucial importance is the estimation of the maximum speed S}, .
In realistic applications this can be difficult and frustrating, as inappropriate
choices can cause the scheme to crash, no matter how sophisticated this is.
For Burgers’s equation one can identify wave speeds, such as those emerging
from solutions of Riemann problems at the intercell boundaries, and charac-
teristic speeds u. At any time level n, there are M + 2 characteristic speeds
ul (including the fictitious cells) and hence one possibility is to take SJ.. as

the maximum of these, in absolute value. Another possibility is to select, at
each time level, a speed S;‘+% from the solution Riemann problem at each cell
interface; this information is available as part of the flux computation process.
For the case of a shock, one obviously takes the shock speed. For the case of
a rarefaction there are two characteristic speeds of significance, namely those
of the head and tail of the expansion. Thus we define an intercell speed

| 5(uf +uy) | (shock),
n o= (5.67)

i+3
’ max(| uf |,| u,, |) (rarefaction).

Finally, we define a maximum wave speed at time level n as follows
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Sgaxzm?x{sg;%} fori=0,...,M+1. (5.68)
Having chosen C.g, the time step At to march the solution to the next time
level is given by (5.66). For a scheme with linearised stability condition |¢| < 1,
one usually takes the empirical value C.q = 0.9.

In Sect. 5.6 we give a listing of a FORTRAN program for Godunov’s
method in conjunction with the exact Riemann solver, to solve numerically

the inviscid Burgers equation.

5.3.4 Conservative Form of Difference Schemes

Conventional finite difference schemes can often be expressed in conserva-
tion form (5.42). It is a question of finding an intercell flux (5.43).

The Lax—Friedrichs Scheme
Recall that the Lax—Friedrichs scheme as applied to the linear advection

equation is
n (1 — C) n
. o Ui + 5 Uikl - (5.69)

It is easy to verify that the conservative formula (5.42) together with the
intercell flux
(1+¢) (c—1)

furg = o D)+ S f () (5.70)

reproduces the Lax—Friedrichs scheme. Therefore, at least for the linear ad-
vection equation, one can recast the Lax—Friedrichs scheme in conservative
form.

An interesting way of viewing the Lax—Friedrichs scheme (5.69) is as an
integral average within cell i, namely

u’l_’L+1 _ (1 + C)

1 [%eh 1
wr :E/ e, 5 A0 de (5.71)

117 1
2

in which 4(z,t) is the solution of the Riemann problem RP(uj_,,u}, ;) (note
subscripts), that is

- CJur g ifzft<a,
lw/t) = {uﬁ_l ifx/t>a. (5.72)

Exercise 5.9. Verify that exact evaluation of the integral (5.71) repro-
duces the Lax—Friedrichs scheme (5.69).

Solution 5.10. (Left to the reader).
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Remark 5.11. We note that the Lax—Friedrichs solution at cell 7 is a
weighted average of the solution of the Riemann problem with the left and
right neighbour states as data, at time ¢t = %At. One could state that the
Lax—Friedrichs scheme is upwind biased, as the upwind term has always the
larger weight.

Let us now attempt to generalise interpretation (5.71) of the Lax—Friedrichs
scheme to non—linear systems of conservation laws

U, +FU),=0. (5.73)
Now (5.71) reads
1 Tird 1
ntl : —-A .74
U Ax/ U, 5 At da (5.74)

2

where U(z,t) is the solution of the Riemann problem RP(U?_;, U%, ). Given
an exact Riemann solver, e.g. see Chap. 4, one could then implement this
Riemann-—problem based version of the Lax-Friedrichs scheme. The author
has implemented this version of the scheme for non-linear systems. The nu-
merical results obtained are indistinguishable from those obtained from the
conventional form of the scheme. Version (5.74) offers no obvious advantages
over the conventional form; in fact it is more expensive and complex and hence
is of no practical use. A stochastic evaluation of the integral leads to a random
choice type method; see Sect. 7.3 of Chap. 7.

If the space integral (5.74) at time %At is replaced by invoking the integral
form of conservation law (Chap. 2, equation (2.67)) in the control volume
[—3 Az, L Az] x [0, 1 At] we obtain

[32 O(e, LA de = 277 O(2,0)de + [ F(O(-1 A, 1) dt
— [FMR(U(L Az, b)) dt .

(5.75)
Direct evaluation of the integrals and use of the definition of integral averages
(5.74) in cell 4, as applied to systems, yield

1 At
Ut = (Un 1+ 0N+ 5 Ar — (F —Fy).

Simple algebraic manipulations of this expression lead to a conservative ver-
sion of the Lax—Friedrichs scheme for systems

n n At
urtt =u + 37 [Fimt —Firg | (5.76)
with the Lax—Friedrichs intercell flux given by
1. 1Az, n
FH-I = 2(F +Fi)+ 3 AL — (U =U,) . (5.77)
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This is the conventional numerical flux for the Lax—Friedrichs scheme when
applied to systems of conservations laws (5.73). No mention of the Riemann
problem is needed in this formulation. Compare the conservative formula
(5.76) for systems with the conservative formula (5.55) for scalar conserva-
tion laws.

The Lax—Wendroff Scheme

The Lax—Wendroff scheme (5.34) as applied to the linear advection equa-
tion may also be written in conservation form (5.42). The intercell numerical
flux is (140 (10

+c " —cC
5 (aug’) + 5
which is a weighted average of fluxes on the left and right of the interface.

For the linear advection equation, it is easy to check that this can also be
obtained from

fi+% = (auiyy)

+1 +1 (1 + C) (1 — C)
fi—&-% :f(UZg) ) u?+%2 = B) u;' + 5 u?+1.

For non-linear scalar conservation laws, such as Burgers’s equations (5.61),
this generalises to
LAz
o n+i\ | n+i 1 2 1
fiir=1f <u+7) Cwti= o o Uiy (2, 5 A da (5.78)
where w1 (x,t) is the solution of the Riemann problem RP(uj,uj ;). A
straightforward Riemann—problem based generalisation of the Lax—Wendroff
scheme to non-linear hyperbolic systems (5.73) ([499], [506]) reads

n—‘,—l n+l 1 %AI 1
Fo, =FUD Utk - E/  Usy(e,5Ande,
—1Az

where U, , 1 (2, t) is the solution of the Riemann problem RP (U7, U7, ;). This
scheme is called the Weighted Average Flux (WAF) method and is studied in
Chaps. 13, 14 and 16.

As done for the Lax—Friedrichs scheme one may replace the integral in-
volving the solution of the Riemann problem by invoking the integral form

of the conservation laws, see Sect. 2.4.1 of Chap. 2, in the control volume
[— 3 Az, £ Az] x [0, £ At] to obtain

1 At

n++ n+ 1 n
Fi+§:F(U 2) ULy :§(U?+ i+1)+§E(F?_F?+1)- (5.79)

i+3 ity
This scheme is known as the two—step Richtmyer version of the Lax—Wendroff
method, as applied to non-linear systems of conservation laws (5.73). No
mention of the Riemann problem solution is necessary here.
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Remark 5.12. Note the similarities between the reinterpretations and gen-
eralisations of the Lax—Friedrichs and Lax—Wendroff schemes. For both schemes
one ends up with two formulations. For the Lax-Friedrichs scheme the
weighted—average character leads to an integral formulation involving the so-
lution of the Riemann problem. The second version of the scheme eliminates
the role of the Riemann problem by utilising the integral form of the conserva-
tion law and leads to the conventional form of the Lax—Friedrichs scheme for
non-linear systems. For the Lax—Wendroff method the procedure is entirely
analogous. An integral average interpretation leads to a Riemann—problem
based extension to non-linear systems [499]. Utilisation of the integral form
of the conservation law eliminates the role of the Riemann problem and leads
to the conventional Richtmyer version of the scheme. Both versions of the
Lax—Wendroff method have actually been applied in practice.

Exercise 5.13. Verify that the Fromm scheme (5.37) as applied to the
linear advection equation in (5.7), for positive a, can be written in conservation
form (5.42) with numerical flux

1 1
5_13% = *1(1 —o)fi-1t fi+ 1(1 —c)fiy1 s

where c is the Courant number.
Solution 5.14. (Left to the reader).

Exercise 5.15. Verify that the numerical flux of the scheme of Warming
and Beam (5.35), as applied to (5.7) with a > 0, is

1 1
ivig = 5(0_ Dfio1+ 5(3 —o)fi.

Solution 5.16. (Left to the reader).

Remark 5.17. The Warming—Beam numerical flux can be derived from
(5.78) in terms of integral averages of solutions of Riemann problems under
the assumption 1 < ¢ < 2. An extension of this interpretation to non-linear
systems was proposed by Toro and Billett [527].

Exercise 5.18. Apply (5.78) to the linear advection equation and derive
the Warming-Beam flux for negative speed a. Assume —2 < ¢ < —1.

Solution 5.19. (Left to the reader).

5.4 Upwind Schemes for Linear Systems

Here we apply the first—order upwind scheme to hyperbolic systems with
constant coefficients
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U +AU, =0. (5.80)

For background on mathematical properties of these PDEs see Sect. 2.3 of
Chap. 2. We denote the real eigenvalues of the m x m constant coefficient
matrix A by A\; with j =1,...,m and assume they are ordered as

M <A< Ag3... <Ay

The corresponding right eigenvectors are denoted by KM K@ . K™,
Note here that in general the eigenvalues \; can be of any sign and thus a
one-sided differencing scheme applied to (5.80) directly will only work if all
the eigenvalues are of the same sign. In the general case with eigenvalues of
mixed sign the particular chosen side for the differencing will be upwind for
only some of the eigenvalues and downwind for the rest. The difficulty can be
resolved by splitting the matrix into two matrices, one of them having positive
or zero eigenvalues and the other having negative or zero eigenvalues. From
the assumption of hyperbolicity, A may be diagonalised as

A=KAK', (5.81)

where K is the matrix whose columns are the right eigenvectors K@) K~1 is
the inverse of K and A is the diagonal matrix formed by the eigenvalues of
A, namely

A1 0

A= . (5.82)

See Sect. 2.3.1 of Chap. 2. In terms of the characteristic variables
V=K 'U, (5.83)

system (5.80) becomes the decoupled system

V,+AV,=0, (5.84)
where the j—th equation
0 0 .
o + )\j%vj =0, for j=1,..,m, (5.85)

involves only the variable v;(z,t).

5.4.1 The CIR Scheme

From a numerical point of view the decomposition of (5.80) into the de-
coupled set (5.84) with component equations (5.85) is very convenient. Each
component equation (5.85) is a linear advection equation with characteristic
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speed \; = constant, just as the PDE in (5.7), in which the speed is a, a
constant. The CIR first-order upwind scheme (5.21) can directly be applied
to each component equation (5.85). As for the scalar case we introduce the
following definitions

)\Jr

j 2

min(A;,0) =

where | A; | is the absolute value of \;. The following relations can be easily
verified

)\j:>\;’_+Aj_, By |:/\j—)\j_. (5.87)
Then, the CIR scheme (5.21) applied to each PDE in (5.85) for the charac-
teristic variables reads

()7 = ()P — 2T [(0)7 = (v ]
— 2 ()P — (7] -

This is a straight generalisation of the first—order upwind scheme (5.21) to the
decoupled linear hyperbolic system (5.84).

Based on definitions (5.86) we can form the positive A™ and negative A~
components of the diagonal matrix A, namely

(5.88)

A 0
Af = . (5.89)
0 A

Property (5.81) allows us to introduce the positive and negative components
of the coefficient matrix A as

A =KA K, AT=KATK!. (5.90)

Based on properties (5.87), the matrices (5.89), (5.90) can be shown to satisfy
the following

A=AT+A", |[A|=AT—-A",
(5.91)
A=AT+A", |[A|I=AT-A".
The CIR scheme (5.88) can be written as
Vit = Vi - SAT(VE - V)
(5.92)

— LA(VE, - VD).

In terms of the original variables U = KV this scheme may be expressed as



190 5 Notions on Numerical Methods

Ut =Ur — 2LAT [Ur —UR ]
(5.93)
- %A_ [U?ﬂ - Uﬂ :

This is the generalisation of scheme (5.21) to linear hyperbolic systems (5.80)
with constant coefficients. It is left to the reader to verify that the above result
can be obtained by multiplying (5.92) from the left by the matrix K and
using (5.90). Note that by splitting the coefficient matrix A into a positive
and a negative component we have been able to retain the basic principle
of performing the one-sided spatial differencing according to the sign of the
characteristic speeds. The differencing U} — U} _; is upwind for the coefficient
matrix AT and U7, ; — U? is upwind for the coefficient matrix A~.

5.4.2 Godunov’s Method

Consider the constant coefficient, linear hyperbolic system (5.80) written
in conservation-law form

U, +F(U),=0, FU)=AU. (5.94)

The Godunov first-order upwind method utilises the conservative formula
(5.76) and requires the solution U, 1(z/t) of the local Riemann problem

2

RP(U}, U7, ) for (5.94) to compute the intercell numerical flux
Fi+§ = F(Ui+%(0)) : (5.95)

See Sect. 5.3.2. Here U, , 1 (0) is the value of the solution U, 1 (z/t) at 2/t = 0
along the intercell boundary. As seen in Sect. 2.3.3 of Chap. 2, the solution

Godunov flux

7“I t 7‘|+l

Fig. 5.8. Evaluation of the Godunov intercell flux for linear hyperbolic systems
with constant coefficients

Ui+%(x/t) can be easily found by first expanding the initial data U}, U7,
in terms of the right eigenvectors as

U = Z%‘K(j) , UL, = Zgjwﬂ . (5.96)
j=1 Jj=1
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The general solution at any point (z,t) is given by

m

y(zft) = Zﬂ KD+ > oK), (5.97)

j=I1+1

where I is the largest integer with 1 < I < m such that z/t > A;. The
Godunov flux (5.95) requires the solution at =/t = 0 in (5.97). See Fig. 5.8.
For z/t =0 I is such that Ay <0 and Az41 > 0, then U, 1(0) is obtained by

manipulating (5.97), namely

U, 1(0)=U"+ Z —a;)KW (5.98)
or m
U1 (0) =Uy = D (8~ a)KY) (5.99)
j=I+1

Recall that the jump across wave j with eigenvalue A; and eigenvector K
is given by (8; — aj)K(j). Note that the solution of the Riemann problem, at
x/t =0, as given by (5.98), can be interpreted as being the left data state U?
plus all wave jumps across waves of negative or zero speed. Similarly, the form
(5.99) gives the solution as the right data state U7, ; minus the wave jumps
across all waves of positive or zero speeds. By combining (5.98) and (5.99) we
obtain

1 m
Ui 1(0) = (U" + U ) — 3 Z sign(A — o)KW (5.100)

The Godunov intercell numerical flux (5.95) can now be obtained by eval-
uating F(U) at any of the expressions (5.98)—(5.100) for the solution of the
Riemann problem. Use of (5.98) gives

I
Fii=F+ ZA(ﬁj —a;)KY, (5.101)
j=1

and since AK) = \; KU,

I
Fo1 =FP+) (8 —a),KY . (5.102)
j=1
Similarly, (5.99) gives

m

Foo=Fr— > (8 —a)A,KY, (5.103)
Jj=I+1
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or combining (5.102) and (5.103) we obtain

l\')\»—l

Fi+1 (Fn—l—FhLl

|
l\DM—‘

Z DA K9 (5.104)

Next we show that the Godunov flux can also be expressed in two more
alternative forms.

Proposition 5.20. The Godunov flux (5.95) to solve (5.94) via (5.76) can
be written as

Fiy = g (F) +Fl) — 5 | A (UL, — UF). (5.105)

[N

Proof. Starting from (5.104) and using the properties (5.87) and (5.91)
one writes

1 1 N
Fii= 3 (F} + Fiyy) - ) Z(ﬁj =)A= JKY)
j=1
1o, 1 - ) _ K@
= 5 (BT +F) =5 D06 - ) [AJ_K A K ]
j=1
| R— RS TG _ A-KO)
= 5 (B +F) =5 D (6 — ay) [ATKY) - A7KO)|
j=1
1 1 ;
=5 (FI+F) = 5D (8 —ay) [AT - AT KV
j=1
1 1 -
=g (PP PR =5 [ATD (3~
Hence 1
Fipy= (Fn +F) - | A (U, - U7)

and the proposition is proved.

Proposition 5.21. The Godunov fluz (5.95) for (5.94) can be written in
flux—split form as
F,, =AYU! + AU, . (5.106)

Proof. The result follows directly from manipulating (5.105) and using
appropriate definitions. Alternatively we have

F. 1 =AU, (0)

_ZﬁJAK + Z a;AKY)

j=I+1
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m
ﬂ]‘)\jK(j)—F Z O(j)\jK(j)
j=I+1

I
'M“‘

<
Il
—

BiA; KUY 43 a; At KD
j=1

|

<
I
—

ﬁjA_K(j) + Z ajA+K(j)
j=1

— At ZajK(j) + A ZﬁiK(j)
j=1 j=1

=AU} + AU,

I
NE

<.
Il
—

and the proposition is proved.

Remark 5.22. The intercell flux has been split as
_ Bt -
FH% _Fi+% +Fi+% , (5.107)
where the positive Fj'+ , and negative F .. flux components are
2 2
F;.:_% =ATU!, F;% =A"U}. (5.108)
Note that, trivially, the respective Jacobian matrices have eigenvalues that
are all positive (or zero) and all negative (or zero).

Exercise 5.23. Consider the linearised equations of Gas Dynamics

U, +AU, =0,

_jwm| _|»r _| 0 po
o= [n]=[2] 4= [ufa ]
Using the results of Sect. 2.3.4 of Chap. 2
e Find the matrices A=, AT, A=, AT .
e Write the scheme (5.93) in full, that is for the two components of the
vector of unknowns.

e Compute the Godunov intercell flux directly by using the explicit solution
of the Riemann problem in the Star Region

with

p« = 5(pL + pr) — 5 (ur —ur)po/a
u, = 5 (ug, +ur) — 5(pr — pr)a/po -

How many possible wave patterns do you need to consider here 7
e Write a computer program to solve the linearised equations of Gas Dy-
namics using the method of Godunov.

Solution 5.24. (Left to the reader).
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5.5 Sample Numerical Results

To complete this chapter, we present some numerical results obtained by
some of the most well known schemes as applied to two model PDEs.

5.5.1 Linear Advection
We apply four schemes to solve
ug+ f(u)y =0, f(u)=au, a= constant (5.109)

with two types of initial conditions.

Test 1 for linear advection (smooth data)
Here the initial condition is the smooth profile
u(x,0) = ae P (5.110)

In the computations we take a = 1.0, a = 1.0, 8 = 8.0 and a CFL coefficient
Ceqg = 0.8; the initial profile u(x,0) is evaluated in the interval —1 < z < 1.
Computed results are shown in Figs. 5.9 to 5.11; these correspond respectively
to the output times ¢ = 1.0 unit (125 time steps), ¢ = 10.0 units (1250 time
steps), t = 100.0 units (12499 time steps). In each figure we compare the exact
solution (shown by full lines) with the numerical solution (symbols) for the
Godunov method, the Lax—Friedrichs method, the Lax—Wendroff method and
the Warming-Beam method.

The results of Fig. 5.9 are in many ways representative of the quality
of each scheme. Collectively these results are also representative of most of
the current successes and limitations of numerical methods for PDEs govern-
ing wave propagation. The first—order method of Godunov (CIR scheme) has
modified equation of the form (5.24), where a;, is a numerical viscosity coef-
ficient. This is responsible for the clipping of the peak values. As seen earlier
Qeir < aqf, which explains the fact that the Lax—Friedrichs scheme gives even
more diffused results. For the computational parameters used a.;, = 0.1Ax
and agr = 0.225Ax.

The results from the Lax—Wendroff method and the Warming—Beam
method, both second-order accurate, are much more accurate than those of
the first-order schemes. There are however, slight signs of error in the position
of the wave. For the Lax—Wendroff scheme the computed wave lags behind the
true wave (lagging phase error), while for the Warming—Beam method the
computed wave is ahead of the true wave (leading phase error). The phase
errors of second—order accurate schemes are explained by the dispersive term
of the modified equation (5.38).

The limitations of the schemes are more clearly exposed if the solution
is evolved for longer times. Fig. 5.10 shows results at the output time ¢ =
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10.0 units (1250 time steps). Compare with Fig. 5.9. The numerical diffusion
inherent in first—order methods has ruined the solution of the Godunov and
Lax—Friedrichs schemes. Computed peak values are only of the order of 30 to
40% of the true peak values. The second—order methods are still giving more
satisfactory results than their first-order counterparts, but now the numerical
dispersion errors are clearly visible. Numerical diffusion is beginning to show
its effects too.

Fig. 5.11 shows results at the output time ¢ = 100.0 units (12499 time
steps). Compare with Figs. 5.9. and 5.10. These results are truly disappoint-
ing and clearly expose the limitations of numerical methods for computing
solutions to problems involving long time evolution of wave phenomena. In
acoustics one may require the computation of (i) very weak signals (ii) over
long distances. The combination of these two requirements rules out automat-
ically a wide range of otherwise acceptable numerical methods for PDEs. See
Tam and Webb [480]. The numerical diffusion of the first-order schemes has
virtually flattened the wave, while the numerical dispersion of the second-
order methods has resulted in unacceptable position errors, in addition to
clipping by numerical diffusion.

Test 2 for linear advection (discontinuous data)
Now the initial data for (5.109) consists of a square wave, namely

0 if <03,
u(z,0)=<¢ 1 if 0.3<z<0.7, (5.111)
0 if x>0.7.

The computed results for the three output times are shown in Figs. 5.12 to
5.14. As for Test 1 the effects of numerical diffusion in the first—order methods
and the effects of dispersion in the second—order methods lead to visible errors
in the numerical solution (symbols), as compared with the exact solution
(full line). First-order methods smear discontinuities over many computing
cells; as expected this error is more apparent in the Lax—Friedrichs scheme.
Note also the pairing of neighbouring values in the Lax—Friedrichs scheme.
Second—order methods reduce the smearing of discontinuities, but at the cost
of overshoots and wundershoots in the vicinity of the discontinuities. These
spurious oscillations are highly undesirable features of second and higher—
order methods. We shall return to this theme in Chaps. 13 and 14, where
improved methods for dealing with discontinuities will be presented.

Fig. 5.13 shows results for Test 2 at time ¢ = 10.0 units (1250 time steps).
The errors observed in Fig. 5.12 are now exaggerated. Fig. 5.14 shows results at
time ¢ = 100.0 units (12499 time steps). Once again first—order methods have
lost the solution while second—order methods exhibit unacceptable position
errors, in addition to spurious oscillations produced near discontinuities.
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5.5.2 The Inviscid Burgers Equation

Our Test 3 consists of the inviscid Burgers equation

1
u+ f(u)e =0, f(u)= §u2 (5.112)
in the domain [0, 2] with initial conditions
*% if § % ’
u(r,0) = 1if 1<a<1, (5.113)
0if 2>1.

We solve this problem numerically on a domain of length L = 1.5 discretised
by M = 75 equally spaced cells of width Az = 0.02; the CFL coefficient used
is 0.8. Fig. 5.15 shows computed results (symbol) along with the exact (line)
solution, for the Godunov and Lax—Friedrichs schemes at time ¢ = 0.5 units
(32 time steps). Two new features are now present in solving non-linear PDEs.
First the discontinuity on the right is a shock wave. This satisfies the entropy
condition, see Sect. 2.4.2 of Chap. 2, and characteristics on either side of the
discontinuity converge into the discontinuity. This compression mechanism
helps the more accurate resolution of shock waves. Compare with Fig. 5.12.
The Godunov method resolves the shock much more sharply (3 cells) than
the Lax—Friedrichs scheme (10 cells). The second new feature to note in this
non-linear example is the entropy glitch at x = % This corresponds to a
sonic point, see Sect. 2.4.2 of Chap. 2. The entropy glitch affects the Godunov
method and not the Lax—Friedrichs method. A question of crucial importance
is the construction of entropy satisfying schemes [369].

More advanced concepts on numerical methods are presented in Chap. 13
for scalar problems. Chaps. 14, 15 and 16 deal with numerical methods for
non-linear systems.

5.6 FORTRAN Program for Godunov’s Method

A listing of a FORTRAN program to compute the numerical solution to
the inviscid Burgers equation is included.
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5.6 FORTRAN Program for Godunov’s Method

Godunov’s method for the inviscid Burgers’s
equation

Name of program: HL-B1GOD

Purpose: to solve the inviscid Burgers equation
using the Godunov first order upwind
scheme in conjunction with the exact
Riemann solver

Input file: blgod.ini
Output file: numer.out (numerical)

Programer: E. F. Toro
Last revision: February 7th 1999

Theory is found in Section 5.3.3, Chapter 5 of
Reference 1.

1. Toro, E. F., "Riemann Solvers and Numerical
Methods for Fluid Dynamics"
Springer-Verlag,
Second Edition, 1999

This program is part of

NUMERICA

A Library of Source Codes for Teaching,
Research and Applications,

by E. F. Toro

Published by NUMERITEK LTD,

Website: www.numeritek.com

Driver program
IMPLICIT NONE

Declaration of variables:
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INTEGER ITEST, CELLS, N, NFREQ, NTMAXI

REAL CFLCOE, DOMLEN, DT, TIME, TIMEOUT, TIMETO

COMMON /DATAIN/ CFLCOE, DOMLEN, ITEST, CELLS,

NFREQ, NTMAXI, TIMEOUT
COMMON /DELTAT/ DT

DATA TIMETO /1.0E-07/

Parameters of problem are read in from
file "blgod.ini"

CALL READER
Initial conditions are set up

CALL INITIA(DOMLEN, ITEST, CELLS)

WRITE(6,%) ? ==——————————————mmmmmmmmmmm -

WRITE(6,*)’ Time step N TIME

WRITE(6,%) ? =——=—— == == == == ——mmmmm oo

Time marching procedure
TIME = 0.0
DO 10 N = 1, NTMAXI
Boundary conditions are set

CALL BCONDI(CELLS)

Courant-Friedrichs-Lewy (CFL) condition imposed

CALL CFLCON(CFLCOE, CELLS, TIME, TIMEQOUT)

TIME = TIME + DT

Intercell numerical fluxes are computed

CALL FLUXES(CELLS)

Solution is updated according to
conservative formula
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CALL UPDATE(CELLS)
IF (MOD(N,NFREQ) .EQ.0)WRITE(6,20)N, TIME
Check output time

IF(ABS(TIME - TIMEQUT).LE.TIMETO)THEN

Solution is written to "numer.out’ at
specified time TIMEQUT

CALL OUTPUT(CELLS)

WRITE(6,%) ? ==—== == == == m—mmmm oo oo

WRITE(6,%*)’ Number of time steps = ’,N

STOP

ENDIF
CONTINUE

FORMAT(I12,6X, F12.7)

SUBROUTINE READER

Purpose: to read initial parameters of the problem
IMPLICIT NONE

Declaration of variables

INTEGER ITEST, CELLS, NFREQ, NTMAXI

CFLCOE, DOMLEN, TIMEOUT

COMMON /DATAIN/ CFLCOE, DOMLEN, ITEST, CELLS, NFREQ,

NTMAXI, TIMEQUT

OPEN(UNIT = 1,FILE = ’blgod.ini’,STATUS = ’UNKNOWN’)

199
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READ (1, *) CFLCOE
READ (1, *) DOMLEN
READ (1, %) ITEST
READ (1, *)CELLS
READ (1,*)NFREQ
READ (1, %) NTMAXI
READ (1, *) TIMEOUT

Courant number coefficient
Domain length

Test problem

Number of cells in domain
Output frequency to screen
Maximum number of time steps
Output time

CLOSE(1)

WRITE(6,%) ? —==—=—==—=— === ——mm—mmmmm oo )
WRITE(6,%*) ’Data read in is echoed to screen’
WRITE(6, %)’ —=========—=————m—— oo ’
WRITE(6,*) ’CFLCOE = ’,CFLCOE

WRITE(6,#*) ’DOMLEN = ’,DOMLEN

WRITE(6,*) > ITEST = 7’ ,ITEST

WRITE(6,*) ’CELLS = ’,CELLS

WRITE(6,*) ’NFREQ = ’ ,NFREQ

WRITE(6,*) NTMAXI = ’,NTMAXI

WRITE(6,*) ’TIMEQUT = ’>,TIMEQUT

WRITE(6,%) ? ==—=————————————m—mmm oo )

RETURN
END

SUBROUTINE INITIA(DOMLEN, ITEST, CELLS)

Purpose: to set initial conditions for solution U
and initialise other variables. There are
two choices of initial conditiomns,
determined by ITEST

Local variables:

Name Description

DX Spatial mesh size

I Variable in do loop

ITEST Defines test problem

FLUX Array for intercell fluxes

U Array for numerical solution
XPOS Position along x-axis

QOO x ¥ Q¥ Qx QOO %
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XRIGHT Left diaphragm
XMIDDL Middle diaphragm
XRIGHT Right diaphragm

IMPLICIT NONE
Declaration of variables
INTEGER I, ITEST, CELLS, IDIM

REAL DOMLEN, DX, FLUX, U, XLEFT, XPOS, XMIDDL,
& XRIGHT

PARAMETER (IDIM = 1000)

DIMENSION FLUX(O0:IDIM + 1), U(0:IDIM + 1)
COMMON /DELTAX/ DX

COMMON /FLUXFS/ FLUX

COMMON /SOLUTI/ U

Calculate mesh size DX

DX = DOMLEN/REAL(CELLS)

Initialise arrays

DO 10 I = 0, IDIM + 1

FLUX(I) = 0.0
Uu(D) = 0.0
CONTINUE

IF(ITEST.EQ. 1) THEN

Test 1: smooth profile

XP0OS =-1.0
DO 20 I =1, CELLS
XP0S = XPOS + 2.0/REAL(CELLS)
U(I) = EXP(-8.0*XP0OS*XP0S)
CONTINUE

ELSE

201
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C Test 2: square waves
*
XLEFT = 0.1*DOMLEN
XMIDDL = 0O.5*DOMLEN
XRIGHT = 0.9*DOMLEN
*
DO 30 I =1, CELLS
*
XPOS = (REAL(I)-1.0)*DX

IF(XPOS.LT.XLEFT) THEN
U = -1.0

ENDIF

IF(XPOS.GE.XLEFT.AND.XPOS.LE.XMIDDL) THEN
Uu(I) =1.0

ENDIF

IF(XPOS.GT.XMIDDL.AND.XPOS.LE.XRIGHT) THEN
U(I) = 0.0

ENDIF

IF(XP0OS.GT.XRIGHT) THEN
U = -1.0

ENDIF

30 CONTINUE
ENDIF

RETURN
END

SUBROUTINE BCONDI(CELLS)

C Purpose: to apply boundary conditions
IMPLICIT NONE

C Declaration of variables

INTEGER CELLS, IDIM
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REAL U

PARAMETER (IDIM = 1000)

DIMENSION U(0:IDIM + 1)

COMMON /SOLUTI/ U

Left boundary, periodic boundary condition
U(0) = U(CELLS)

Right boundary, periodic boundary condition
U(CELLS + 1) = U(1)

RETURN
END

SUBROUTINE CFLCON(CFLCOE, CELLS, TIME, TIMEOUT)

Purpose: to apply the CFL condition to compute a
stable time step DT

IMPLICIT NONE

Declaration of variables

INTEGER I, CELLS, IDIM

REAL CFLCOE, DT, DX, SMAX, TIME, TIMEOUT, U
PARAMETER (IDIM = 1000)

DIMENSION U(O0:IDIM + 1)

COMMON /SOLUTI/ U

COMMON /DELTAT/ DT

COMMON /DELTAX/ DX

SMAX = -1.0E+06

Find maximum characteristic speed

203
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DO 10 I = 0, CELLS + 1
IF(ABS(U(I)).GT.SMAX)SMAX = ABS(U(I))
10  CONTINUE
DT = CFLCOE*DX/SMAX
C Check size of DT to avoid exceeding output time
IF((TIME + DT).GT.TIMEOUT)THEN

C Recompute DT

DT = TIMEOUT - TIME
ENDIF

RETURN
END

SUBROUTINE UPDATE(CELLS)

*
C Purpose: to update the solution to a new time level
C using the explicit conservative formula
*

IMPLICIT NONE
*
C Declaration of variables

INTEGER I, CELLS, IDIM

REAL DT, DX, DTODX, FLUX, U

PARAMETER (IDIM = 1000)

DIMENSION U(0:IDIM + 1), FLUX(0:IDIM + 1)
COMMON /DELTAT/ DT

COMMON /DELTAX/ DX

COMMON /FLUXFS/ FLUX

COMMON /SOLUTI/ U

DTODX = DT/DX
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DO 10 T = 1, CELLS
Uu(D) U(I) + DTODX*(FLUX(I-1) - FLUX(I))
10  CONTINUE

RETURN
END

SUBROUTINE OUTPUT(CELLS)

Purpose: to output the solution at a specified time
TIMEOUT

IMPLICIT NONE
Declaration of variables
INTEGER I, CELLS, IDIM
REAL DX, U, XPOS
PARAMETER (IDIM = 1000)
DIMENSION U(0:IDIM + 1)

COMMON /DELTAX/ DX
COMMON /SOLUTI/ U

OPEN(UNIT = 1,FILE = ’numer.out’,STATUS = ’UNKNOWN’)

DO 10 I = 1, CELLS
XPOS = REAL(I)*DX
WRITE(1,20)XP0S, U(I)
10  CONTINUE

CLOSE(1)
20 FORMAT(2(4X, F10.5))

RETURN
END
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SUBROUTINE FLUXES(CELLS)

Purpose: to compute intercell fluxes according to
the Godunov first-order upwind method,
in conjunction with the exact Riemann
solver

IMPLICIT NONE

Declaration of variables

INTEGER I, CELLS, IDIM

REAL FLUX, U, UL, UR, USTAR

PARAMETER (IDIM = 1000)

DIMENSION FLUX(O0:IDIM + 1), U(0:IDIM + 1)

COMMON /FLUXFS/ FLUX
COMMON /SOLUTI/ U

Compute intercell flux FLUX(I), I = 0, CELLS
Solution of Riemann problem RP(I, I+1) is stored
in FLUX(I)

DO 10 I = 0, CELLS

Define states UL (Left) and UR (Right) for local
Riemann problem RP(UL, UR)

UL
UR

u(I)
U(I+1)

Solve the Riemann problem RP(UL, UR) exactly
CALL RIEMANN(UL, UR, USTAR)
Compute Godunov intercell flux
FLUX(I) = 0.5%USTAR*USTAR
CONTINUE

RETURN
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SUBROUTINE RIEMANN(UL, UR, USTAR)

Purpose: to solve the Riemann problem for the inviscid
Burgers equation exactly.

Local variables:

Name Description

UL Left data state

UR Right data state

S Shock speed

USTAR Sampled state

IMPLICIT NONE
REAL S, UL, UR, USTAR
IF(UL.GT.UR) THEN

Solution is a shock wave
Compute shock speed S

S = 0.5%(UL + UR)
Sample the state along the t-axis

IF(S.GE.0.0) THEN

USTAR = UL
ELSE

USTAR = UR
ENDIF

ELSE

Solution is a rarefaction wave.
There are 3 cases:

IF(UL.GE.0.0) THEN
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C Right supersonic rarefaction
*
USTAR = UL
ENDIF
*

IF(UR.LE.O.0) THEN

*
C Left supersonic rarefaction
*
USTAR = UR
ENDIF
*
IF(UL.LE.0.0.AND.UR.GE.0.0) THEN
*
C Transonic rarefaction
X
USTAR = 0.0
ENDIF
*
ENDIF
*
RETURN
END
*
3K
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Fig. 5.9. Test 1: Comparison of numerical results for four numerical schemes (sym-
bols) with the exact solution (line) at output time of 1 unit (125 time steps)
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Fig. 5.10. Test 1: Comparison of numerical results for four numerical schemes
(symbols) with the exact solution (line) at time 10 units (1250 time steps)
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Fig. 5.11. Test 1: Comparison of numerical results for four numerical schemes
(symbols) with the exact solution (line) at time 100 units (12499 time steps)
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Fig. 5.12. Test 2: Comparison of numerical results for four numerical schemes
(symbols) with the exact solution (line) at output time of 1 unit (125 time steps)
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Fig. 5.13. Test 2: Comparison of numerical results for four numerical schemes
(symbols) with the exact solution (line) at time 10 units (1250 time steps)
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212 5 Notions on Numerical Methods

1+t 1
2
3 =
= kS
2 %
0} 0 = 0 J
/ ] 7
0.5 b : 05 L=l :
0.5 1 0.5 1
Position Position

Fig. 5.15. Test 3: Inviscid Burgers’s equation. Comparison of numerical results for
two schemes (symbols) with the exact solution (line) at time 0.5 units (32 time

steps)
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The Method of Godunov for Non—linear
Systems

It was almost 40 years ago when Godunov [216] produced a conservative
extension of the first-order upwind scheme of Courant, Isaacson and Rees
[144] to non-linear systems of hyperbolic conservation laws. In Chap. 5 we
advanced a description of Godunov’s method in terms of scalar equations
and linear systems with constant coefficients. In this chapter, we describe the
scheme for general non—linear hyperbolic systems; in particular, we give a
detailed description of the technique as applied to the time-dependent, one
dimensional Euler equations. The essential ingredient of Godunov’s method
is the solution of the Riemann problem, which may be the exact solution or
some suitable approximation to it. Here, we present the scheme in terms of
the exact solution. In Chaps. 9 to 12 we shall present versions of Godunov’s
scheme that utilise approximate Riemann solvers; these, if used cautiously,
will provide an improvement to the efficiency of the scheme. As seen in Chap.
5 the method is only first—order accurate, which makes it unsuitable for ap-
plication to practical problems; well-resolved solutions will require the use of
very fine meshes, with the associated computing expense. Second and third
order extensions of the basic Godunov method will be studied in Chap. 13 for
scalar conservation laws; some of these high—order methods are extended to
non-linear systems in Chaps. 14 and 16.

Relevant background for studying the Godunov’s method is found in all
preceding chapters, but detailed review of Chaps. 4 and 5 might be found
particularly helpful.

6.1 Bases of Godunov’s Method

Consider the general Initial-Boundary Value Problem (IBVP) for non—
linear systems of hyperbolic conservation laws

PDEs : U, + F(U), =0,
ICs  :U(z,0) = UO (), (6.1)
BCs :U(0,t) =Ui(t), U(L,t) = Uy(t).

E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 213
DOI 10.1007/b7976-1_6, © Springer-Verlag Berlin Heidelberg 2009
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Here, U(z,t) is the vector of conserved variables; F(U) is the vector of fluxes;
U (2) is the initial data at time ¢ = 0; [0, L] is the spatial domain and
boundary conditions are, for the moment, assumed to be represented by the
boundary functions Uj(t) and U,(¢). We make the assumption that the solu-
tion of IVBP (6.1) does exist.

In order to admit discontinuous solutions we must use one of the integral
forms of the conservation laws in (6.1). Here we adopt

[ Uz ty) de = [ U(x,t1) da + [” F(U(xy, 1)) dt
(6.2)
— [P F(U(aa, 1)) dt

for any control volume [x71,x2] X [t1,t2] in the domain of interest; see Sect.
2.4.1 of Chap. 2.
We discretise the spatial domain [0, L] into M computing cells or finite

volumes I; = [2;_1, ;1] of regular size Az = w,, 1 — ;1 = L/M, with
t=1,..., M. For a given cell I; the location of the cell centre x; and the cell
boundarles T 1, ;1L are given by
= (4 A — G-t A =1iA
zi_g=(i—1) x7xi—(z—§) T, w1 =iAz. (6.3)

See Fig. 5.4 of Chap. 5. We denote the temporal domain by [0, 7], where T'
is some output time, not a boundary. The discretisation of the time interval
[0,T] is generally done in time steps At of variable size; recall that for non—
linear systems wave speeds vary in space and time, and thus the choice of
At is carried out as marching in time proceeds. Given general initial data

Uk

—e— - - | o
1 i-1 i i+1 M

Fig. 6.1. Piece-wise constant distribution of data at time level n, for a single
component of the vector U

Uz, t™) for (6.1) at time ¢ = £" say, in order to evolve the solution to a time
tntl = " + At, the Godunov method first assumes a piece—wise constant
distribution of the data. Formally, this is realised by defining cell averages
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ur= L [ Gy 6.4

LI

which produces the desired piecewise constant distribution U(z,t"), with
Uz, t") = U}, for x ineach cell [; = [z;_1,2;,1], (6.5)

as illustrated in Fig. 6.1 for a single component Uy, of the vector of conserved
variables. Data now consists of a set {U?} of constant states. Naturally these
are in terms of conserved variables, but other variables may be derived to
proceed with the implementation of numerical methods. In particular, for the
Godunov method we use the solution of the Riemann problem in terms of
primitive variables, which for the Euler equations are W = (p,u,p)T; p is
density, u is velocity and p is pressure.

Once the piece—wise constant distribution of data has been established
the next step in the Godunov method is to solve the Initial Value Problem
(IVP) for the original conservation laws but with the modified initial data
(6.5). Effectively, this generates local Riemann problems RP(U}, U}, ;) with
data U; (left side) and U}, (right side), centred at the intercell boundary
positions x, 1 As seen for the Euler equations in Chap. 4, the solution of
RP(U}, U}, ) is a similarity solution and depends on the ratio Z/t, see (6.7),
and the data states U}', Uy, ;; the solution is denoted by Ui+%(i‘/t_>7 where
(z,1) are the local coordinates for the local Riemann problem. Fig. 6.2 shows
typical wave patterns emerging from intercell boundaries x;_ 1 and ;. 1 when
solving the two Riemann problems RP(U} ,,U}) and RP(U}, U}, ;). For a

© S ©
i-1/2 . i+1/2 . X

i-1 i i+1
Fig. 6.2. Typical wave patterns emerging from solutions of local Riemann problems

at intercell boundaries 7 — % and 7 + %

time step At that is sufficiently small, to avoid wave interaction, one can
define a global solution U(x,t) in the strip 0 < 2 < L, t" <t < t"*! in terms
of the local solutions as follows

U(x,t) = Ui+%(i‘/f) , X € [T, xi] (6.6)

where the correspondence between the global (z,t) and local (Z,t) coordinates
is given by
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T=2—T1 =t —t",

HAES [xivxi+1] ’ le [tn7tn+1] ’ (67)
VS [_%a%] ,Z?E [OaAt] 5

and is illustrated in Fig. 6.3. Having found a solution ﬁ(:r, t) in terms of solu-

Xl

Xiv12

(@) (b)

Fig. 6.3. Correspondence between the global (a) and local (b) frames of reference
for the solution of the Riemann problem

tions U, , 1 (z/t) to local Riemann problems, the Godunov method advances

the solution to a time "1 = t" + At by defining a new set of average values
{U"™}, in a way to be described. We shall often use (z,t) to mean the local
frame of reference (z,1).

6.2 The Godunov Scheme

The first version of Godunov’s method defines new average values U?H
at time t"*! = t" + At via the integrals

yntt - L /%% Uz, t"1)d (6.8)
. = — X X .
! Az [, ’

i3
within each cell I; = [z;_1,2;,1]. This averaging process is illustrated in Fig.
6.4.

Note first that in order to perform the averaging, we need to make the
assumption that no wave interaction takes place within cell I;, in the chosen
time At. This is satisfied by imposing the following restriction on the size of
At, namely

BYaY:
2
At < gn

max

, (6.9)

where S}, denotes the maximum wave velocity present throughout the do-

main at time ¢". A consequence of this restriction is that only two Riemann
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Fig. 6.4. Godunov averaging of local solutions to Riemann problems within cell I;
at a fixed time At

problem solutions affect cell I;, namely the right travelling waves of UF% (z/t)
and the left travelling waves of U; 1 (z/t), see Fig. 6.4. Thus U?**, given by
(6.8), can be expressed as

1Az 0
1 2 T 1 x
I]n+1 _ U. el _ . _
i Ax/o i3 (At) dz Ax /_;A;c UH% (At> dz,  (6.10)

after using (6.6) and (6.8). This version of Godunov’s method can obviously be
implemented as a practical computational scheme. We note however that it has
two main drawbacks. First, the CFL-like condition (6.9) is computationally
somewhat restrictive on At. Second, the evaluation of the integrals in (6.10),
although possible, could be involved. Rarefaction waves are bound to add to
the complexity of the scheme. The second version of Godunov’s method is
more attractive and is given by the following statement.

Proposition 6.1. The Godunov method can be written in conservative
form

" o At
Uittt =up + E[Fifé —Fi1l, (6.11)
with intercell numerical fluz given by
F,,y = F(U,,(0) (6.12)
if the time step At satisfies the condition
Ax
At < on (6.13)

max

Proof. The integrand U(z,t) in (6.8) is an exact solution of the conserva-
tion laws, see equation (6.6). We can therefore apply the integral form (6.2)
of the conservation laws to any control volume [x1, 2:3] X [t1, t2]. In particular,
we can apply it to the case in which z; = Ti 1,y =Tig1, t =t", ty = "L,
From (6.4) we then have
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€T .

i—

Tipl 17 n+1 (Tl T n
[ "2 U(x,t )dxffm:’%‘z U(z,t")dx

+ [ PO,y 0] dt— [ F[O(x,, 1)) dE
(6.14)
In terms of local solutions, as in (6.6), and assuming condition (6.13) we have

U(w;_1,t) = U;_1 (0) = constant , } (6.15)
1
2

3 :at):Ui-i-

IS I

(0) = constant ,

where U, 1 (0) is the solution of the Riemann problem RP(U7}, U7, ) along
the ray z/t = 0, which is the t—axis in the local frame. Similarly, Ui_%(O) is
the solution of RP(U?_,,U}) along the t—axis. Division of (6.14) through by
Ax gives

L f+ Ue, ") do = L [T+ Ula, t7) dae
2

T,1
’ (6.16)
+4L[F(U,

i—

(0)) = F(U,,

1
‘T2

N1,

which by virtue of (6.4) and (6.15) leads to the desired result (6.11)—(6.12),
and thus the proposition has been proved.

1
2

The following remarks are in order:

e The CFL condition (6.13) for the second version (6.11)—(6.12) of the Go-
dunov method is more generous than (6.9), thus allowing a larger time
step. This in turn results in a more efficient time—marching scheme. Here
a wave is allowed to travel, at most, a complete cell length Az in a time
At.

e Condition (6.13) remains valid even if wave interaction takes place in time
At within cell I;, under the assumption that no wave acceleration takes
place as a consequence of wave interaction; this is a kind of linearity as-
sumption. Condition (6.13) is necessary in (6.16) when computing the
fluxes along the left and right intercell boundaries.

e The second version (6.11)—(6.12) of the Godunov method is the one that
is used for practical computations.

6.3 Godunov’s Method for the Euler Equations

Here we describe Godunov’s method for the specific case of the time—
dependent, one-dimensional Euler equations. As data {U?} at time level n is
assumed, in order to march the solution to time level n+1 via the conservative
formula (6.11) we need to compute the intercell fluxes F; 1 and F; 1.
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6.3.1 Evaluation of the Intercell Fluxes

For a generic cell interface at z, , 1 we compute the Godunov flux F, 1 ac-
cording to (6.12). We therefore require the solution Uy 1 (x/t) of the Riemann
problem RP(U}, U}, ) evaluated at the point S = x/t = 0.

(a1) (b1)
(@2) (b2)
(a3) (b3)
(a4) (b4)
(a5) (b5)

Fig. 6.5. Possible wave patterns in evaluating the Godunov flux for the Euler
equations:(a) positive particle speed in the Star Region (b) negative particle speed
in the Star Region

In Chap. 4 we presented the complete exact solution to a general Riemann
problem RP(U}, U}, ) for the Euler equations. In practice we use the solution
in terms of the primitive variables, which we denote by W, 1, (x/t). Having
found W, 1 (x/t) its evaluation at any point S = z/t is carried out by the
subroutine SAMPLE in the FORTRAN program given in Sect. 4.9 of Chap. 4.
Sampling requires the identification of ten possible wave patterns; these are
illustrated in Fig. 6.5. The flow chart of Fig. 4.14 in Chap. 4 relates to the
five sub—cases arising from the case in which the sampling point S lies to
the left of the contact discontinuity. There is an analogous flow chart for the
five sub—cases arising from the case in which the sampling point S lies to the
right of the contact discontinuity. For the Godunov method the sampling is
performed for the special value S = z/t = 0. Unfortunately, this does not
simplify the sampling procedure and all ten possible wave patterns must be
taken into account; these are shown in Fig. 6.5. Recall that in our convention
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a shock is a single thick ray, a contact is a dashed line and a rarefaction wave
is obviously a fan. A wave of unknown character is represented by a pair of
rays emanating from the origin. There are two situations, each of which has
five cases, namely (a) 0 < u, (positive particle speed in the Star Region) and
(b) 0 > u, (negative particle speed in the Star Region). The sampled value
Wi (0) needed for evaluating the Godunov flux is given in Table 6.1 for all
ten possible wave patterns; see Fig. 6.5. Consider for example the situation in
which wu, is positive. In order to compute correctly the value W, +%(O) along
the t—axis (left of contact) we must identify the character of the left wave.
This can be a shock, cases (al) and (a2), or a rarefaction wave, cases (a3),
(a4) and (ab). If the left wave is a shock wave we compute the state W,
between the left shock and the contact using shock relations, see Sect. 4.5.1
of Chap. 4. Then the speed Sy, of the left shock is computed. This then allows
us to test whether the shock speed is positive (supersonic flow) or negative
(subsonic flow). If Sy, > 0 then

If St < 0 then
W, 1(0)= W,y .

The analysis for the remaining cases (a3) to (ab) is analogous, as is for the
set of cases (bl) to (b5). Details are omitted.

Sub-case|Case (a): positive speed u,|case (b): negative speed .,
1 Wi, Wr
2 W.L W.r
3 Wi Wr
4 W.i, W.r
5 WLfan WRfan

Table 6.1. Value of W 1(0) required for evaluating the Godunov flux, for
all ten possible wave patterns in the solution of the Riemann problem

Having identified the desired value W, +%(0) the intercell (6.12) becomes
Fi+% - F(Wi+%(0)) :

Exercise 6.2. Construct a flow chart for computing the Godunov flux for
the time-dependent, one-dimensional Euler equations.

Solution 6.3. (Left to the reader).

Exercise 6.4. Draw all possible wave patterns required for evaluating the
Godunov flux for the isentropic equations of Gas Dynamics; see Sect. 2.4.4 of
Chap. 4. Construct a flow chart for computing the Godunov flux.

Solution 6.5. (Left to the reader).
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6.3.2 Time Step Size

So far we know how to compute the intercell flux (6.12) to be used in the
conservative formula (6.11). The spatial discretisation length Ax is chosen
on desired accuracy or available computing resources. What remains to be
determined in (6.11) is the size of the time step At¢. This is based on the
condition (6.13). The time step is then given by

PA)
A = Candz (6.17)
Shhax
Here C.q is a Courant or CFL coefficient satisfying
0<Cpp<1. (6.18)

The closer the coefficient C.q is to 1, the more efficient the time marching
scheme is. S} .. is the largest wave speed present throughout the domain at
time level n. This means that no wave present in the solution of all Riemann
problems travels more than a distance Az in time At. As discussed in Chap. 5
in the context of simple problems, there are various ways of estimating S, ..

For the time-dependent, one dimensional Euler equations a reliable choice is

St = max {| S5y 1SR, 1} (6.19)
for i« = 0,..., M, where Sh_l, Sﬁ; are the wave speeds of the left and
2 2

right non-linear waves present in the solution of the Riemann problem
RP(U}, U}, ;). Recall that this Riemann problem generates three waves; the
fastest are the non-linear waves, which can be shocks or rarefactions. For
rarefaction waves one selects the speed of the head. For shock waves one se-
lects the shock speed, naturally. Note that in sampling the wave speeds one
must include the boundaries, as these might generate large wave speeds. Us-
ing (6.19) to find ST, . and thus At according to (6.17), is a simple and very
reliable procedure. As the local solutions of Riemann problems are available
for flux evaluation, it is just a question of using this information to find At
as well. For multi-dimensional problems however, this scheme for estimating
the maximum wave speed is unsuitable; see Sect. 16.3.2 of Chap. 16.

A popular alternative for estimating S} ., which extends to multi-dimensional
problems, is

Sn

max

=max{| u} | +ai'} . (6.20)

Only data values for the particle velocity u]' and sound speed a}' are used here.
It is not difficult to see however that (6.20) can lead to an underestimate of
SP .- For instance, assume shock-tube data in which the flow is stationary
at time ¢ = 0. Then «} = 0 and the sound speed is the only contribution
to Sy .x- Underestimating Sy . results in a choice of At that is too large
and instabilities may be developed from the beginning of the computations.
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A possible way of remedying this, is by choosing the CFL coefficient C.q in
(6.17) cautiously. If S”__ is known reliably then the choice C.q = 1 is probably
adequate, although this implies that waves pass through each other without
acceleration, which is a kind of linearity assumption. A practical choice is
Cen = 0.9. If there are uncertainties in the estimate for S}, such as when
(6.20) is used, a more conservative choice for Ceq is advised. In spite of the
alluded disadvantages of choice (6.20), it provides a practical approach when

computing solutions to multi-dimensional problems. See Chap. 16.

6.3.3 Boundary Conditions

For a domain [0, L] discretised into M computing cells of length Az we
need boundary conditions at the boundaries * = 0 and x = L as illustrated
in Fig. 6.6. Numerically, such boundary conditions are expected to provide
numerical fluxes F 1 and Fp; . 1 These are required in order to apply the
conservative formula (6.11) to update the extreme cells I; and Iy to the next
time level n 4 1. The boundary conditions may result in direct prescription of
F% and F, e Alternatively, we may prescribe fictitious data values in the
fictitious cells Iy and Iyr41, adjacent to I3 and Is respectively; see Fig. 6.6.
In this way, boundary Riemann problems RP(Ug, UT) and RP(UY},, U}, )
are solved and the corresponding Godunov fluxes F 1 and F ), 1 are com-
puted, as done for the interior cells. The imposition of boundary conditions

Left Right
boundary Computational boundary
\ domain /

0 x=0

( 1 Mo L ( M+1
Left Right
fictitious cell fictitious cell

Fig. 6.6. Boundary conditions. Fictitious cells outside the computational domain
are created

is, fundamentally, a physical problem. Great care is required in their numeri-
cal implementation. For the Godunov method this task tends to be facilitated
by the fact that local Riemann problem solutions are used. Here we consider
only two types of boundaries: reflective and transparent or transmissive.

Reflective Boundaries

Consider the boundary at = L and suppose it physically consists of
a fixed, reflective impermeable wall. Then the physical situation is correctly
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modelled by creating a fictitious state W7, ; on the right hand side of the
boundary and defining the boundary Riemann problem RP(W%,, W, ).
The fictitious state W, is defined from the known state W7, inside the
computational domain, namely

P?/[Jrl =P u?/prl = —uly , p?v1+1 = Phr - (6-21)

The exact solution of this boundary Riemann problem consists of either (i)
two shock waves if u’, > 0 or (ii) two rarefaction waves if v}, < 0. In both
cases u, = 0 along the boundary; this is the desired condition at the solid,
fixed impermeable boundary. Consequently, the only non-zero contribution
to the flux vector at the boundary is in the momentum component and is due
to the pressure p, corresponding to u. = 0. In both cases the solution can
be obtained in closed form, no iteration is required. As a matter of fact, a
closed—form solution exists for the more general case in which the fluid under
consideration obeys the covolume equation of state and the impermeable wall
moves with a prescribed speed uyan [498]. The boundary conditions are

P%H =P > UTJ\L4+1 = —ulyy + 2Uyan , P7AL4+1 =i - (6.22)

The exact solution of the Riemann problem RP(W?7,, W7}, ) containing
a moving boundary is symmetric about the path of the moving wall and
consists of either (a) two shocks or (b) two rarefactions, with the contact
wave coinciding with the moving wall, as desired. See Fig. 6.7.

Path of moving wall

(a) Two shocks (b) Two rarefactions

Fig. 6.7. Boundary Riemann problem for moving wall. Contact surface coincides
with moving solid boundary: (a) solution consists of two shocks and the contact (b)
solution consists of two rarefactions and the contact

We now find the exact solution for p, and w, in the moving—wall Riemann
problem. From the analysis of the exact function for pressure, see Sect. 4.3 of
Chap 4, it is seen that if Au= —2(ups — uwan) = 0, that is ups = tyan, then
the solution p, for pressure at the boundary is p. = ppr = pasy1. For Au >0
we have p. < py = pamy1, that is, the solution consists of two rarefaction
waves, see Fig. 6.7b. For Au < 0 we have p. > ppr = par41 and the solution
consists of two shocks, see Fig. 6.7a. For the case of two rarefaction waves,
upr < Uwanl, direct utilisation of the data in the pressure function f(p) = 0,
see Sect. 4.3 of Chap 4, gives
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b= [ 50-1) (52 - (6.23)

For the case of two shocks, up; > Uwal, we have

Cum z
Pe =Pyt oy {CM + [C3; +4Ay (By +pu)) } ; (6.24)
where
2 (v—1)
Ay=———, By = , Oy = — Uwall - 6.25
M (7+1)pM M (74_1)]91\4 M = UM — Uwall ( )

As anticipated, the solution for the velocity u, in both cases is found to be
Uy = Uwall - (6.26)

These closed—form solutions for the pressure and velocity at the boundary
(fixed or moving) can also be utilised in the Godunov method even when
this is used in conjunction with approximate Riemann solvers, particularly if
these are thought to be inaccurate for boundary data Riemann problems. A
useful discussion on solid-body boundary conditions for the Euler equations
in multi-dimensional domains is given by Rizzi [404]. A recommended paper
on boundary conditions for hyperbolic problems is that of Thompson [489].

Transmissive Boundaries

Transmissive, or transparent boundaries arise from the need to define fi-
nite, or sufficiently small, computational domains. The corresponding bound-
ary conditions are a numerical attempt to produce boundaries that allow the
passage of waves without any effect on them. For one-dimensional problems
the objective is reasonably well attained. For multi-dimensional problems this
is a substantial area of current research, usually referred to as open—end bound-
ary conditions, transparent boundary conditions, far—field boundary condi-
tions, radiation boundary conditions or non—reflecting boundary conditions.
For a transmissive right boundary we suggest the boundary conditions

P%H =P 5 UXIH = uhy , pnM+1 = Phr - (6.27)

This data produces a trivial Riemann problem. No wave of finite strength is
produced at the boundary that may affect the flow inside the domain. Useful
publications dealing with transparent boundary conditions are those of Giles
[205], Bayliss and Turkel [34], Roe [413] and Karni [277].

For an assumed mesh of size Az, we have defined all details for the practical
implementation of the Godunov method, see (6.11)—(6.13). These are

e intercell fluxes

e the maximum wave speed S

" o b0 compute the time step size At, and
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e boundary conditions.

Remark 6.6. The wave speeds generated at the boundaries, after applying
boundary conditions, must be taken into account when selecting the time step
At.

Exercise 6.7. Write a flow chart to implement the Godunov method to
solve the one—dimensional, time dependent Euler equations in a tube of con-
stant cross sectional area. Assume the left wall is impermeable and fixed and
the right wall is transparent.

Solution 6.8. (Left to the reader).

6.4 Numerical Results and Discussion

Here we illustrate the performance of Godunov’s first—order upwind method
for the Euler equations on test problems with exact solution. For comparison
we also show numerical results obtained by the Lax—Friedrichs and Richt-
myer (or two-step Lax-Wendroff) methods, discussed in Chap. 5. In all
chosen tests, data consists of two constant states Wr, = (pr,ur,pr)? and
Wr = (pr,ur, pr)’, separated by a discontinuity at a position # = x¢. The
states W, and W are given in Table 6.2. The ratio of specific heats is chosen
to be v = 1.4. For all test problems the spatial domain is the interval [0, 1]
which is discretised with M = 100 computing cells. The Courant number co-
efficient is Ceq = 0.9; boundary conditions are transmissive and 57}, is found
using the simplified formula (6.20).

Remark 6.9. Given that formula (6.20) is not reliable, see discussion in
Sect. 6.3.2, in all computations presented here we take, for the the first 5 time
steps, a Courant number coefficient C.g reduced by a factor of 0.2. This allows
for waves to begin to form, after which formula (6.20) becomes more reliable.

The exact solutions were found by running the code HE-EIRPEXACT of
the library NUMERICA [519] and the numerical solutions were obtained by
running the code HE-E1GODSTATE of NUMERICA.

Test| pr, ur, PL PR UR Pr
1 1.0 0.75 1.0 0.125 0.0 0.1
2 1.0 -2.0 0.4 1.0 2.0 0.4

3 1.0 0.0 1000.0| 1.0 0.0 0.01
4 15.99924| 19.5975 [460.894(5.99242| -6.19633 |46.0950
5 1.0 |-19.59745| 1000.0 | 1.0 |-19.59745| 0.01

Table 6.2. Data for five test problems with exact solution. Test 5 is like Test
3 with negative uniform background speed
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Test 1 is a modified version of the popular Sod’s test [453]; the solution
consists of a right shock wave, a right travelling contact wave and a left sonic
rarefaction wave; this test is very useful in assessing the entropy satisfaction
property of numerical methods. Test 2 has solution consisting of two sym-
metric rarefaction waves and a trivial contact wave of zero speed; the Star
Region between the non-linear waves is close to vacuum, which makes this
problem a suitable test for assessing the performance of numerical methods
for low—density flows; this is the so called 123 problem introduced in chapter
Chap. 4. Test 3 is designed to assess the robustness and accuracy of numerical
methods; its solution consists of a strong shock wave, a contact surface and
a left rarefaction wave. Test 4 is also designed to test robustness of numeri-
cal methods; the solution consists of three strong discontinuities travelling to
the right. See Sect. 4.3.3 of Chap. 4 for more details on the exact solution of
these test problems. Test 5 is also designed to test the robustness of numerical
methods but the main reason for devising this test is to assess the ability of
the numerical methods to resolve slowly— moving contact discontinuities. The
exact solution of Test 5 consists of a left rarefaction wave, a right—travelling
shock wave and a stationary contact discontinuity. For each test we select a
convenient position x of the initial discontinuity and an output time. These
are stated in the legend of each figure displaying computational results.

Figs. 6.8 to 6.12 show comparisons between exact solutions (line) and
numerical solutions (symbol) at a given output time obtained by the Godunov
method, for all five test problems. The quantities shown are density p, particle
speed u, pressure p and specific internal energy e. For comparison, we also
solved these test problems using the Lax—Friedrichs method, see Figs. 6.13 to
6.17, and the Richtmyer (or two-step Lax—Wendroff) method, which failed to
produce solutions to Tests 2 to 5. For Test 1 the solution of the Richtmyer
scheme is shown in Fig. 6.18.

6.4.1 Numerical Results for Godunov’s Method

The results for Test 1, shown in Fig. 6.8, are typical of the Godunov’s
first—order accurate method described in this chapter.

The numerical approximation of the shock wave, of zero—width transition
in the exact solution, has a transition region of width approximately 4Ax;
that is, the shock has been smeared over 4 computing cells. This spreading
of shock waves may seem unsatisfactory, but it is quite typical of numerical
solutions; in fact most first-order methods will spread a shock wave even
more. A satisfactory feature of the numerical shock wave of Fig. 6.8 is that it
is monotone , there are no spurious oscillations in the vicinity of the shock, at
least for this example. Monotonicity of shock waves computed by the Godunov
method depends on the speed of the shock and it holds in most cases except
when the shock speed is very close to zero. The contact discontinuity, seen
in the density and internal energy plots, is smeared over 20 cells; generally
contact waves are much more difficult to resolve accurately than shock waves.
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This is due to the linear character of contacts; characteristics on either side
of the wave run parallel to the wave. In shock waves, characteristics on either
side of the wave run into the shock, a compression mechanism that helps the
numerical resolution of shock waves. As for the shock case, the solution for
the contact is perfectly monotone.

Another positive feature of the numerical approximation of the disconti-
nuities is that their speed of propagation is correct and thus their average
positions are correct. This is a consequence of the conservative character of
Godunov’s method. The rarefaction wave is a smooth flow feature and is rea-
sonably well approximated by the method except near the head and the tail,
where a discontinuity in derivative exists. Another visible error in the rarefac-
tion is the small discontinuous jump within the rarefaction. This is sometimes
referred to as the entropy glitch and arises only in the presence of sonic rarefac-
tion waves, as in the present case. Godunov’s method is theoretically entropy
satisfying [244] and we therefore expect the size of the jump in the entropy
glitch to tend to zero as the mesh size Az tends to zero. Fig. 6.19 shows the
result obtained by refining the mesh by a factor of 5. It appears as if the
numerical solution does converge to the exact solution.

The performance of Godunov’s method on Test 2, see Fig. 6.9, is generally
quite satisfactory as regards the physical variables p, u and p but not so
much for the specific internal energy, which is computed from p and p as
e =p/((y—1)p). In this low density example both pressure and density are
close to zero and thus small errors will be exaggerated by their ratio. In any
case, it is generally accepted that plots of the internal energy e can be quite
revealing of the quality of the numerical solution. On the other hand pressure
is probably the easiest quantity to get right. The main point of Test 2 is to
make the reader aware that this class of low density flows can easily cause
numerical methods to fail; even the robust Godunov method fails if used in
conjunction with certain approximate Riemann solvers [182]. The Richtmyer
(or two—step Lax—Wendroff) method fails to give a solution to this problem.

Test 3 is a very severe problem and is designed to test the robustness
of the Godunov method, the results of which are shown in Fig. 6.10. The
emerging right travelling shock wave has pressure ratio p./pr = 46000 and
a corresponding shock Mach number of 198. For flows involving such strong
shock waves as this, one would seriously question the validity of the ideal gas
equations of state. However, from the point of view of assessing the robust-
ness of numerical schemes, the validity of the test problem as a mathemat-
ical/numerical problem still holds. As for Test 1, the resolution of disconti-
nuities is worst for the contact wave; as a consequence of this, post shock
values are not attained, as is clearly seen in the density plot. The velocity
plot shows a kind of overshoot near the tail of the rarefaction. The Richtmyer
(or two-step Lax—Wendroff) scheme failed for this test.

As seen in Fig. 6.11 the solution of Test 4 consists of three discontinuities:
two shock waves and a contact. They all travel to the right; the left shock
has a small positive speed. The complete wave system has resulted from the
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interaction of two strong shock waves propagating in opposite directions. The
right shock is the fastest wave and is smeared over 5 cells, as seen in the
pressure plot; the left, slowly moving shock is sharply resolved (two cells)
but is not monotone; there are some low frequency spurious oscillations in its
vicinity, as seen in the internal energy plot. The contact discontinuity is heavily
smeared. Slowly moving shocks are sharply resolved by Godunov’s method.
In fact, isolated shocks and contacts of zero speed are perfectly resolved, if
non—defective Riemann solvers are used, see Chap. 10. The phenomenon of
spurious oscillations in slowly moving shocks has been studied by Roberts
[406] and is so far, to the author’s knowledge, an unresolved difficulty. Billett
and Toro [60] investigated some possible cures of the problem for the Euler
equations. See also the recent papers by Arora and Roe [19] and by Karni and
Cani¢ [280].

Test 5 is like Test 3 but with a uniform, negative background speed so as
to obtain a virtually stationary contact discontinuity. In addition to testing
the robustness of numerical methods, Test 5 is mainly designed to test the
ability of numerical methods to resolve slowly-moving or stationary contact
discontinuities. Fig. 6.12 shows the result obtained from the Godunov method
as compared with the exact solution. For this test problem the contact discon-
tinuity is virtually stationary; the Godunov method resolves this discontinuity
very sharply indeed. This result should be compared with that obtained by
the Lax—Friedrichs method, Fig. 6.17. Test 5 is a very challenging test prob-
lem, as we shall illustrate in subsequent chapters dealing with other numerical
methods.

6.4.2 Numerical Results from Other Methods

First we apply the Lax—Friedrichs method, see Sect. 5.3.4 of Chap. 5, to
Tests 1 to 5. The numerical results are shown in Figs. 6.13 to 6.17. The re-
sults for Test 1 are shown in Fig. 6.13 and are to be compared with those
of Godunov’s method, Fig. 6.8. The Lax—Friedrichs scheme has the peculiar
property of pairing cell values, which enhances smearing. The shock wave is
resolved with about 8 cells and looks acceptable. The resolution of the rarefac-
tion wave and the contact discontinuity is very poor. The solution for Test 2
is shown in Fig. 6.14. Note how inaccurate the solution for internal energy is;
compare with Fig. 6.9 and with the exact solution. A large class of methods
are known to have difficulties with this kind of symmetric Riemann problems
[512]. Fig. 6.15 shows results for Test 3; the scheme is unable to attain the
post—shock density values; compare with Fig. 6.10. The results for Test 4 are
shown in Fig. 6.16, which are to be compared with those of Fig. 6.11. The Lax—
Friedrichs method, although simpler and cheaper, is significantly less accurate
than the Godunov method. Fig. 6.17 shows the result from the Lax—Friedrichs
scheme for Test 5; this result and that of Fig. 6.12 show the crucial difference
between two major classes of numerical methods, namely centred methods and
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Godunov-type methods. Test 5 highlights the fact that resolving linear waves
is perhaps one of the most challenging tasks for numerical methods today.

The second-order Richtmyer (or two—step Lax—Wendroff) method was ap-
plied to Test 1 and the results are shown in Fig. 6.18; compare with Figs. 6.8
and 6.13. The solution is generally more accurate in the smooth regions of the
flow, as is to be expected from a second—order accurate method; discontinuities
are also more sharply resolved but spurious oscillations near discontinuities
appear; see Chap. 5. This method failed to give a solution at all, for Tests 2
to d.

In this chapter we have presented the Godunov method as used in conjunc-
tion with the exact Riemann solver. Godunov’s method can also be used with
approximate Riemann solvers. In Chaps. 9 to 12 we present several approx-
imate Riemann solvers for the Euler equations. Second and third order ex-
tensions of Godunov’s method are presented in Chap. 13 for scalar problems.
In Chaps. 14 and 16 we present second—order TVD schemes for non-linear
systems.
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Fig. 6.8. Godunov’s method applied to Test 1, with xo = 0.3. Numerical (symbol)
and exact (line) solutions are compared at the output time 0.2 units
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Random Choice and Related Methods

7.1 Introduction

In 1965, Glimm [212] introduced the Random Choice Method (RCM) as
part of a constructive proof of existence of solutions to a class of non-linear
systems of hyperbolic conservation laws. In 1976, Chorin [110] successfully
implemented a modified version of the method, as a computational technique,
to solve the Euler equations of Gas Dynamics. In essence, to implement the
RCM one requires (i) exact solutions of local Riemann problems and (ii) a
random sampling procedure to pick up states to be assigned to the next time
level. As we shall see, there is a great deal of commonality between the RCM
and the Godunov method presented in Chap. 6. Both schemes use the exact
solution of the Riemann problem, although Godunov’s method can also be
implemented using approximate Riemann solvers, as we shall see in Chaps. 9
to 12. The two methods differ in the way the local Riemann problem solutions
are utilised to march to the next time level: the Godunov method takes an
integral average of local solutions of Riemann problems, while the RCM picks a
single state, contained in the local solutions, at random. The random sampling
procedure is carried out by employing a sequence of random numbers. The
statistical properties of these random numbers have a significant effect on the
accuracy of the Random Choice Method.

Since the introduction of the RCM as a computational scheme by Chorin,
there have been many contributions to the development of the method. Chorin
himself [111] extended the RCM to combustion problems; Sod [452] applied
the RCM to the one—dimensional Euler equations for cylindrically and spher-
ically symmetric flows, thereby introducing a way of dealing with algebraic
source terms. Concus [138] applied the RCM to a non-linear scalar equation
governing the two—phase flow of petroleum in underground reservoirs. Major
contributions to the method were presented by Colella [131], [132]; these in-
clude a better understanding of the method, its strengths and limitations, and
improved random sampling techniques. Marshall and Mendez [339] applied
the RCM to the one-dimensional shallow water equations. Li and Holt [317]
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applied the RCM to the study of underwater explosions. Marshall and Plohr
[340] applied the RCM to solve the steady supersonic Euler equations, see also
Shi and Gottlieb [443], and to the study of shock wave diffraction phenom-
ena. Gottlieb [221] compared the implementation of the RCM on staggered
and non-staggered grids and introduced an effective way of using irregular
meshes. Toro [498] applied the RCM to covolume gases with moving bound-
aries. Applications of the RCM to the study of reactive flows were performed
by Saito and Glass [422], Takano [476], Singh and Clarke [449] and Dawes
[151]. Olivier and Gronig [364] applied the RCM to solve the two—dimensional
time dependent Euler equations to study shock focussing and diffraction phe-
nomena in water and air.

Essentially, the RCM is applicable to scalar problems in any number of
dimensions and to non—linear systems in two independent variables. Examples
of these systems are the one—dimensional, time dependent Euler equations, the
two—dimensional, steady supersonic Euler equations and the one-dimensional
shallow water equations. By using splitting schemes, see Chap. 15, one can
also solve extensions of these systems to include algebraic source terms or
even terms to model viscous diffusion; see Sod [455] and Honma and Glass
[256]. A fundamental limitation of the RCM is its inability to solve multi—
dimensional non-linear systems via splitting schemes, which usually work well
when extending other schemes to multi-dimensional problems; see Chap. 16.
An attraction of the RCM is its ability to handle complex wave interaction
involving discontinuities such as shock waves and material interfaces; these
are resolved as true discontinuities. Most other methods will smear disconti-
nuities over several computing cells, a problem that is particularly serious for
contact surfaces. Although computed discontinuities in the RCM have infinite
resolution, the position of these waves at any given time has an error, which
is random in character. The randomness of the RCM also shows in resolving
smooth waves, such as rarefactions. Such randomness is tolerable when solving
homogeneous systems, i.e. no source terms. In the presence of source terms
however, the randomness tends to be enhanced.

This chapter is primarily devoted to the conventional Random Choice
Method, but we also present what appears to be a new random choice method
[513] that is analogous to the Lax-Friedrichs (deterministic) scheme. In addi-
tion we present a, deterministic, first-order centred (FORCE) scheme based on
a reinterpretation of the conventional RCM on a staggered grid. The presenta-
tion of the schemes is given in terms of the time—dependent, one dimensional
Euler equations. The reader is advised to review Chap. 4 before proceeding
with the study of the present chapter.

7.2 RCM on a Non—Staggered Grid

We consider the general Initial Boundary Value Problem (IBVP) for non—
linear systems of hyperbolic conservation laws, namely
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PDEs : U, + F(U), =0,
ICs  :U(z,0) = UO (), (7.1)
BCs :U(0,t) = U(t), U(L,t) = U,(1).

We assume a solution to this IBVP exists. Here U(z,t) is the vector of con-
served variables, F(U) is the vector of fluxes, U®)(z) is the initial data at
time ¢t = 0, [0, L] is the spatial domain and boundary conditions are, for the
moment, assumed to be represented by the boundary functions Uj(t) and
U, (t).

In the RCM the only step in which one is required to work with the vector
of conserved variables is at the level of the Riemann problem, when enforcing
the Rankine-Hugoniot Conditions at shocks. All other steps of the method
are more conveniently performed in terms of the vector of primitive variables,
which for the Euler equations are W = (p,u,p)T; p is density, u is velocity
and p is pressure.

7.2.1 The Scheme for Non—Linear Systems

As for the Godunov method studied in Chap. 6, we discretise the spatial
domain [0, L] into M computing cells I; = [z;_1,z;, 1] of size Aw =z, 1 —
Ti1 = L/M, with i = 1,..., M. For a given cell I;, the location of the cell

centre x; and the cell boundaries z,_ 1, Ty 1 are given by

1

zi_y=(i—1)Az, zi:(i—i)Ax, Tipy =iAz. (7.2)

For convenience we choose cells of regular size Ax, but this is not a necessary

t
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1
Xi-1/2 A M X2

Fig. 7.1. Discretisation of domain for the Random Choice Method on a non—
staggered grid

requirement for implementing the RCM. Fig. 7.1 illustrates the non—staggered
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grid arrangement for this version of the Random Choice Method. The solu-
tion is updated at the cell centres x;, every time step. Obviously, the time
step is, in general, of different size for every time step. Given general initial

w
Ak
| | X
o—--—0 O o—--—o——
1 i-1 i i+1 M

Fig. 7.2. Piece—wise constant distribution of data at time level n. Pairs of neigh-
bouring states define data for local Riemann problems

data W (x,t™) at time ¢ = " say, in order to evolve the solution to a time
t"tl = ¢m 1 At, the Random Choice Method first assumes a piecewise con-
stant distribution of the data. Formally, this may be realised by defining cell
averages as in the Godunov method, see Sect. 6.1 of Chap. 6. For the RCM
this is not necessary and we assume that the given data at the cell centres x;
is constant throughout the respective cell I;. We then have W (z,t") = W
in each cell I;. Fig. 7.2 shows the distribution of a typical variable wy at a
given time level n.

The pairs of neighbouring, constant, states W', W, | define local Rie-
mann problems RP(W7', Wi, ), which have similarity solutions W, , 1 (2/1).
In Chap. 4 we provided the complete exact solution to the Riemann prob-
lem for the Euler equations along with a deterministic sampling procedure
contained in the FORTRAN 77 program of Sect. 4.9. Given a time t*, the
sampling routine SAMPLE evaluates W, 1 (/t") at any point z in an interval
[x1, z,] with z; < 0 < z,. A detailed understanding of the complete exact solu-
tion of the Riemann problem is essential for understanding and implementing
the RCM. Fig. 7.3 illustrates the structure of a typical Riemann problem solu-
tion and a typical sampling range of the solution at a given time ¢*, across the
wave structure. In the Random Choice Method the particular point x = z* is
picked up at random within the sampling range [z}, 2;]. The sampling routine
SAMPLE evaluates W, 1 (27 /") automatically. See Sect. 4.9 of Chap. 4.

The Random Choice Method updates the solution from the data value
W? in cell I; at time level n, to the value W1 at time level n + 1, in two
steps as follows:
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Sampling range for x*

/ X
0
Xl XI’
Fig. 7.3. Spacial sampling range in the solution of the Riemann problem at a given
time ¢t = ¢*
Step I:  Solve the Riemann problems RP(W}_;, W}) and RP(W}, W7, )

Step 1II:

to find their respective solutions W;_1 (z/t) and W 1 (2/1). Fig. 7.4
shows typical wave patterns emerging from the intercell boundaries

T 1 and ;1.

Random samﬁle these solutions at time At within cell I; to pick up
a state and assign it to cell /;. The random sampling range is shown
in Fig. 7.4 by a thick horizontal line. The picked up state depends
on a random, or quasi-random, number 6" in the interval [0, 1]. The

updated solution is then
Wi,%(Q”Ax/At) ,ifo< o < % ,
(7.3)

wntl =
Wi 1 ((0" = 1)Az/At) | if f<on<t.

Random sampling along here
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Fig. 7.4. The RCM on non-staggered grid. Solution is updated to time level n by
random sampling solutions of Riemann problems within cell I; at time At
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The case in which 0 < 0™ < % is illustrated in Fig. 7.5. Here the updated
solution depends on the random sampling procedure applied to the right side
of the left Riemann problem solution W;_1 (x/t). The particular randomly
chosen state is returned by the sampling routine SAMPLE, called with the
argument

At

The resulting state is then assigned to the grid point ¢, which is regarded as
the solution in cell I; for the next time level. A similar procedure is applied
if % < 0™ < 1. In this case one samples the left side of the right Riemann
problem solution W, 1 (z/t). When programming the non—staggered version
of the Random Choice Method there are many ways of organising the tasks
of (i) solving of Riemann problems and (ii) random sampling their solutions.

Concerning the use of random numbers in the scheme, Chorin [110] estab-
lished that one only requires a single random number " for a complete time
level n. In Glimm’s proof [212] one may take one random number per time
step per cell. In Sect. 7.5 we discuss generation of random numbers and their
properties.

Finally, we note the relationship between the RCM scheme to obtain the
updated value W?H and the Godunov method, see Chap. 6. The Godunov
scheme, instead of random sampling the solution of the relevant Riemann
problems, will take the integral average of these local Riemann problem solu-
tions

1 34z T 1 /0 T
Ut = oy (E) da + Am/;m U, (E) dr. (7.4)

In order to preserve the conservative character of the Godunov method, the

—

Sampled
point '
[~

, . Random sampling
i range for left
! . Riemann problem

1
] Grid point i

i-1/2 2

Fig. 7.5. RCM sampling of the right-hand side of the left Riemann problem solu-
tion, when 0 < " < % Sampled state is assigned to the centre of cell I;

averaging is performed in terms of the conserved variables. The RCM, on the
other hand, is not strictly conservative, although one may regard the scheme
as being conservative in a statistical sense.
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7.2.2 Boundary Conditions and the Time Step Size

The solution updating procedure just described is completely defined for
all cells I;, except for those next to the boundaries, namely I; and I;. In
order to update these two cells we apply boundary conditions. This is carried
out in exactly the same way as for the Godunov method, see Sects. 6.3.2 and
6.3.3 of Chap. 6. Fictitious states Wy and W ;1 adjacent to states W1 and
W, are defined. The otherwise missing Riemann problem solutions W 1 (z/t)
and W, 1 (z/t) at the boundaries are now defined and the random sampling
procedure can now be extended to the full computational domain. We consider
two types of boundary conditions, as for the one-dimensional time dependent
Euler equations.

(I)  Transmissive Boundary Conditions. Here the fictitious states are given
as
po =Pt ug =ul, py =pr,
(7.5)
P%H =P > u’fv1+1 =ujy , p"M+1 =phr -
(IT) Reflective Boundary Conditions. Here we state the boundary conditions
that apply to reflective left and right boundaries moving with respective
speeds Uy and uy,. The fictitious states are given by

n n n __ n n ___ el
po = P15 Uy = —uy + 2uwi , py =PY s

(7.6)
Pr+1 = Phr s Unpyr = —Upp + 2Uwr s Phyyg = Py -

For a more complete discussion on boundary conditions see Sect. 6.3.3 of
Chap. 6.

The choice of the time step At is determined by a CFL condition. Note
first that in order to perform the random sampling described previously, we
need to make the assumption that no wave interaction takes place within
cell I;, in the chosen time At, see Fig. 7.4. This is satisfied by imposing the
following restriction on the size of At, namely

1
sA
At < ;nil‘ ) (7.7)

max

where S, denotes the maximum wave velocity present throughout the do-

main at time t". A consequence of this restriction is that only two Rie-
mann problem solutions affect cell I;, namely the right travelling waves of
W, _1(z/t) and the left travelling waves of W, 1 (x/t). Condition (7.7) may
be expressed in the standard form

A
At = % , (7.8)

max

where the CFL coefficient C.q satisfies
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1
0< Ceg < R (7.9)

Hence the Random Choice Method has a stability limit of %, which is only
half that of Godunov’s method.

Concerning the choice of the maximum wave speed S}, . the reader is
referred to Sect. 6.3.2 of Chap. 6. Virtually all relevant remarks made there in
the context of the Godunov method apply. For the RCM we recommend the
use of the true waves arising from the solutions of local Riemann problems.
The collective experience in applying the RCM is that the scheme is not too
sensitive to underestimating Sy .. If S7 . is underestimated then the chosen
time step At will be too large and the likely consequence will not be signs
of instabilities, as one would expect, but computed waves will propagate at
obviously the wrong speed.

We have presented the Random Choice Method on a non-staggered grid
as applied to any time—dependent one dimensional non-linear systems of hy-
perbolic conservations laws. Details of boundary conditions for the time—
dependent one dimensional Euler equations have been given, for which nu-

merical results are presented in Sect. 7.6.

7.3 A Random Choice Scheme of the Lax—Friedrichs
Type

Here we present a Random Choice Method that arises from interpreting
the Lax—Friedrichs scheme as an integral average of solutions of Riemann
problems; see [513], [515]. If these averages are transformed by use of the
integral form of the conservation laws one recovers the usual Lax—Friedrichs
scheme for non—linear systems, thus eliminating the role of the Riemann prob-
lem. If the role of the Riemann problem solution is preserved and the integral
averages are interpreted in a stochastic sense one obtains a Random Choice
Method of the Lax—Friedrichs type.

7.3.1 Review of the Lax—Friedrichs Scheme

As seen in Sect. 5.3.4 of Chap. 5, the Lax—Friedrichs scheme as applied to
the linear advection equation

Ut + f(u)w =0, f(u) = au (710)
reads 1 1
Ut = ( ‘QFC) ul |+ %u?ﬂ , (7.11)

This is obviously identical to the integral average

1 [T} 1
wrt = E/ e, At do (7.12)
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within cell i, in which 4;(x,t) is the solution of the Riemann problem
RP(u?—1>u?+1)7 that iS

. Jur ifzft<a,
(/1) = {u?ﬂ ife/t>a. (7.13)

See Fig. 7.6. The Lax-Friedrichs solution in cell i at time t"*! = t" + At
is a weighted average of the solution of the Riemann problem with the left
u!" ; and right u!,; neighbour states as data, at time ¢t = 1 At. Note the two
peculiarities of the scheme, (i) the data states do not include u}* and (ii) the
time for the averaging is half the full time step At.

i-1 i i+1

\ \ \ \

| | i —
| t
j 1 / Average
| | along here
i 1 At

\ i / 2

& & X

Fig. 7.6. Reinterpretation of the Lax-Friedrichs scheme for the linear advection
equation.

7.3.2 The Scheme

We first generalise interpretation (7.12) of the Lax-Friedrichs scheme to
non—linear systems of conservation laws

U, +FU),=0. (7.14)
The scheme reads
1 Titd . 1
Ut = E/ U, sS4t da, (7.15)

xZ .
i—

[N

where U, (z, t) is the solution of the Riemann problem RP(U? |, U7, ). There
are now three possible routes to follow. These are

(i) Solve Riemann problems and find the updated solution by evaluating
(7.15) directly. Numerical results of this scheme are indistinguishable
from those obtained from the conventional, much simpler, Lax—Friedrichs
scheme. We therefore discard this as a useful scheme.
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(ii) Apply the integral form of the conservation laws to (7.15) to reproduce
the conventional Lax—Friedrichs scheme for non—linear systems, and thus
eliminate the role of the Riemann problem, see Sect. 5.3.4 of Chap. 5.

(iii) Keep the role of the Riemann problem and reinterpret (7.15) in a stochas-
tic sense. We obtain

"2

1Az
1 . 1
urtl = — U, (0" Az, = At)d 1

7 jw/;Ax l( I72 ) I? (7 6)

where 0™ is a random number satisfying

,}<9n§

5 < . (7.17)

N | =

A Random Choice Scheme for updating the solution to the new time level is
thus obtained, namely

S 1
Ut = U,(0" Ax, 340 - (7.18)
The conventional RCM has stability restriction (7.9), while the random choice
scheme (7.18) has stability condition
0<Cepi £1, (7.19)

which represents an improvement by a factor of 2.

Fig. 7.7 illustrates the Random Choice Method of the Lax—Friedrichs type
as applied to non-linear systems. The programming of the scheme is straight-
forward. Numerical results will be presented in Sect. 7.6.

i-1 i i+1
| | | | X

4
4
|
)

Random sampling
along here
At/2

= X

-

Fig. 7.7. Random choice scheme of the Lax—Friedrichs type for non—linear systems.
Updated solution in cell I; at time At is obtained from random sampling solution
of Riemann problem RP(U7_;,U7.,) at time %At
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7.4 The RCM on a Staggered Grid

As stated earlier the RCM can be implemented on a non-staggered grid
and on a staggered grid. The former version was described in Sect. 7.2. Here we
describe the RCM on a staggered grid and derive an associated deterministic
scheme that is conservative, first—order accurate and centred.

7.4.1 The Scheme for Non—Linear Systems

The staggered grid version of the RCM to solve (7.14) updates U7 to a
new value U?‘H in two steps, as illustrated in Fig. 7.8. The steps are:

Step (I) Solve the Riemann problems RP(U}_;,U}) and RP(U}, U}, ) to
find respective solutions

- nti - nt+i
U @), U ). (7.20)

Random sample these solutions at a stable time At”*é, that is

~n+i n+s ~ n+d 1
Uj_*f = U (0" Ax, AR UTTE =002 (07 A, At
(7.21)
, (z,t) and random

sample it, at a stable time At"T!, to obtain U;H'l, that is

Step (IT) Solve RP(U?:?,UZFE) to find solution U,
2 2

~ n+1

urtt =0, (0" Az, AT (7.22)

1

The time steps At"T2 and At"! need not be the same but must be
chosen according to the usual stability restriction (7.8)—(7.9) for the RCM. As
for the case of the non-staggered RCM, one may use the primitive variables
to describe the staggered grid RCM. However, for the theme of the next
section we assume the vector U in (7.20)—(7.22) to be the vector of conserved
variables.

7.4.2 A Deterministic First—Order Centred Scheme (FORCE)
Here we present a First-Order Centred deterministic scheme (FORCE)
[513], [515], that is obtained by replacing the stochastic steps (7.21)—(7.22)

by deterministic versions, via integral averages of Riemann problem solutions.
We preserve the previous notation and assume

1
At = At = AL

The stochastic integrals (7.21) are replaced by the deterministic integrals
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Fig. 7.8. Illustration of the Random Choice Method, on a staggered grid
a1 1 AT 1 At
LS — U, 2(z,=)d 7.23
S R L (7.23)
and L
SR B o O
Ui+% = /_éAI Uiz, 5 )dzx . (7.24)

Then we apply the integral form of the conservation laws, see Sect. 2.4.1 of
Chap. 2, to expressions (7.23) and (7.24). The result is

n+3 1 m n

UZ‘_; 5 ( ilfl + UZL) ZA (le 1 F:L) ) (725)
n+ 1 n At n n

Y, +§2 - §(U + UL+ Az (F} —F7) - (7.26)

We denote by IAL(I, t) the solution of the Riemann problem RP(U?JFI2 , Un+ 2)

and define an average U?H at the complete time step At in terms of an
integral average of U;(x,t) at the (local) time t = 1 At, namely

il _ 1 lAm . 1
U’ = . U, (z, §At) dx . (7.27)

This is the deterministic version of (7.22). Applying the integral form of the
conservation laws to the right-hand side of (7.27) gives

! ]+ Al L (7.28)

n+1l _ — n+3 _
U; =3 U 2+UZ+1 Az |Di-t itd

)

where
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n+3 n+3
Pl = F(U; é) F?jz (7.29)
and Ffil is the intercell numerical flux for the Richtmyer scheme; see Sect.
ch2
5.3.4 of Chap. 5.
Thus the deterministic version of the staggered—grid RCM scheme (7.21)—

(7.22) becomes (7.28). The scheme is obviously conservative and when written
in conservation form we have

" n At
Ut =ur + v (FZ,% - FH%) (7.30)
with intercell numerical flux
1 11 1 Ax
force __ n+ bt
Fir =g |Fi+s (F1+FZH)} +1 a7 (Ur —Up,) . (7.31)

A surprising outcome is that the intercell flux (7.31) is in fact the arith-
metic mean of the fluxes for the Richtmyer and Lax—Friedrichs schemes,
namely

Floge = o (FRH +FLL) (7.32)

7.4.3 Analysis of the FORCE Scheme

For the linear advection equation (7.10) the conservative scheme (7.30),
(7.32) yields

U?Jrl =b_1ui"y + bou;" + bl“?+1 ) (7.33)
with coefficients given as
1 2 1 2 1 2
b_1:1(1+c) ,bozi(l—c),blzz(l—c) . (7.34)

Proposition 7.1. The scheme (7.33)-(7.34) is

e stable, with stability condition

0<lel<t, (7.35)
where At
c= A—j : Courant Number (7.36)
monotone, and
has modified equation
1 1—c? 1
qt + aqy = QfoQey 5, Ofo = ZaAfE ( - > = §a1f y (737)

where aye is the coefficient of artificial viscosity for the Laz—Friedrichs
scheme.
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Proof. The scheme can be shown to be stable with stability condition
(7.35) by using standard von Neumann analysis, or more directly by utilising
Billett’s result, which says [58] that a scheme of the form (7.33)—(7.34) is
stable if and only if

1. bo(b_y +by) >0
2. by (bfl + bl) +4b_1b1 =B > 0.

The first condition leads to (7.35) directly, while the second condition produces

B:i[(l—cQ) (14 )+ (1+ 0210

A sufficient condition for B > 0 is again by > 0, which confirms the sought sta-
bility restriction (7.35). Concerning monotonicity, by inspection, the scheme
is monotone for Courant numbers satisfying the stability condition, i.e. all
coefficients are non—negative, see Sect. 5.2.1 of Chap. 5. The result (7.37) is
obtained by using standard analysis.

Numerical results of the FORCE scheme for the Euler equations are pre-
sented in Sect. 7.6. High—order extensions are presented in Chaps. 13 and 14;
these high—order schemes also extend to multi—dimensional problems following
the splitting techniques presented in Chap. 16.

7.5 Random Numbers

The quality of the computed RCM solution depends crucially on the ran-
dom numbers {6"}. Research in this area has produced some very effective
guidelines. For example, it has been established that the more random the
generation of {6™}, the worse the computed RCM results. Colella [131], [132]
introduced the use of pseudo-random numbers of the van der Corput type.

7.5.1 Van der Corput Pseudo—Random Numbers

A general van der Corput sequence {#"} depends on two parameters kq,
ko with k1 > ko > 0 both integer and relatively prime. The (kq, ko) van der
Corput sequence {6™} is formally defined [233] as

0 =" Ak Y (7.38)
=0
Ai = kzai(mod kl) ; (739)

n= Z a;k} . (7.40)
i=0
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To explain the definition of the pseudo-random number 6" in (7.38) we start
from equation (7.40), which gives the non—negative integer n in scale of no-
tation with radiz ky. If ky = 2, (7.40) gives the binary expansion of n. For
example, the binary expansion of the integer 3 is

3=1x20+1x2!

and m = 1.

The next stage is to find the coefficients A; in (7.38) according to equation
(7.39); this says that A; is the remainder when dividing the product koa; by
k1 (A; < ki1). The simplest case is given by ko = 1, for which A4; = a;, Vi.
Having found the number m and the modified coefficients A;, the random
number 6™ corresponding to the integer n is completely determined by the
summation (7.38).

Exercise 7.2 (Van der Corput sequences). Find m, the coefficients
a; and A; and the corresponding first 10 random numbers 6™ of the (2,1) and
(5,3) van der Corput sequences (n =1,...,10).

Solution 7.3. Results are shown in Table 7.1 for the (2,1) (binary) van
der Corput sequence and in Table 7.2 for the (5,3) van der Corput sequence.

n |mlaglailas|as|Ag|A1|As|As| 6™

101 1 0.5000
21101 01 0.2500
31111 171 0.7500
4(2(0(0]1 0|01 0.1250
512101 1101 0.6250
6(2(0(1]1 0]11]1 0.3750
71211111 1111 0.8750
813(0[0[0|1|0]0|0]1]10.0625
913(1(0(0|1|1|0]0]|1]0.5625
10{3(0{1|0|1]0|1]0|110.3125

Table 7.1: Number m, coefficients a;, A; and random numbers 6" for the
(2,1) van der Corput sequence, for n =1,...,10

7.5.2 Statistical Properties

A desirable statistical property of the sequence of numbers {6} is that
{0™} be uniformly distributed over [0, 1]. Following Olivier and Gronig [364]
we study three statistical quantities that help to characterise the sequence of
random numbers {0" }. These are: the arithmetic mean, the standard deviation
and the so called chi-square statistics.
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Table 7.2: Number m, coefficients a;, A; and random numbers 6™ for the
(5,3) van der Corput sequence, for n =1,...,10.

The arithmetic mean x,, of the set {§"})_, is defined as

1 N
Tar = N;G : (7.41)

For an optimally equidistributed sequence {6™} in [0, 1] we expect x,, to be
close to %
The standard deviation is

N 3
9" —za)?| . (7.42)

Tsd =

The chi-square statistic xyq is computed as follows: the interval [0,1] is
subdivided into D equally spaced subintervals R;. Then we consider a total
of N random numbers 0™ and count the number ¢(R;) of random numbers 6"
that fall inside R;, for ¢ = 1,..., D. We denote by p; = p;(6™) the probability
that the number " falls inside the subinterval R;. The expected number of
random numbers in the interval R; is thus Np;. As an illustrative example
we subdivide [0, 1] into D = 2 subintervals and choose N = 4 random num-
bers {0*,602,6%,60*}. For a uniformly distributed sequence one would expect
p1(0™) = % and so the expected number of random numbers 0" falling into
subinterval Ry = [0, 2) is Np; = 4 x £ = 2. The same holds for subinterval

2
Ry = [5,1]. Then the chi-square statistic is defined as

a2, = Z W : (7.43)

For a uniformly distributed sequence {6"} we expect 4, to be small. Better
RCM numerical results are obtained with pseudo-random sequences {6™} for
which :qu is small.
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As in [364], we analyse the quantities .y, Zsq and zsq for 6 van der Corput
sequences. Table 7.3 shows the statistical properties of N = 200 random
numbers. For the chi-square test the interval [0, 1] was subdivided into D = 20
equally spaced subintervals.

(kh k2) (2a1) (372) (331) (571) (773) (573)
Tar (0.49459(0.49673]0.49457|0.49373(0.49965|0.49598
Tsq |0.28885(0.28780(0.28799(0.28914|0.28842(0.28907
x2 [1.00000[1.00000|1.00000|1.40000{1.00000[0.20000

sq

Table 7.3: Statistical properties of 6 van de Corput sequences (ki, k2)

Our results agree well with those of Olivier and Gronig for the arithmetic
mean &,,; for :cgq our results are similar but not identical. Our values for the
standard deviation zgq are much smaller that those quoted in [364]. Olivier
and Gronig also analysed the quantities x,,, sq and zsq for other sequences
of random numbers, including the modified random numbers suggested by
Chorin [110]. They observed that in all cases z,, was close to 3; they also ob-
served that all sequences tested had similar values for the standard deviation
Zsq. The quantity that was different was x5, which led them to conclude that
this was the statistical property of significance. Van der Corput sequences
have a small value for x4, as compared with other sequences, and are known
to produce very good computational results when used in the Random Choice
Method. Anderson and Gottlieb [8] suggested a sequence of pseudo-random
numbers of similar qualities to the van der Corput sequences. See [8] for de-
tails. Our tests for the Anderson and Gottlieb numbers give x,, = 0.4981,
Teq = 0.2891 and xz,q = 0.6. Compare with results of Table 7.3.

7.5.3 Propagation of a Single Shock

Here we consider a single shock wave of positive speed S connecting two
constant states Ur, and Ug. We solve the time-dependent Euler equations
with initial data

Upifxz<0,
U(z,0) = (7.44)
Ugrifz>0.
The exact solution is
Uy, if (E/t <S5,
U(z,t) = (7.45)
Ug if J?/t >S.

On applying the Random Choice Method on a non-staggered grid with
Courant number ¢ < %7 based on the shock speed S, the shock wave propagates
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Single shock wave _ 1/2 Ax
CAX ’\\\ enAX
y At

i-1 i i+1
Fig. 7.9. Propagation of a single shock by the Random Choice Method, on a non—
staggered grid. Shock propagates by comparing 8" with ¢

to the right as a true discontinuity. The situation at any time level is illustrated
in Fig. 7.9, where the shock wave is assumed located at the interface x;_ 1
The shock wave crosses the line t = At at cAz and by virtue of the CFL
condition this point lies to the left of the middle of cell I;, namely %Am. A
random position inside cell I; is given by 0" Az, with 6 a random number
in the interval [0, 1]. If 0" Az < cAxz then the randomly selected state is the
post shock state Urp,, which is then assigned to the whole of the cell I; for the
next time level. This means that the shock moves to the right by a complete
distance Az. If 0" Az > cAx then the shock does not move at all. The position
X of the shock after n time steps is given by

X, = Z AzP; (7.46)
i=1
where ]
1,if0"<c,
P, = (7.47)
0,if " >c.

Table 7.4 shows calculations by hand of the shock position error, nor-
malised by the mesh size Az, of the RCM solution for 10 time steps. We use
two Courant numbers for each of the van der Corput sequences (2,1) and
(5,3). For instance, if the RCM is used with the (2,1) van der Corput se-
quence and a CFL number ¢ = i, then at the time step n = 5 the error in
the shock position is %Am. In the first 10 time steps the largest error takes
place at n = 8 and is equal to Az. For the (2,1) van der Corput sequence

1

and a CFL number ¢ = 5 the maximum position error is also Az. The results

for the (5,3) van der Corput sequence are more accurate than those for the

(2,1) sequence. For ¢ = i the maximum error observed is also %Aw but there

are two time levels at which the solution is exact. For the case ¢ = % the
maximum position error is %Al’ and the solution is exact every other time

step.
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]2, c= 1@ 1), c= 1[6:3), c= 15,3 c =
1 T T T T
4 2 4 2
2 3 1 3 0
1 T 1 T
3 1 2 1 2
1 1 1 0 0
= 3 T 3 T
4 2 4 2
6 2 1 2 0
1 T 1 T
7 1 2 1 v
) 1 1 0 0
3 T T T
9 1 3 7 3
10 3 1 3 0

Table 7. 4: Position error of shock computed by the RCM. Two van der
Corput sequences and two values of the Courant number ¢ are used

Exercise 7.4. Verify the results of Table 4 and find the shock position
error for the van der Corput sequences (3,2) and (7,3) for Courant numbers
1 1
7 and 3.

Solution 7.5. (Left to the reader).

7.6 Numerical Results

In this section we show some numerical results for three methods, namely
the conventional Random Choice Method on a non—staggered grid associated
with the Godunov Method (denoted by RCMG), the Lax—Friedrichs type Ran-
dom Choice Method (7.18) (denoted by RCMLF) and the First—Order Centred
(FORCE) scheme (7.30), (7.32). We solve five test problems with exact solu-
tion for the one—dimensional time dependent Euler equations. The initial data
consists of two constant states Wy, = [pr, ur, pL]’ and Wg = [pr, ur, pr]?.
These are given in Table 7.5. For a discussion on the exact solution of these
test problems see Sect. 6.4, Chapt. 6. Codes of the library NUMERICA [519]
were used to obtain the displayed results. The exact solutions were found by
running the code HE-E1RPEXACT, the numerical solutions using RCMG
were obtained by running the code HE-EF1RCM and the numerical solutions
using FORCE were obtained by running the code HE-E1FOCENT.

Test| pL ur, DL PR UR PR
1 1.0 0.75 1.0 0.125 0.0 0.1
2 1.0 -2.0 0.4 1.0 2.0 0.4
3 1.0 0.0 1000.0 1.0 0.0 0.01
4 15.99924| 19.5975 [460.894|5.99242| -6.19633 [46.0950
5 1.0 ]-19.59745| 1000.0 1.0 ]-19.59745| 0.01

Table 7.5. Data for five test problems with exact solution.
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We discretise the domain [0,1] into M = 100 computing cells. For the
random choice methods we use a Courant number coefficient C.q = 0.45 and
for the FORCE method we use C.q = 0.9.

Figs. 7.10 to 7.13 show results for RCMG applied to Tests 1 to 4. The
corresponding results for the RCMLF are shown in Figs. 7.14 to 7.17 and
those for the FORCE scheme are shown in Figs. 7.18 to 7.22. All these results
are to be compared with those of Chap. 6.

The RCMG results of Fig. 7.10 are, by any standards, very accurate. Jump
discontinuities such as shock waves and contacts are resolved as true discon-
tinuities. Also, discontinuities in derivative, such as those along the head and
tail of rarefaction waves, are also very well resolved. The complexity of the
RCM is comparable to that of the Godunov method, and thus it is fair to
compare Fig. 7.10 with Fig. 6.8 of Chap. 6. The entropy glitch inside the
sonic rarefaction for the RCM result is smaller than that for the Godunov
method. The RCM results for Test 2 are shown in Fig. 7.11; this problem
does not contain jump discontinuities and exposes a weakness of the RCM,
namely the random noise in smooth parts of the flow. The results of Figs.
7.12 and 7.13 exhibit the true merits of the RCM for computing solutions
containing multiple jump discontinuities; compare with the Godunov results
of Figs. 6.10 and 6.11.

The computational results for the Lax-Friedrichs type random choice
method (RCMLF) are shown in Figs. 7.14 to 7.17. These are somewhat infe-
rior to those of the conventional RCM. However RCMLF has the advantage of
having twice the stability range of the conventional RCM. Notice the pairing of
neighbouring states, which is also a feature of the conventional Lax—Friedrichs
scheme; compare Fig. 7.16 with Fig. 6.12.

Figs. 7.18 to 7.22 show the results for the First-Order Centred scheme
FORCE as applied to Tests 1 to 5. Compare with the corresponding results
for the Godunov and Lax—Friedrichs methods in Chap. 6. In general, the
results for the FORCE scheme look inferior to those of the Godunov method,
particularly for Test 5; the former scheme is however significantly simpler and
more efficient than the latter. The numerical results of the FORCE scheme are
superior to those of the Lax—Friedrichs scheme (see results of Chap. 6), with
both schemes being comparable in complexity and efficiency.

7.7 Concluding Remarks

We have presented random choice and related methods to solve time—
dependent one dimensional hyperbolic conservation laws. Details have been
given for the Euler equations, for which numerical results have been presented.
It is well known that the conventional RCM, on staggered and non—staggered
grids, is only directly applicable to hyperbolic systems in two independent
variables. For the time-dependent one dimensional Euler equations these are
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time t and space z. For the steady supersonic Euler equations the two inde-
pendent variables are the flow direction x, which is a time-like variable, and
space .

The great merit of the RCM is its ability to resolve discontinuities with
infinite resolution, as true discontinuities. The main disadvantage of the RCM
is the randomness in the smooth parts of the flow. One way of eliminating
this unwanted randomness is by resorting to hybrid approaches, whereby the
RCM is used at discontinuities only; elsewhere in the flow one may use some
other scheme, see Toro and Roe [539], [540] for instance. A crucial question
is this: can the RCM be extended to in-homogeneous (sources) systems or to
systems with more that two independent variables ?

By applying splitting schemes, see Chap. 15, random choice methods can
be extended to solve in—homogeneous systems

U, + F(U), =S(U). (7.48)

The source term vector S(U) may be an algebraic function of the flow vari-
ables, such as in cylindrically or spherically symmetric flow [453]. S(U) may
also involve higher order spatial derivatives such as in viscous terms; this
means that the RCM can be applied to parabolic equations, e.g. the time—
dependent, one dimensional Navier-Stokes equations [256]. The inclusion of
algebraic source terms retains the infinite resolution of discontinuities but may
enhance the randomness in smooth parts of the flow, present in the homoge-
neous part of the problem. In some special cases, see Glimm et. al. [214], the
source term vector S(U) may be incorporated into the solution of the Riemann
problem. This significantly alleviates the problem of enhanced randomness.

Efforts to extend the RCM, retaining its distinctive feature, to solve prob-
lems in more that two independent variables, such as the time-dependent,
two dimensional Euler equations and the three dimensional steady supersonic
Euler equations, have so far proved unsuccessful. For details on how the use of
splitting techniques to carry out the extensions fail, were reported by Colella
[131]. If resolving shocks with infinite resolution is abandoned then splitting
techniques applied to the RCM work reasonably well. Colella [131] introduced
artificial viscosity, as in conventional finite different methods. Toro [500] pro-
posed a hybrid approach to extend the RCM to solve the time-dependent, two
dimensional Euler equations (three independent variables); here the RCM
is used at contacts and shear waves and a high-resolution shock capturing
method is used elsewhere. This approach gives up the infinite resolution of
shocks but retains infinite resolution of shear waves and material interfaces,
features that are exceedingly difficult to resolve by most methods. Recently,
Loh et.al. [332] have reported their work to extend the RCM to solve the three—
dimensional steady supersonic Euler equations (three independent variables).
They also give up infinite resolution of shocks but retain infinite resolution of
slip surfaces by virtue of a Lagrangian approach.
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At the present time the RCM offers an accurate numerical method for
solving non-linear systems of the form (7.48) in conjunction with operator
splitting techniques, as presented in Chap. 15.

1.6
1
2 2
D 'S 0.8
8 05t §
0 : 0 :
0 0.5 1 0 0.5 1
position position
3.8
1
>
j=2]
@ )
> &
g 05 | g
[}
E
0 : 1.8 :
0 0.5 1 0 0.5 1
position position

Fig. 7.10. Random Choice Method applied to Test 1, with z¢ = 0.3. Numerical
(symbol) and exact (line) solutions are compared at the output time 0.2 units
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Fig. 7.11. Random Choice Method applied to Test 2, with ¢ = 0.5. Numerical
(symbol) and exact (line) solutions are compared at the output time 0.15 units
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Fig. 7.12. Random Choice Method applied to Test 3, with x¢ = 0.5. Numerical
(symbol) and exact (line) solutions are compared at the output time 0.012 units
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Fig. 7.13. Random Choice Method applied to Test 4, with z¢ = 0.4. Numerical
(symbol) and exact (line) solutions are compared at the output time 0.035 units
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Fig. 7.14. Lax—Friedrichs Random Choice scheme applied to Test 1, with x¢g = 0.3.
Numerical (symbol) and exact (line) solutions are compared at time 0.2 units
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Fig. 7.15. Lax—Friedrichs Random Choice scheme applied to Test 2, with x¢g = 0.5.

Numerical (symbol) and exact (line) solutions are compared at time 0.15 units
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Fig. 7.16. Lax—Friedrichs Random Choice scheme applied to Test 3, with 2o = 0.5.
Numerical (symbol) and exact (line) solutions are compared at time 0.012 units
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Fig. 7.17. Lax—Friedrichs Random Choice scheme applied to Test 4, with x¢o = 0.4.
Numerical (symbol) and exact (line) solutions are compared at time 0.035 units
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Fig. 7.18. FORCE scheme applied to Test 1, with xo = 0.3. Numerical (symbol) and
exact (line) solutions are compared at the output time 0.2 units
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Fig. 7.19. FORCE scheme applied to Test 2, with g = 0.5. Numerical (symbol) and
exact (line) solutions are compared at the output time 0.15 units
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Fig. 7.20. FORCE scheme applied to Test 3, with xo = 0.5. Numerical (symbol) and
exact (line) solutions are compared at the output time 0.012 units
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Flux Vector Splitting Methods

8.1 Introduction

A distinguishing feature of upwind numerical methods is this: the dis-
cretisation of the equations on a mesh is performed according to the direction
of propagation of information on that mesh. In this way, salient features of
the physical phenomena modelled by the equations are incorporated into the
discretisation schemes. There are essentially two approaches for identifying
upwind directions, namely the Godunov approach [216] studied in Chap. 6,
and the Fluz Vector Splitting (FVS) approach [424], [463], [560], [561] to be
studied in this chapter. These two approaches are often referred to as the
Riemann approach and the Boltzmann approach [244]. The respective numer-
ical methods derived from these two approaches are often referred to as Flux
Difference Splitting Methods and Fluz Vector Splitting Methods . For a review
on both of these approaches the paper by Harten, Lax and van Leer [244] is
highly recommended. Closely related schemes to FVS, not studied here, are
the KFVS or kinetic schemes, see for example Pullin [389], Perthame [380],
[381], Mandal and Desphande [336], Xu and Prendergast [587], Xu et. al. [586],
Xu [585] and Yang et. al [591].

The identification of upwind directions in Flux Vector Splitting Methods
is achieved with less effort than in Godunov—type methods, leading to simpler
and somewhat more efficient schemes. These two features are very attractive
and have made FVS schemes very popular within a large community of prac-
titioners. The Flux Vector Splitting approach is particularly well suited for
implicit methods; these are popular in Aerodynamics, where the computation
of steady solutions is of great practical value. The reduced sophistication of
FVS schemes however, as compared with Godunov—-type schemes, results in
poorer resolution of discontinuities, particularly stationary contact and shear
waves. In applications to the Navier—Stokes equations, it is reported by van
Leer, Thomas and Roe [565] that their FVS scheme is considerably less accu-
rate than Godunov’s method with Roe’s approximate Riemann solver [407].
A key feature of the FVS approach is its reliance on a special property of the

E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 265
DOI 10.1007/b7976-1_8, © Springer-Verlag Berlin Heidelberg 2009
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equations, namely the homogeneity property. As seen in Sect. 3.1.1 of Chap.
3, the Euler equations satisfy this property but there are important examples,
such as the shallow water equations, that do not. The homogeneity property
may however be circumvented so as to be able to apply the FVS approach,
see Vazquez—Cendon [568].

The pioneering works of Sanders and Prendergast [424], Steger and Warm-
ing [463] and van Leer [560], [561] has been followed by numerous applications
as well as by increased research efforts to improve further the technique. See
for example the papers [12], [13], [166], [328], [578] and [387], amongst many
others.

The purpose of this chapter is to give an elementary introduction to Flux
Vector Splitting methods. Sects. 8.2 and 8.3 are devoted to a simple intro-
duction to the FVS approach. In Sect. 8.4 we derive FVS methods for the
time—dependent Euler equations following the methodologies of Steger and
Warming [463], that of van Leer [560], [561] and the recently proposed ap-
proach of Liou and Steffen [328]. Numerical results are presented in Sect. 8.5.
Techniques to construct high—order schemes based on FVS are found in Chaps.
13 and 14. In Chap. 15 we show how to solve systems with source terms and
in Chap. 16 we deal with approaches to construct multidimensional schemes.
Essential background material for reading this chapter is found in Chaps. 2,
3 and 5.

8.2 The Flux Vector Splitting Approach

In this section we introduce the flux vector splitting approach in the simple
setting of model hyperbolic systems, namely the small perturbation steady
supersonic equations and the isothermal equations of Gas Dynamics; see Sect.
1.6.2 of Chap. 1 and Sects. 2.1 and 2.4.1 of Chap. 2 for details on these systems.

8.2.1 Upwind Differencing
Consider the small perturbation steady supersonic equations
2

Uy —a 0y =0, v, —uy =0, (8.1)

where u = u(z,y), v = v(z,y),

T — (8.2

is the sound speed and M, is the free—stream Mach number, assumed to be
greater than unity. Equations (8.1) may be rewritten as
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with 0 )
U_{ﬂ ,A_[_l_g} . (8.4)
The eigenvalues of the coefficient matrix A are
A =—a, \y=+a, (8.5)

with corresponding right eigenvectors

KO — m KO = [_“1} , (8.6)

Given the mixed character of the eigenvalues (A1 = —a is negative and Ay =
+a is positive), a finite difference discretisation of (8.3) has limited choices for
the spatial derivative, if upwind bias is to be applied. Consider, for instance,
the one-sided difference schemes

Ax
Urtt = Ur - —ZA[U? - U7 8.7
7 7 Ay [ 7 7,71] ’ ( )
U?H =U; — IyA[ i+1 Uyl. (8.8)
Clearly scheme (8.7) is upwind relative to the eigenvalue Ay = a > 0 but is
downwind, and thus unstable, relative to the eigenvalue Ay = —a < 0. A sim-

ilar observation applies to scheme (8.8). For the case in which all eigenvalues
have the same sign the difficulty of choosing the upwind direction does not
arise.

As seen in Sect. 5.4 of Chap. 5, general linear hyperbolic systems with
constant coefficients may be solved by the CIR first—order upwind method by
decomposing the coefficient matrix A into a positive component AT and a
negative component A~ such that

A=AT+A" (8.9)

where AT has positive or zero eigenvalues and A~ has negative or zero eigen-
values. One then has the upwind scheme

Az Az
Uit =uy - XyA+[U? -Ul] - XyA_[U?“ -Ujl. (8.10)

The Split—Coefficient Matriz Scheme of Chakravarthy et. al. [97], [251]
is an extension of this procedure to non—linear systems, in non—conservative
form.

The CIR upwind scheme, when applied to general linear hyperbolic sys-
tems with constant coefficients, may be written in conservative form by defin-
ing the flux vector

F=AU. (8.11)
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Then the splitting (8.9) of the coefficient matrix A results in a natural splitting
of the flux vector F, namely

F=F"+F . (8.12)

In this way the CIR upwind scheme can be written in conservative form

" n At
Uz‘H =U/ - E[R‘Jﬁ - FF%} ) (8.13)
where the intercell numerical flux
Fii1= Ff(U}) +F; (U) (8.14)

is identical to the Godunov intercell flux. See Sect. 5.4 of Chap. 5 for details.
The Flux Vector Splitting Method is a generalisation of this to non—linear
systems in conservation form.

8.2.2 The FVS Approach

Here we consider a general system of m non—linear hyperbolic conservation
laws

U, +F(U),=0. (8.15)
From the assumption of hyperbolicity the Jacobian matrix
OF
AU) = — 8.16
V) = o5 (5.16)
may be expressed as
A =KAK™ (8.17)

where A is the diagonal matrix formed by the eigenvalues of A, namely

A 0
A= . (8.18)
0 Am
The matrix K is
K=[KY K®» K™, (8.19)

where the column K is the right eigenvector of A corresponding to A; and
K ! is the inverse of K. Recall our usual convention of ordering the eigenval-
ues in increasing order.

As anticipated in the previous section, the Flux Vector Splitting method
aims at generalising (8.14) to non-linear systems (8.15). That is, FVS requires
a splitting of the flux vector F into two component F* and F~ such that

F(U) =FH(U)+F (U), (8.20)
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under the restriction that the eigenvalues S\T and 5\; of the Jacobian matrices

A+_8F+ Af_aFi

satisfy the condition R .
AM>0, A <0, (8.22)

The splitting is also required to reproduce regular upwinding when all eigen-
values \; of the coefficient matrix A are one-sided, that is, all positive or zero,
or all negative or zero. That is to say

Ft=F, F- =0 if\>0 fori=1,...,m,
(8.23)

Ftr=0, F =F if\;,<0 fori=1,....m.

If in addition to hyperbolicity, the system (8.15) satisfies the homogeneity
property
F(U)=A(U)U, (8.24)

just as in the linear constant coefficient case, then the sought splitting is easily
accomplished by identifying a suitable splitting of the Jacobian matrix A. As
seen in Sect. 3.1.1 of Chap. 3, the time-dependent Euler equations satisfy the
homogeneity property.

From the diagonalisation of A given by (8.17), a splitting of A may be
accomplished by an appropriate splitting of the diagonal matrix A. This in
turn, may be split by identifying a splitting of the eigenvalues \;, ¢ =1,...,m
of A. Suppose we may split the eigenvalues \; as

N =AM+ AT (8.25)

such that /\2' > 0and A; <0. Then A may be split as

A=AT4+A", (8.26)
where
A 0 AL 0
0 AL 0 A
A natural splitting of A results, namely
A=AT+A, (8.28)
with
AT=KATK™', A" =KA K'. (8.29)

Then, if (8.24) is satisfied, we can split F(U) as

F=F"+F , (8.30)
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where
FF=ATU, F-=A"U. (8.31)

Steger and Warming [463] proposed a splitting of the eigenvalues \; as in
(8.25) with definitions

1 1
A= it A D) AT =S A ), (8.32)
where | \; | is the absolute value of A; namely,
N if >0,
|)\z|_{)\iif)\i§0- (8.33)
Clearly
A >0, A <0, fori=1,...,m. (8.34)
Exercise 8.1. Verify that the following properties are satisfied
A= AT A= A AT
A=AT+A ; |[A]|=A"T-A", (8.35)
A=AT+A" ; |A|=AT-A".

Solution 8.2. (Left to the reader).

8.3 FVS for the Isothermal Equations

In order to illustrate the FVS approach we consider the isothermal equa-
tions of Gas Dynamics
U,+FU), =0, (8.36)

U_{”}, F(U)_{ pu ] (8.37)

pU qu + pa2
where the sound speed a is a positive constant. For details on the eigenstruc-
ture of this system see Sect. 2.4 of Chap. 2. The Jacobian matrix is

OF 0 1

The eigenvalues of A are
AM=u—a, Xa=u+a (8.39)

and the matrix K of corresponding right eigenvectors is

K_[uiauia} . (8.40)

Exercise 8.3. Verify that system (8.36)—(8.37) satisfy the homogeneity
property (8.24).

Solution 8.4. (Left to the reader).



8.3 FVS for the Isothermal Equations 271

8.3.1 Split Fluxes

Given any splitting (8.25) with

Ao - _[A 0
SCRIRE P R

we require the computation of the matrices AT and A~ as given by (8.29).
One then requires the determination of the inverse K—! of the matrix K, the
products of three matrices as in (8.29) and finally the products (8.31) to find
the flux components. For large systems this may be a rather tedious algebraic
task. For the isothermal equations we have
K= L {““‘ _1} .
a—u 1

=5 (8.42)

Now, given any of the two components (8.27) of A, A%, say, we compute

A® =KA°K™'.
The result is
@ oo, o o
ATy, {Al(z(;; : Zg)u}ziuAg)a) T B a)} (8.43)
Application of (8.31) gives the flux vector component
F* =AU,
that is o e
Fa:g[xg(u—al)ixé(wa)] : (8.44)
Note that the expression for the component F¢ given by (8.44) is general. For
o =+ and o = — the flux components F™ and F~ are
+ +
Fr=g {)\T(u —)\al) H ii(u + a)} ) (8.45)
and o
F_:g{)\f(ual)ix\z_(qua)} : (8.46)

Exercise 8.5. For the split fluxes (8.45)—(8.46), for the case of subsonic
flow,

— (i) Find the Jacobian matrices

+ —
At OF ~—  OF

T oU T IU
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— (ii) Find the eigenvalues S\T and 5\; .
Solution 8.6. For the positive flux component F* the Jacobian matrix is

+ OF* la 1
— — 2 2
A =50 1@ —u*)u+ta

The eigenvalues are the roots of the characteristic polynomial

3 1
)\2—(§a+u))\+1(u+a)2:0,

namely,

1 1
A= qa |20 43— 4M+5} . A =a [2M+3+\/4M+5 .
Remark 8.7. Note that
AT £AT
and that R
A AN

Note also that 5\j > 0, that is, none of the eigenvalues vanish. Numerically,
this particular property is not desirable, and which unfortunately also carries
over to the Euler equations. As we shall see in the next section, there are
other splitting schemes that remove this difficulty.

8.3.2 FVS Numerical Schemes

The FVS approach can be used to solve (8.36) using the explicit conser-

vative scheme
At

U?H =Uj - E[FH% - Fz’—%] ) (8.47)
where the FVS numerical flux is given by
F, 1 =F/(U})+F,(U},). (8.48)

Fig. 8.1 provides a physical interpretation of (8.48). The intercell numerical
flux F; 1 is made out from two contributions; one comes from the forward

component Fj in the left cell I; and the other comes from the backward
component F; | in the right cell ;1.

The Steger and Warming [463] splitting (8.32) in a computational set up
is as follows: we consider a computing cell I; at time level n, where U7 is the
vector of conserved variables and F? = F(U?) is the vector of fluxes. The
three cases to consider are illustrated in Fig. 8.2 and are
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I:i-1/2 I:i+1/2
+ + +
Fi-l Fll FI Fi F|+1 Fi+1
X
R
i-1/2 i+1/2

Fig. 8.1. Splitting of the flux function within each computing cell I; at time level n

Case (a) Left supersonic flow: Ay = u! +a < 0. Fig. 8.2a illustrates
the situation in a cell I; at time level n. Clearly

AF =0, =\ =ul —al,
A =0,) =X =ul+a?,
Ff=0,F =F}.

(8.49)

Case (b) Right supersonic flow: Ay = ul’ —a’ > 0. See Fig. 8.2b.

Obviously
A =M =u—al , A\ =0,
Ay =X =ul+al , \; =0, (8.50)
F =F7" JF, =0.
Case (c) Subsonic flow: A\ = u] —a? <0 < Ay =uf + a}. See Fig.
8.2c. Evidently

AT =0 Al =M =uf —af

L ¢ v 8.51

Ay =Xo=ul+al , A\, =0. (8:51)

According to (8.45)—(8.46) the fluxes F; and F; for the subsonic

case are given by

nolyn 4gn n n_ gn
F+:”1[ Uik ] F—p’[(“‘ o } (8.52)

C 2 [(u +ap)? 2 [(up —ap)?

8.4 FVS Applied to the Euler Equations

Here we present three Flux Vector Splitting schemes applied to the time

dependent Euler equations.
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A Ay
i i i
i-1/2 i+1/2  i-1/2 i+1/2  i-1/2 i+1/2
(a) (b) (©)
Left supersonic  Right supersonic Subsonic

Fig. 8.2. Possible flow patterns in cell I; at time n: (a) supersonic flow to the left
(b) supersonic flow to the right (¢) subsonic flow

8.4.1 Recalling the Equations

The one—dimensional Euler Equations in conservation—law form are given
by

U, +FU), =0, (8.53)
P pu
U= |pu|, FU)=| pu>+p | . (8.54)
E u(E +p)

As seen in Sect. 3.1.1 of Chap. 3, the Jacobian matrix A is given by

0 1 0
A= 3(v = 3)u? B-2u -1 (8.55)

1. 3 _ a’u 3-2y, 2 a?
5(v —2)u gy S B A s SO

and the system is hyperbolic with real eigenvalues
M=u—a, o=u, \s=u-+a. (8.56)
The matrix K of corresponding right eigenvectors is

0 1 0
K=|u—a u u+a | . (8.57)
H —ua %ugH—i—ua
Here H is the enthalpy
1 a?
H=(E+p)/p=-u>+ .
( )/p=3 7 =1

As explained in Sect. 3.2.4 of Chap. 3, the three—dimensional Euler equa-
tions may be dealt with by only considering the flux component normal to

(8.58)
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the computing cell interface, see also Sect. 16.2 of Chap. 16. In constructing
numerical methods for Cartesian geometries it is sufficient to consider the flux
in any of the coordinate directions. For general geometries this is modified by
use of rotation matrices; see Sect. 3.2 of Chap. 3. We thus state the schemes
for the z—split three dimensional Euler equations

U, +F(U), =0, (8.59)
p pu
pu pu? +p
U=|p |, FU)= puv . (8.60)
pw puw
E uw(E + p)

The Jacobian matrix A, see Sect. 3.2.2 of Chap. 3, is given by

0 1 0 0 0
AH —u? —a? (B—v)u —jv —Aw 4

A= —uv v u 0 0|, (8.61)
—uw w 0 u 0

sul(y = 3)H — a?] H — ju® —juv —Juw yu
where

2
ﬁ, Vi=w? 4+ +uw?, y=v—-1. (8.62)

This system is hyperbolic with real eigenvalues

1
H=(E+p)/p=5V'+

)\1:’&7(1,A2:>\3:)\4:U,)\5:U+a. (863)

The matrix of corresponding right eigenvectors is

1 1 00 1
u—a u 00 u+a
K= v v 10 o (8.64)
w w 01 w

H—ua%V2va+ua

As seen in Chap. 3 the one—dimensional Euler equations satisfy the homo-
geneily property
F(U)=A(U)U. (8.65)

Exercise 8.8. Verify that the split three—dimensional Euler equations
(8.59)—(8.60) also satisfy the homogeneity property (8.65).

Solution 8.9. (Left to the reader).



276 8 Flux Vector Splitting Methods
8.4.2 The Steger—Warming Splitting

For a splitting (8.25)—(8.27) we require an expression for the inverse K—!
of the matrix K, in order to find the split Jacobians (8.29).

The One—Dimensional Case

For the one—dimensional Euler equations we have

1 y—1 y—1
k1= e T2 o o (8.66)
2CL2 lv 21 ua a
5U o1 5.1 — U 1

Then, for any component A® of the two components of A in (8.26) the corre-
sponding Jacobian component is

A® = KA°K™!.
The associated split flux component F* = A*U is
P AT +2(y — AT + NG
F* = > (u—a)Ay +2(y — Durg + (u+ a)A§ , (8.67)
T (H —ua) ¢ + (7 — DuPAS + (H + ua)Ag

where the eigenvalues A\ are given by (8.32), for o = +, —.

The Three—Dimensional Case

For the three-dimensional case we have

Ht2u—a)—(utg) —v-w 1
—2H +3d®>  2u 20 2w =2

—1 2 2
K ! = (VM ) _27‘1 0 = 00 (8.68)
— 2 0 0 20
H-%u+a) —ut+s —v-wl

and the resulting split flux component F* = A“U is found to be

AX 4 2(y — 1A + AQ
(u—a)X§ +2(y — Durg + (u + a) A\
Fo — 2£ UAE + 2(7 — 1)uAS + vAZ . (8.69)
v WAY + 2(y — DwAG + wAg
(H —ua)X¢ + (v — 1)VZAS + (H + ua) A

Exercise 8.10. Verify expressions (8.68) and (8.69) above.

Solution 8.11. (Left to the reader).
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8.4.3 The van Leer Splitting

277

Van Leer [560], [561] constructed a splitting for the Euler equations that

has some extra desirable properties, namely

—  (I) The split Jacobian matrices

AT OFT i 0E
ou ou

are required to be continuous.

—~  (II) The split fluxes are degenerate for subsonic flow, that is A+, A

have a zero eigenvalue.

Van Leer expresses the flux vector F as a function of density, sound speed

and Mach number M = =, that is

paM fmas
F=F(p,a,M) = paQ(MQ—i—%) = | fmom
pa MM+ )| | fowe
For the mass flux
fmas - PGM

one requires quadratics in M and the split mass fluxes are

1 _ 1
f£aS:1pa(1+M)27 fmas:_zpa(liM)2'

The momentum split fluxes are

2a (v —1) _ _ 2a,(y—1)
r;tom = $as7[7M+ 1] ) mom mas?[ 9 M — 1]

2

and the energy split fluxes are

P 0 U R 1
e 2(72 - 1) frJrqas ’ one 2(72 - 1) fr;as
In vector form we have
1

1 _
Ft = Zpa(1+M)2 %(%M*‘l)

2 —
2 (M +1)?

1
1 _
F = —Zpa(l — M)? 27:(771]\/[ —1)
2a (%M o 1)2

7?-1

(8.70)

(8.71)

(8.72)

(8.73)

(8.74)

(8.75)
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For the x—split three dimensional Euler equations the split flux formulae are

1
2a —1
) ST M+1)
Ft = Zpa(l + M)? v : (8.76)
w
FOFM A+ 17 + 50+ w?)

and

1
2 —1
) (M -1
F = —ipa(l — M)>? v , (8.77)
w
(M = 1)+ (02 + w?)

where the Mach number is still M = =.
Concerning stability, van Leer [560] gives the following practical stability
condition

At 29+ [ M[B—1)
= — < . .
Con = (| ul +a) < 13 (8.78)

Note that Ceg = Cen(M) and that when 7 = 1.4 we have

max min 27
cfl ::lfOI'|J\4‘:17 cfl :m%0636,f0r|M|:O(879)

Remark 8.12. The CFL condition for the explicit FVS scheme is more
restrictive than that for the Godunov method, for which Ccq is close to unity.
See Sect. 6.3.2 of Chap. 6 for a discussion on the CFL condition.

8.4.4 The Liou—Steffen Scheme

A recent scheme that attempts to combine features from the Flux Vec-
tor Splitting and Godunov approaches is due to Liou and Steffen [328]. The
scheme has been formulated in terms of the time—dependent Euler equations
and relies on splitting the flux vector F into a convective component F(¢) and
a pressure component F()_ For the z—split three dimensional flux we have

pu pu 0
pu® +p pu? p
F(U) = puv = | puw |+ |0]| =F +FP (8.80)
puw puw 0
u(E + p) puH 0

with the obvious definitions for the convective component F(©) and the pres-
sure component F(®) . By introducing the Mach number and enthalpy
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E
M=% pg_ZtP
a p
we write
pa
pas - (©)
F =M | paw | = MF" | (8.81)
paw
paH

with the obvious notation for the vector f‘(c). In defining the intercell numer-
ical flux F; 1 Liou and Steffen take

_w (p)
Fi+%_Fi+%+Fi+%’ (8.82)

where the convective flux component is given by

() _ o (c)
F), = My, [F L% (8.83)
with definition ]
o], it M;,1>0,

MH—% a { o]y if Mz‘+; <0. (8.84)

Note that the flux vector in (8.83) is upwinded according to the sign of the
convection, or advection, speed implied in the intercell Mach number M, 41
For this reason Liou and Steffen call their scheme AUSM, which stands for
Advection Upstream Splitting Method.

The cell-interface Mach number is given by the splitting

M1 =M+ M, (8.85)

7

with the positive and negative components yet to be defined. The splitting of
the pressure flux component depends on the splitting of the pressure itself,
namely

Diyl = Pf +Pig1 - (8.86)
For the splitting of the Mach number Liou and Steffen follow van Leer and
set

L [EF(MED? i [ M|<1,
M —{;(Mi|M|) it M|> 1. (8.87)
For splitting the pressure they suggest two choices, namely
1 .
+_ §p(1:I:M) it | M|<1 8.88
{gp(Mﬁ;wM') if | M| >1 (8.88)
e Lp(ME12(2 5 M) if | M |
+_ p(ME1)*2F M) if [M]<1, 8.80
P {;pwﬂ;ﬂ') if | M| > 1. (8.89)

For more details see the original paper by Liou and Steffen [328] and the more
recent publication of Liou [327].
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8.5 Numerical Results

Here we illustrate the performance of three FVS—type schemes on the one—
dimensional, time dependent Fuler equations for ideal gases with v = 1.4,
namely the Steger-Warming FVS scheme, the van Leer FVS scheme and the
AUSM scheme of Liou and Steffen. Numerical results are compared with
the exact solution. The respective results are obtained from running two
codes of NUMERICA [519], namely HE-E1FVS (FVS schemes) and HE-
E1RPEXACT (exact Riemann solver).

8.5.1 Tests

We use five test problems with exact solution. Data consists of two con-
stant states Wr, = [pr,ur,pr]? and WRr = [pr,ur,pr]?, separated by a
discontinuity at a position & = xg, and are given in Table 8.1. The exact and
numerical solutions are found in the spatial domain 0 < z < 1. The numerical
solution is computed with M = 100 cells. The Courant number coefficient
is taken as C.q = 0.9, except for the van Leer scheme, for which we took
Ce = 0.6. In implementing the CFL condition we use the simple formula
given by equation 6.20 of Chap. 6 to estimate the maximum wave speed.
Therefore, for all methods, we reduce the CFL number further to 0.2 of that
given by the CFL condition, for the first 5 time steps. Boundary conditions
are transmissive. For each test problem we select a convenient position xq of
the initial discontinuity and the output time; these are stated in the legend
of each figure displaying computational results. All numerical results should
be compared with those from Godunov’s method, Figs. 6.8 to 6.12 of Chap.
6. For more details on the exact solutions of the test problems see Sect. 4.3.3
of Chap. 4.

Test| pr, uy, pL PR UR PR
1 1.0 0.75 1.0 0.125 0.0 0.1
2 1.0 -2.0 0.4 1.0 2.0 0.4

3 1.0 0.0 1000.0| 1.0 0.0 0.01
4 15.99924| 19.5975 [460.894|5.99242| -6.19633 |46.0950
5 1.0 |-19.59745| 1000.0 | 1.0 |-19.59745| 0.01

Table 8.1. Data for five test problems with exact solution. Test 5 is like Test
3 with negative uniform background speed

8.5.2 Results for Test 1

Test 1 is a modified version of the popular Sod’s test [453]; the solution
consists of a right shock wave, a right travelling contact wave and a left sonic
rarefaction wave; this test is very useful in assessing the entropy satisfaction
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property of numerical methods. Figs. 8.3 to 8.5 show the results for the three
FVS schemes.

In the results from the Steger—Warming scheme, shown in Fig. 8.3, the
resolution of the shock and the right travelling contact is comparable with
that of Godunov’s method, Fig. 6.8 of Chap. 6. The resolution of the left
rarefaction is less satisfactory; the head and tail are visibly smeared and the
sonic point, as expected, is not handled correctly. The results from the van
Leer scheme, shown in Fig. 8.4, are virtually identical to those of Godunov’s
method of Fig. 6.8 for the rarefaction and contact, but the shock is broader.
The performance at the sonic point is comparable with that of Godunov’s
method and better than that of the Steger-Warming scheme. The results
from the Liou and Steffen scheme are shown in Fig. 8.5. In comparison with
Godunov’s method, the shock wave is more sharply resolved and the contact
wave is similar but the resolution of the rarefaction is not as good, particularly
near the sonic point.

8.5.3 Results for Test 2

The exact solution of Test 2 consists of two symmetric rarefaction waves
and a trivial contact wave of zero speed; the Star Region between the non—
linear waves is close to vacuum, which makes this problem a suitable test for
assessing the performance of numerical methods for low—density flows [182];
this is the so called 123 problem introduced in Sect. 4.3.3 of Chap. 4. Figs. 8.6
to 8.8 show the results for the three FVS schemes.

The results from the Steger—Warming scheme, shown in Fig. 8.6, are vir-
tually identical to those of the Godunov method, Fig. 6.9 of Chap. 6. The
results from the van Leer scheme, shown in Fig. 8.7, are also comparable with
those from the Godunov method. The heads of the rarefactions are slightly
more diffused. The Liou and Steffen scheme, Fig. 8.8, gives results that are
comparable with those of Godunov’s method and slightly more accurate than
those from van Leer’s scheme; in the vicinity of the trivial contact, where both
density and pressure are close to zero, the results are somewhat erratic, see
velocity and internal energy plots.

In view of the fact that Godunov—type methods with linearised Riemann
solvers will fail for this test problem [182], it is quite remarkable to note that
all three FVS—type schemes described in this chapter actually run and give,
overall, good results.

8.5.4 Results for Test 3

Test 3 is designed to assess the robustness and accuracy of numerical
methods; its solution consists of a strong right travelling shock wave of shock
Mach number 198, a contact surface and a left rarefaction wave. Figs. 8.9 and
8.10 show the results for two FVS schemes.
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The Steger—Warming result, shown in Fig. 8.9, is seen to be overall less
accurate than the corresponding result from the Godunov method, shown in
Fig. 6.10 of Chap. 6; the numerical solution has an unphysical dip behind the
shock wave, which is more clearly seen in the velocity and pressure plots. The
results from the van Leer scheme, shown in Fig. 8.10, are also less accurate
than those from the Godunov method, but they are more accurate than the
results from the Steger—Warming scheme. The Liou and Steffen scheme, as
coded by the author, failed to give a solution at all for this very severe test
problem, even when reducing the CFL number to a value as low as 0.1.

8.5.5 Results for Test 4

Test 4, as Test 3, is also designed to assess the robustness of numerical
methods; data originates from two very strong shock waves travelling towards
each other and the solution consists of three strong discontinuities travelling
to the right; the left shock wave moves to the right very slowly, which adds
another difficulty [406] to numerical methods. Figs. 8.11 to 8.13 show the
results for the three F'VS schemes.

The results from the Steger and Warming scheme, shown in Fig. 8.11,
are overall comparable with those of Godunov’s method shown in Fig. 6.11 of
Chapter 6. The only visible difference is seen near the left slowly moving shock,
and as expected, this is more diffused in the Steger—Warming result; however,
it appears as if the low frequency oscillations seen in the Godunov results
are significantly reduced in the Steger-Warming scheme. The results from the
van Leer scheme, shown in Fig. 8.12, are comparable with those of Godunov’s
method and are more accurate than those from the Steger—Warming scheme.
The slowly—moving shock is resolved with two interior cells, instead of one in
the Godunov’s method, but low—frequency spurious oscillations are just about
visible. The results from the Liou and Steffen scheme, shown in Fig. 8.13, are
comparable with the Godunov and van Leer results for this test; the fast right
shock is more sharply resolved than with the other methods, but at the cost
of an overshoot; the slowly moving left shock is slightly more smeared than
in the van Leer result.

8.5.6 Results for Test 5

Test 5 is effectively Test 3, with a negative uniform background speed
so as to obtain a stationary contact discontinuity. Test 5 is also designed to
test the robustness of numerical methods but the main reason for devising
this test is for assessing the ability of numerical methods to resolve slowly—
mowving contact discontinuities. The exact solution of Test 5 consists of a left
rarefaction wave, a right—travelling shock wave (slow) and a stationary contact
discontinuity. Figs. 8.14 to 8.16 show the results for the three FVS schemes
and Fig. 8.17 shows the respective results obtained from the Godunov method
used in conjunction with the exact Riemann solver, code HE-E1IGODSTATE
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of NUMERICA [519]. We note that at the chosen output time, the right
travelling shock wave has propagated only 5 cells, in 81 time steps. For this
test problem the results from the Steger/Warming and van Leer FVS schemes
are similar, in that the contact discontinuity is heavily smeared, even for
a relatively short evolution time. The Liou and Steffen FVS scheme, Fig.
8.16, differs from the other two FVS schemes in that it resolves the contact
discontinuity more sharply; note however the unphysical oscillations in the
vicinity of the shock wave, the contact discontinuity and even near the tail of
the rarefaction. For comparison, the results from the Godunov method used
in conjuction with the exact Riemann solver are displayed in Fig. 8.17. These
are obviously superior to any of the FVS schemes, for this test problem.

The numerical experiments presented suggest that Flux Vector Splitting
Schemes give, generally, results of similar quality to those obtained by the
Godunov method. The difference between these two upwind approaches is
evident when slowly or stationary contact waves are present. For multidimen-
sional problems this has important implications for the accurate resolution
of shear layers, material interfaces and vortical flows. The Liou and Steffen
FVS—type scheme is an exception, as it does resolve contacts more accurately
than the Warming—Beam and van Leer schemes, although there are questions
marks about its robustness. For Test 3 the Liou and Steffen scheme crashed
and for Test 5 produced large unphysical oscillations. It is worth remarking
that the Godunov method was used in conjunction with the exact Riemann
solver, to obtain the numerical results of Fig. 8.17. If the Godunov scheme is
used with linearised Riemann solvers, then it would fail for low—density flows,
such as Test 2 for example, whereas the FVS—type schemes appear to be much
less sensitive; they all produced acceptable results for Test 2. In addition, if
the Godunov method is used in conjunction with incomplete Riemann solvers,
such as those that ignore the presence of linear waves in the structure of the
solution of the Riemann problem, then the resolution of contacts will be as
poor as that of FVS—type schemes, such as the Warming—Beam and van Leer
schemes. The selection of the Riemann solver is crucial to the performance of
the Godunov method. See Chaps. 9 to 12.

For details on how to extend F'VS—type schemes to higher order of accuracy
for one-dimensional homogeneous problems the reader is referred to Chapts.
13 and 14. Methods for treating source terms are given in Chapt. 15 and
techniques to extend the methods to solve multidimensional problems are
given in Chapt. 16. For multidimensional, steady state, applications of Flux
Vector Splitting methods, readers are encouraged to consult, amongst many
others, the following references: [12], [13], [600], [166], [578].
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Fig. 8.3. Steger and Warming FVS scheme applied to Test 1, with xo = 0.3.
Numerical (symbol) and exact (line) solutions are compared at time 0.2 units
1.6
> 2 ’
g g os
& s .
0 0
0 0.5 1 0 0.5 1
Position Position
3.8
>
j=2]
2 2
a )
4 E
a ]
E
0 : 1.8 .
0 0.5 1 0 0.5 1

Position Position
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and exact (line) solutions are compared at time 0.2 units
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Fig. 8.15. Van Leer FVS scheme applied to Test 5, with zop = 0.8. Numerical
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Approximate—State Riemann Solvers

9.1 Introduction

The method of Godunov [216] and its high—-order extensions require the
solution of the Riemann problem. In a practical computation this is solved bil-
lions of times, making the Riemann problem solution process the single most
demanding task in the numerical method. In Chap. 4 we provided exact Rie-
mann solvers for the Euler equations for ideal and covolume gases. An iterative
procedure is always involved and the associated computational effort may not
always be justified. This effort may increase dramatically by equations of state
of complicated algebraic form or by the complexity of the particular system
of equations being solved, or both. Approximate, non—iterative solutions have
the potential to provide the necessary items of information for numerical pur-
poses. There are essentially two ways of extracting approximate information
from the solution of the Riemann problem to be used in Godunov—type meth-
ods: one approach is to find an approrimation to the numerical flurz employed
in the numerical method, directly, see Chaps. 10, 11 and 12; the other ap-
proach is to find an approximation to a state and then evaluate the physical
flux function at this state. It is the latter route the one we follow in this
chapter.

We present, approximate, Riemann solvers that do not need an iteration
process. We provide an approximate solution for the state required to evaluate
the Godunov flux. The approximations can be used directly in the first—oder
Godunov method and its high—order extensions. Some of the approximations
presented are exceedingly simple but not accurate enough to produce robust
numerical methods. This difficulty is resolved by designing hybrid schemes that
combine various approximate solvers in and adaptive fashion. There are other
uses of the explicit approximate solutions presented here. For instance, the
simplest solutions can be used in the characteristic limiting of high—order Go-
dunov type methods based on the MUSCL approach; see Sect. 13.4 of Chap.
13. They also provide valuable information of use in other well known approxi-
mate Riemann solvers. For instance, Roe’s approximate Riemann solver, [407]

E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 293
DOI 10.1007/b7976-1_9, © Springer-Verlag Berlin Heidelberg 2009
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to be studied in Chap. 11, requires an entropy fix; the results of this chapter
may be used to provide the state values in the Harten—-Hyman entropy fix
[243]. The approximate Riemann solver of Osher [372], to be studied in Chap.
12, requires intersection points for the integration paths; the approximations
of this chapter can be used directly. The HLL approach of Harten, Lax and
van Leer [244] for deriving approximate solutions to the Riemann problem,
to be studied in Chap. 10, requires estimates for the smallest and largest sig-
nal velocities in the Riemann problem; again, the pressure—velocity approx-
imation of this chapter can directly lead to estimates for wave speeds. The
approximate solutions presented in this chapter may also be of use in other
computational approaches, such as in front tracking schemes [468], [403]. The
techniques discussed here can easily be extended to other systems, such as the
shallow water equations, the steady supersonic Euler equations, the artificial
compressibility equations (see Sect. 1.6.3 of Chap. 1) and the Euler equations
with general equation of state.

Useful background for studying this chapter is found in Chaps. 2, 3, 4, and
6. The rest of this chapter is organised as follows: in Sect. 9.2 we recall the
Godunov flux and the Riemann problem solution, in Sect. 9.3 we present very
simple Riemann solvers based on primitive variable formulations of the Euler
equations. In Sect. 9.4 we study approximations based on the exact function
for pressure, namely the two-rarefaction approximation and the two-shock
approximation. Hybrid schemes are dealt with in Sect. 9.5 and numerical
results are presented in Sect. 9.6.

9.2 The Riemann Problem and the Godunov Flux

We want to solve numerically the general Initial Boundary Value Problem
(IBVP)
PDEs: U;+F(U), =0,
ICs :U(x,0) =UO(z), (9.1
BCs :U(0,t) =U(t), U(L,t) = U,(t)

utilising the explicit conservative formula

" n At
Uittt =up + E[Fi—% —Fi1l, (9:2)
along with the Godunov intercell numerical flux
Fi+% = F(UH%(O)) : (9.3)

We assume that the solution of IBVP (9.1) exists. Here Uy, 1(0) is the simi-
larity solution U, 1 (/) of the Riemann problem
U, +FU), =0,

(ULifz <0, (9.4)
U(x’o)_{URif:c>O,
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evaluated at =/t = 0. Fig. 9.1 shows the structure of the exact solution of
the Riemann problem for the x—split three-dimensional Euler equations, for
which the vectors of conserved variables and fluxes are

p pu
pu pu’ +p
U=|p |, F= PUY . (9.5)
pw puw
E u(E + p)

The value z/t = 0 for the Godunov flux corresponds to the t—axis. See Chap. 6
for details. The piece—wise constant initial data, in terms of primitive variables,
is

PL PR
ur, UR
WL = vy, y WR = VR . (9.6)
wr, WR
pPL PR

Fig. 9.1. Structure of the solution of the Riemann problem for the z—split, three
dimensional Euler equations. Data and solution are given in terms of primitive vari-
ables

The purpose of this chapter is to find approzimate solutions to the Rie-
mann problem in order to evaluate the Godunov flux. As seen in Chap. 6,
the evaluation of the flux requires the identification of the appropriate wave
pattern in the Riemann problem solution; as depicted in Fig. 9.2, there are
ten possibilities to be considered.

In our solution procedure we split the task of solving the complete Riemann
problem into three subproblems, namely

(I)  The star values
Dx 5 Ux s PxL 5 PxR (9-7)

in the Star Region between the non-linear waves, see Fig. 9.1.
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(IT) The solution for the tangential velocity components v and w throughout
the wave structure, and
(IIT) The solution for p, u and p inside sonic rarefactions.

Cases (IT) and (III) are dealt with in the rest of this section, while case (I)
is the subject of the rest of the chapter.

9.2.1 Tangential Velocity Components

Recall that in the exact solution, the values of the tangential velocity
components v and w do not change across the non-linear waves but do change,
discontinuously, across the middle wave. Thus, given an approximate solution
us for the normal velocity component in the Star Region, the solution for the
tangential velocity components v and w is

v ,wr if § <,
v(z,t) ,w(z,t) = (9.8)
VR, wg if § > u. .

In this way, the solution for the tangential velocity components is, in a sense,
ezxact; the only approximation being that for wu,. As a matter of fact, any
passive scalar quantity q(z,y, z, t) advected with the fluid will have this prop-
erty. In the study of multi-component flow, this quantity could be a species
concentration; in practical applications there can be many of such quantities.
Hence, it is very important that the approximate solution of the Riemann
problem preserves the correct behaviour, as in (9.8).

9.2.2 Sonic Rarefactions

Assuming the solution for the star values (9.7) is available, we then need to
identify the correct values along the t—axis, in order to evaluate the Godunov
flux. The cases (al) to (a4) and (bl) to (b4) of Fig. 9.2 can be dealt with
once solutions for (9.7) and (9.8) are available. The sonic flow cases (ab) and
(b5) must be treated separately. For these two cases we recommend the use
of the exact solution, which, as seen in Sect. 4.4 of Chap. 4 for ideal gases, is
non-iterative.

The solution along the t—axis inside a left sonic rarefaction is obtained by
setting z/t = 0 in

1 -1
p=rL {(V?H) + oiryer (un %)} ;

WLfan = u = 2 |:ClL + 7(7;1) ur, + %:| s (99)

2y

1 71
P=pL {(ﬁﬂ) + e (un — %)} ‘
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(a1) (b1)
(@2) (b2)
(a3) (b3)
(a4) (b4)
(a5) (b3)

Fig. 9.2. Possible wave patterns in evaluating the Godunov flux for the Euler
equations:(a) positive particle speed in the Star Region (b) negative particle speed
in the Star Region

The solution along the t—axis inside a right sonic rarefaction is obtained by
setting z/t = 0 in

_ 2 (v=1) z\| 7T
P = PR [(wl) - (ylmR (ur — ?)} )

Wagtan = { U= ﬁ {*GR + (ng)UR + %] ) (9.10)

_ 2 =1 )|t
p = e |~ omer (e = %)| T

The rest of this chapter is devoted to providing approximate solutions
for the star values (9.7). We study four approaches as well as two adaptive
schemes that combine various approximations.

9.3 Primitive Variable Riemann Solvers (PVRS)

A very simple linearised solution to the Riemann problem [502] for the
a—split, three dimensional time dependent Euler equations (9.4)—(9.5) can be
obtained in terms of the primitive variables p, u,v,w,p. The corresponding
governing equations, see Sect. 3.2.3 of Chap. 3, are
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W, +AW)W, =0, (9.11)

where the coefficient matrix A(W) is given by

u p 00 0O
0w 001/p
A=100 w0 0 |. (9.12)
00 Ou O
0pa?00 u
The eigenvalues of A(W) are
M=u—a,a=N3=M=u, \s=u-+a (9.13)

and the matrix of corresponding right eigenvectors is

p Lpp
—a 000
K=| 0 v1luw
0 wwl
pa? 0 0 0 pa®

(9.14)

oo e v

The difficulty in solving (9.11) is due to the fact that the coefficient matrix
A (W) depends on the solution vector W itself. If A(W) were to be constant,
then we could apply, directly, the various techniques studied in Sect. 2.3.3 of
Chap. 2 for solving linear hyperbolic systems with constant coefficients.

Assume that the initial data W, W and the solution W (x/t) are close
to a constant state W. Then, by setting

A=AW) (9.15)

we approximate the Riemann problem for (9.11) by the Riemann problem for
the linear hyperbolic systems with constant coefficients

W, +AW, =0. (9.16)

We now solve this approzimate problem, with initial data (9.6), ezactly. In Sect.
2.3.3 of Chap. 2 we studied various techniques that are directly applicable to
this problem. One possibility is to apply Rankine-Hugoniot Conditions across
each wave of speed \;. Thus we treat (9.16) as the system in conservative form

W;+F(W),=0, F(W)=AW. (9.17)
Then, across a wave of speed \; we have

AF = AAW = AW . (9.18)

Direct application of (9.18) to the A\; and A5 waves gives four useful relations,
namely
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((u* - uL))/ﬁ + a((p*L - pL)) =0,
P« —pL)/p + a(us —ur) =0,
(ur —w)p — alpr — psr) =0, (9.19)
(pr—ps)/p — a(ug —uy) =0.

The complete solution for the unknowns (9.7) is then given by

p« = 3(pL +pr) + $(ur —ur)(pa) ,
Uy = %(UL +UR) + %(pL _pR)/(ﬁd) )
(9.20)
sl = PL + (urp —u)(p/a),
psr=  pr  + (ux—ug)(p/a).

Notice that in this linearised solution we only need to specify constant
values for p and a. There is some freedom in making the choice. Selecting some
average of the data values pr, pgr, ar, ar appears sensible. The choice may
be constrained to satisfy some desirable properties of the Riemann problem
solution, such as exact recognition of particular flow features. Here we suggest
to select the simple arithmetic means

1 1
p= §(pL +pR) , a= 5((1[1 +aR). (921)

Note that if the data states W, and W are connected by a single iso-
lated contact discontinuity or shear wave, then the solution is actually exact,
regardless of the particular choice for the averages p and a. This is in fact a
very important property; contacts and shear waves turn out to be some of the
most challenging flow features to resolve correctly by any numerical method.

Another way of obtaining approximate solutions for the star values is to
use the characteristic equations, see Sect. 3.1.2 of Chap. 3,

dp — padu = 0 along dz/dt =u—a, (9.22)
dp —a?dp = 0 along dz/dt = u, (9.23)
dp + padu =0 along dz/dt=u+a. (9.24)

These differential relations hold true along characteristic directions. First we

set
C = pa. (9.25)

Then, in order to find the star values we connect the state W, to the data
state W, see Fig. 9.1, by integrating (9.24) along the characteristic of speed
u + a, where C' is evaluated at the foot of the characteristic. See Fig. 9.3 The
results is

ps +Cru. =pr +Crup, . (9.26)
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Fig. 9.3. Solution for star values using characteristic equations

Similarly, we connect W, to the data state W by integrating (9.22) along
the characteristic of speed u — a, with C is evaluated at the foot of the char-
acteristic. We obtain

Px —CR’U,* :pR—C'RuR . (927)

The values p.; and p.r are obtained by connecting W, to W and W,p
to Wx via (9.23). The complete solution is

P« = cen Crpr + Crpr + CLCr(ur — ur)]

Uy = m[cLuL—i—CRuR—i—(pL—pR)] , 025
P = pr + (p« —pr)/ai

PeR = pr+ (P« — PR) /0% -

In this approximation we do not need to make a choice for the averages p
and a; their values are replaced by data values at the foot of the corresponding
characteristics. If C;, = Cr = pa, then the two approximations (9.20) and
(9.28) are identical.

The two linearised approximations (9.20) and (9.28) for the star values are
exceedingly simple and may be useful in a variety of ways. The approaches
might prove very useful in solving the Riemann problem for complicated sets
of equations.

We have now given the complete approximate solution to the sub—problems
(9.7)—(9.10). In order to evaluate the Godunov flux (9.3) we need to sample the
solution to find the value W, 1 (0) along the t—axis. This sampling procedure
is virtually identical, although simpler, to the sampling procedure for the ex-
act Riemann problem solution presented in Chap. 4. The reader is made aware
that the numerical schemes associated with the simple linearised solutions just
derived may not be robust enough to be used with absolute confidence under
all flow conditions. In Sect. 9.5 we study hybrid Riemann solvers, which com-
bine simple and sophisticated solvers to provide schemes that have effectively
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the computational cost of the simplest Riemann solvers and the robustness of
the sophisticated Riemann solvers.
9.4 Approximations Based on the Exact Solver

In Chap. 4 we presented an exact Riemann solver based on the pressure
equation

fp) = fep;, W)+ frlp,Wr)+ Au=0, Au=ugr—ur,  (9.29)
with
1
Ag |7
(b= px) | 5245] it p > pic (shock)
fr(p) = (9.30)
(?vaj) [(p%) - 1] if p < pi (rarefaction) ,
v—1 2 v—1
=1 - Ax=—"—, Bg=|+— , K=L,R. (9.31
Ty BRCE N <7+1)pK 931
Various approximations based on f(p) = 0 can be obtained, including

curve—fitting procedures [509]. Here we give approximations based on the rar-
efaction and shock branches (9.30) of f(p).

9.4.1 A Two—Rarefaction Riemann Solver (TRRS)

Recall that the non-linear waves in the Riemann problem solution are
either shock or rarefaction waves and finding their type is part of the solution
procedure. If one assumes a—priori that both non—linear waves are rarefactions
then (9.29), with the appropriate choice of f, and fg in (9.30), becomes

(72?1) Kzi)z 1} * (jiRi) K;;)z 1} +up—up =0.

Solving this equation for pressure p, gives the approximation

(9.32)

1
ar +agr — T(UR—UL)] :
P« =

ar/pi +ar/py

Having found p, one can obtain the particle velocity w, from any of the
rarefaction wave relations

=y — 2L [(p> - 1} (9.33)

(v—1) PL

or
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w, = ug + (72‘1’21) K;) - 1] . (9.34)

Alternatively, one can eliminate p, from (9.33) and (9.34) to obtain a closed—-
form solution for the particle velocity

*

_ Prrup/ap +ur/ar +2(Prr —1)/(y — 1) AN
_ CPon=(PE) . (9.35)
Prr/ar +1/ag DR

Computing p, from (9.32) requires the evaluation of 3 fractional powers. A
more efficient approach is to calculate u, from (9.35), which only requires one
fractional power, and then evaluate p, from (9.33) or (9.34), or from a mean
value as

Px = % {pL {1 + (72;;) (ur — u*)} % +pr {1 + (72;;) (s — UR)} i} :

(9.36)

Being consistent with the assumption that the two nonlinear waves are

rarefaction waves, the computation of the densities p,.; and p.r on either side

of the contact discontinuity is obtained from the isentropic law, see Sect. 3.1.2
of Chap. 3. The result is

D % P« %
PxL = PL () ,  P+R = PR () : (9.37)
PL PR

An improved version of the two—rarefaction solution is obtained by using exact
relations, for given p, or u.. For instance, suppose p, is given by (9.32) say,
then u, can be found from

we = g(ur +ur) + 3 alp.) — (0] (9.39)
where the functions f;, and fr are evaluated according to the exact relations
(9.30) by comparing p, with p;, and pg. The densities p.;, and p.p can be
found from the isentropic law if the K wave is a rarefaction (p. < px) or from
the shock relation if the K wave is a shock wave (p. > px).

The two-rarefaction approximation is generally quite robust; it is more
accurate, although more expensive, than the simple PVRS solutions (9.20) or
(9.28) of the previous section. The TRRS is in fact exact when both non-
linear waves are actually rarefaction waves. This can be detected a—priori by
the condition

f(Pmin) = 0 with ppin = min(pr, pr) - (9.39)

See Sect. 4.3 of Chap. 4 for details on the behaviour of the pressure function.

We have now given another approximate solution to the problem (9.7).
The solution for (9.9)—(9.10) follows. The evaluation of the Godunov flux (9.3)
requires sampling the solution to find the value W; 1 (0) along the t-axis, in
the usual way. See Sect. 4.5 of Chap. 4.
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9.4.2 A Two—Shock Riemann Solver (TSRS)

By assuming that both non-linear waves are shock waves in (9.29)—(9.30)
one can derive the two—shock approximation

f(p) = (—p)9r(p) + (p — Pr)9r(P) + ur —ur =0, (9.40)
with i
9k (p) = [p fZK} 2 (9.41)

and Ag, Bx given by (9.31). Unfortunately, this approximation does not lead
to a closed—form solution. Further approximations must be constructed [168],
[384], [509]. Obvious approximations to the two—shock approximation involve
quadratic equations. These do not generally lead to robust schemes. One dif-
ficulty is the non—uniqueness of solutions and making the correct choice; the
exact solution, as seen in Chap. 4, is unique. The other problem is the case of
complex roots (non—existence) even for data for which the exact problem has
a solution; in our experience these can occur very often and is therefore the
most serious difficulty of the two—shock approach.

An alternative approach [509] is as follows. First we assume an estimate
po for the solution for pressure. Then we insert this estimate in the functions
(9.41), which in turn are substituted into equation (9.40). We obtain

(p—pr)gr(po) + (p — pr)gr(P0) +ur —ur, =0.
The solution of this equation is immediate:

_ 9.(po)pr + gr(po)pr — (ur — ur)
: gr.(po) + gr(po) '

(9.42)

Being consistent with the two—shock assumption we derive a solution for the
velocity u, as

Uy = %(UL +ug) + % [(p« —Pr)9R(P0) — (Px — PL)9L(P0)] - (9.43)

Solution values for p.pandp.r obtained from shock relations, see Sect. 3.1.3
of Chap. 3, namely

P 4 Ev;}g P EWJ—FB
PeL=PL | G 1| PR TR | G g | (0.44)
G pr CEs) T

As to the choice for the pressure estimate py we propose

Po = ma‘r(oappvrs) 5 (945)

where p,,ps is the solution (9.20) for pressure given by the PVRS solver of
Sect. 9.3.
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We have just presented another approximate solution to the problem (9.7).
As before, the solution for (9.8)—(9.10) follows. The evaluation of the Godunov
flux (9.3) requires sampling the solution to find the value W, 1(0) along the
t— axis, in the usual way. See Sect. 4.5 of Chap. 4.

The approximation (9.42)—(9.44) to the star values (9.7) is more efficient
than the TRRS and only slightly more expensive than the PVRS approxima-
tions. Also TSRS is more accurate than TRRS and PVRS for a wider range
of flow conditions, except for near vacuum conditions, where TRRS is very
accurate or indeed exact. As for the case of the TRRS approximation, we can
improve the TSRS by using the true wave relations whenever possible. For in-
stance, for given p, as computed from (9.42), one can obtain u,, p.r, and p.r
from exact wave relations. This is bound to improve the accuracy of the de-
rived quantities.

9.5 Adaptive Riemann Solvers

In a typical flow field the overwhelming majority of local Riemann prob-
lems are a representation for smooth flow. Large gradients occur only near
shock waves, contact surfaces, shear waves or some other sharp flow features.
Large gradients generate Riemann problems with widely different data states
W, Wg. Generally, it is in this kind of situations where approximate Rie-
mann solvers can be fatally inaccurate, leading to failure of the numerical
method being used. The rationale behind the use of hybrid schemes is the
use of simple Riemann solvers in regions of smooth flow and near isolated
contacts and shear waves, and more sophisticated Riemann solvers elsewhere,
in an adaptive fashion.

Successful implementations of adaptive schemes involving the PVRS and
the exact Riemann solvers were presented in [502] for the two-dimensional,
time dependent Euler equations. Toro and Chou [533] extended the idea to
the case of the steady supersonic Euler equations. Quirk [400] implemented
this Riemann—solver adaptation approach in a MUSCL—type scheme, used in
conjunction with adaptive mesh refinement techniques.

Here we present two hybrid schemes to compute the star values (9.7).
Problems (9.8)—(9.10) are solved as before and the sampling is handled as
described in Sect. 4.5 of Chap. 4.

9.5.1 An Adaptive Iterative Riemann Solver (AIRS)

This adaptive scheme makes use of two Riemann solvers: any of the
primitive-variable Riemann solvers PVRS of Sect. 9.3 and the exact Riemann
solver of Chap. 4. The PVRS scheme is used if the following two conditions
are met:

Q = pmax/pmin < Quser (946)
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and
Pmin < Px < Pmax » (947)

where

Pmin = min(pLupR) ; Pmax = maX(vapR) , Px = ppvrs . (948)

Otherwise, the exact Riemann solver is used.

Some remarks on the switching conditions (9.46)—(9.47) are in order. Con-
dition (9.46) ensures that the pressure data values py, pr are not widely
different. Condition (9.47) imposes an extra restriction on the use of PVRS.
The pressure restriction (9.46) is not sufficient; in fact for Q ~ 1, (pr = pr)
and Au = ugr — uy, negative and large in absolute value, strong shock waves
are present in the solution of the Riemann problem, that is p. > pmax. For Au
large and positive p. < pmin and strong rarefactions are present in the exact
solution of the Riemann problem. Condition (9.47) is effectively a condition
on Au and excludes the two-rarefaction and the two-shock cases; both of
these cases occur naturally at reflected boundaries, where it would be unwise
to employ unreliable approximations. Also, these two cases are inconsistent
with condition (9.46) on pressure ratios.

A choice of the switching parameter Quse is to be made. Extensive testing
suggests that the value Quser = 2 is perfectly adequate to give both very robust
and efficient schemes. Even much larger values of Quser can give accurate
solutions, but the gains are not significant and thus the cautious choice of
Quser = 2 is recommended. For typical flow conditions and meshes, over 90%
of all Riemann problems are handled by the cheap linearised Riemann solver.
Effectively, the resulting schemes have the efficiency of the cheapest Riemann
solvers and the robustness of the exact Riemann solver. A disadvantage of
this hybrid PVRS-EXACT scheme is the iterative character of the robust
component of the scheme, namely the exact Riemann solver. This may be
inconvenient for some computer architectures. One possibility here is to fix
the number of iterations in the exact Riemann solver. In our experience, one
iteration leads to very accurate values for pressure and subsequent quantities
derived. This is due in part to the provision of a sophisticated starting value
for the iteration procedure.

9.5.2 An Adaptive Noniterative Riemann Solver (ANRS)

Here we propose to combine a PVRS scheme, as the cheap component,
together with the non—iterative TRRS and TSRS solvers of Sects. 9.4.1 and
9.4.2 to provide the robust component of the adaptive scheme. The use of
PVRS is again restricted by conditions (9.46)-(9.47) of the previous scheme.
If any of conditions (9.46) or (9.47) are not met we use either TRRS or TSRS.
The switching between TRRS and TSRS is motivated by the behaviour of the
exact function for pressure, see Sect. 4.3.1 of Chap. 4, and is as follows. If
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p
Q = " ;p*:ppvrs

- pmin

PVRS TRRS TSRS

Sample W(0)

Fig. 9.4. Flow chart for Adaptive Noniterative Riemann Solver (ANRS) involving
PVRS, TRRS and TSRS

ppvrs S Pmin » (949)

then we use TRRS, otherwise we use TSRS. The flow chart of Fig. 9.4 illus-
trates the implementation of this adaptive scheme. The problems of comput-
ing the tangential velocity components, handling sonic flow and the sampling
procedure to find the Godunov flux are dealt with as described in the previ-
ous sections. This adaptive noniterative Riemann solver is recommended for
practical applications.

9.6 Numerical Results

Here we assess the performance of Godunov’s first—order upwind method
used in conjunction with the approximate Riemann solvers presented in this
chapter. We select five test problems for the one-dimensional, time dependent
Euler equations for ideal gases with v = 1.4; these have exact solutions, which
are evaluated by running the code HE-EIRPEXACT of NUMERICA [519].

In all chosen tests, data consists of two constant states Wy, = [pr,, ur, pr]”
and Wr = [pr,ur, pr]T, separated by a discontinuity at a position 2 = z.
The states W1, and Wg are given in Table 9.1. The ratio of specific heats is
chosen to be v = 1.4. For all test problems the spatial domain is the interval
[0, 1] which is discretised with M = 100 computing cells. The Courant number
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coefficient is Coq = 0.9; boundary conditions are transmissive and S}, is
found using the simplified formula (6.20) of Chapt. 6. But given that this
formula is somewhat unreliable, see discussion of Sect. 6.3.2 of Chapter 6,
in all computations presented here we take, for the the first 5 time steps, a

Courant number coefficient C'.q reduced by a factor of 0.2.

Test| pr, ur, PL PR UR PR
1 1.0 0.75 1.0 0.125 0.0 0.1
2 1.0 -2.0 0.4 1.0 2.0 0.4

3 1.0 0.0 1000.0| 1.0 0.0 0.01
4 15.99924| 19.5975 [460.894]5.99242| -6.19633 |46.0950
5 1.0 |-19.59745| 1000.0 | 1.0 |-19.59745| 0.01

Table 9.1. Data for five test problems with exact solution. Test 5 is like Test
3 with negative uniform background speed

Test 1 is a modified version of the popular Sod’s test [453]; the solution
consists of a right shock wave, a right travelling contact wave and a left sonic
rarefaction wave; this test is very useful in assessing the entropy satisfaction
property of numerical methods. Test 2 has solution consisting of two sym-
metric rarefaction waves and a trivial contact wave of zero speed; the Star
Region between the non-linear waves is close to vacuum, which makes this
problem a suitable test for assessing the performance of numerical methods
for low—density flows; this is the so called 123 problem introduced in chapter
Chap. 4. Test 3 is designed to assess the robustness and accuracy of numerical
methods; its solution consists of a strong shock wave, a contact surface and
a left rarefaction wave. Test 4 is also designed to test robustness of numeri-
cal methods; the solution consists of three strong discontinuities travelling to
the right. See Sect. 4.3.3 of Chap. 4 for more details on the exact solution of
these test problems. Test 5 is also designed to test the robustness of numerical
methods but the main reason for devising this test is to assess the ability of
the numerical methods to resolve slowly— moving contact discontinuities. The
exact solution of Test 5 consists of a left rarefaction wave, a right-travelling
shock wave and a stationary contact discontinuity. For each test we select a
convenient position x( of the initial discontinuity and an output time. These
are stated in the legend of each figure displaying computational results.

We present numerical results for two of the approximate Riemann solvers
presented in this chapter, namely the Two—Shock Riemann solver (TSRS) and
the Adaptive Noniterative Riemann Solver (ANRS). The numerical solutions
are obtained by running the code HE-EIGODSTATE of NUMERICA [519].
The results from TSRS are shown in Figs. 9.5 to 9.9 and those of ANRS
are shown in Figs. 9.10 to 9.14. All of these results are to be compared with
those obtained from the Godunov scheme used in conjunction with the exact
Riemann solver, see Figs. 6.8 to 6.12, Chapt. 6; to plotting accuracy, there is
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no difference in the computed results. The two approximate Riemann solvers
TSRS and ANRS are recommended for practical applications.

The Godunov-type methods based on the approximate—state Riemann
solvers of this chapter are extended to second—order of accuracy using the
techniques of Chaps. 13 and 14, for one-dimensional problems. Approaches for
including source terms are given in Chapt. 15 and for solving multidimensional
problems in Chap. 16.
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Fig. 9.5. Two—Shock Riemann Solver applied to Test 1, with zop = 0.3. Numerical
(symbol) and exact (line) solutions are compared at time 0.2 units



9.6 Numerical Results 309

2 2
2 8
3 3
0 0.5 1 0 0.5 1
Position Position
0.5
P
ISy
(<5}
g 0.25 ¢ E
g =
o i
E
0
n O n
0 0.5 1 0 0.5 1

Position Position

Fig. 9.6. Two—Shock Riemann Solver applied to Test 2, with o = 0.5. Numerical
(symbol) and exact (line) solutions are compared at time 0.15 units
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Fig. 9.7. Two—Shock Riemann Solver applied to Test 3, with zo = 0.5. Numerical
(symbol) and exact (line) solutions are compared at time 0.012 units
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Fig. 9.10. Adaptive Noniterative Riemann Solver applied to Test 1, with o = 0.3.

Numerical (symbol) and exact (line) solutions are compared at time 0.2 units
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Fig. 9.12. Adaptive Noniterative Riemann Solver applied to Test 3, with o = 0.5.
Numerical (symbol) and exact (line) solutions are compared at time 0.012 units
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Fig. 9.13. Adaptive Noniterative Riemann Solver applied to Test 4, with xo = 0.4.
Numerical (symbol) and exact (line) solutions are compared at time 0.035 units
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The HLL and HLLC Riemann Solvers

The approximate Riemann solver proposed by Harten Lax and van Leer
(HLL) in 1983 requires estimates for the fastest signal velocities emerging
from the initial discontinuity at the interface, resulting in a two-wave model
for the structure of the exact solution. A more accurate method is the HLLC,
introduced by Toro and collaborators in 1992. This method assumes a three—
wave model, resulting in better resolution of intermediate waves.

10.1 Introduction

For the purpose of computing a Godunov flux, Harten, Lax and van Leer
[244] presented a novel approach for solving the Riemann problem approxi-
mately. The resulting Riemann solvers have become known as HLL Riemann
solvers. In this approach an approximation for the intercell numerical fluz is
obtained directly, unlike the Riemann solvers presented previously in Chaps.
4 and 9. The central idea is to assume, for the solution, a wave configuration
that consists of two waves separating three constant states. Assuming that
the wave speeds are given by some algorithm, application of the integral form
of the conservation laws gives a closed—form, approximate expression for the
flux. The approach produced practical schemes after the contributions of Davis
[150] and Einfeldt [181], who independently proposed various ways of comput-
ing the wave speeds required to completely determine the intercell flux. The
two—wave HLL approach, along with the wave speed estimates proposed by
Einfeldt [181] is known as the HLLE solver. The resulting HLL-type Riemann
solvers form the bases of very efficient and robust approximate Godunov—-type
methods.

One difficulty with these schemes, however, is the assumption of a two—
wave configuration. This is correct only for hyperbolic systems of two equa-
tions, such as the one—dimensional shallow water equations. For larger sys-
tems, such as the Euler equations or the split two-dimensional shallow wa-
ter equations for example, the two—wave assumption is incorrect. As a con-

E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 315
DOI 10.1007/b7976-1_10, (© Springer-Verlag Berlin Heidelberg 2009
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sequence the resolution of physical features such as contact surfaces, shear
waves and material interfaces, can be very inaccurate. For the limiting case
in which these features are stationary relative to the mesh, the resulting nu-
merical smearing is unacceptable. In view of this situation Einfeldt proposed
[181] a modification to the HLLE scheme, called HLLM, in which the single
intermediate state in the HLL approach is modified by means of a linear distri-
bution. The modification involves some parameters that control the amount
of excessive dissipation for intermediate waves. Particular choices of these
parameters and of the wave speed estimates reduce the HLLM scheme to a
modified version of the Roe solver. See [182] for further details on both HLLE
and HLLEM.

A different approach to remedy the problem of intermediate waves in the
HLL approach waves was taken by Toro, Spruce and Speares in 1992 [541],
[542]. They proposed the HLLC Riemann solver (C standing for Contact), as
applied to the time-dependent Euler equations. HLLC is a three-wave model,
resulting two-star states for the intermediate region of the Riemann—problem
solution fan. A precursor to HLLC was also anticipated in [505]. Early appli-
cations of HLLC include the steady supersonic two—dimensional Euler equa-
tions [532] and the time-dependent two dimensional shallow water equations
[193], [194]. Batten and collaborators [32] analyzed the HLLC scheme and
proposed new ways of estimating the wave speeds. See also the work of Bat-
ten, Leschziner and Goldberg [33], in which they proposed implicit versions of
the HLLC Riemann solver, with application to turbulent flows. In later work
by Linde and others [324], [325] modifications to the HLL two-wave approach
were also explored, in order to reduce numerical dissipation of contact waves.

In the last decade or so we have seen further developments of the HLLC
method as well as ambitious applications. A quick electronic search, by typing
for example HLLC solver, will give hundreds of useful entries on the subject.
Recall that the Euler equations have three distinct characteristic fields in one,
two and three space dimensions, see Chapter 3, section 3.2. This is why HLLC
as proposed in [541], [542], [96] is a complete Riemann solver, for the Euler
equations; that is the approximate wave structure of HLLC contains all the
characteristic fields of the exact problem. However, for systems with eigen-
structure containing more than three distinct characteristic fields, the HLLC
becomes incomplete, tending to behave like HLL for the one—dimensional Euler
equations. The incomplete character of a Riemann solver affects the resolu-
tion of intermediate waves, particularly when these move slowly relative to
the mesh. Therefore, the obvious way of improving the HLLC approach is to
admit the correct number of characteristic fields for the system of interest.
Works along these lines include [230], [474] and [75]. Other interesting devel-
opments and ambitious applications are found in the following works, to name
but a few, [24], [553], [54], [54], [74], [360], [580], [318], [397], [351], [334], [572],
[6], [53], [285], [199], [255], [237], [382], [361], [86], [425], [602].

In this Chapter we present the HLL and HLLC Riemann solvers as applied
to the three-dimensional, time dependent Euler equations. The principles can
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easily be extended to solve other hyperbolic systems. Useful background read-
ing is found in Chaps. 3, 4, 6 and 9. The rest of this chapter is organised as
follows: Sect. 10.1 recalls the Riemann problem. In Sect. 10.3 we present the
original approach of Harten, Lax and van Leer. In Sect. 10.4 we present the
HLLC Riemann solver and in Sect. 10.5 we give various algorithms for comput-
ing the required wave speeds. A summary of the HLLC schemes is presented in
Sect. 10.6. In Sect. 10.7 we analyse the behaviour of the approximate Riemann
solvers in the presence of contacts and passive scalars. Numerical results are
shown in Sect. 10.8 and in Sect. 10.9 contains some concluding remarks.

10.2 The Riemann Problem

We are concerned with solving numerically the general Initial Boundary
Value Problem (IBVP)

PDEs: U;+F(U), =0,
ICs :U(z,0) = UO(z), (10.1)
BCs :U(0,t) = U(t), U(L,t) = U.(t),

in a domain 0 < x < L, with appropriate boundary conditions. We use the
explicit conservative formula
At

Ut = U - [Fe - Fo ] (10.2)

with the numerical flux F;, 1 yet to be defined.

10.2.1 The Godunov Flux
In Chap. 6 we defined the Godunov intercell numerical flux as

Fi+% = F(UH%(O)) ) (10.3)
in which U; 1 (0) is the exact similarity solution U, 1 (x/t) of the Riemann
problem

U;+FU), =0,

UL ifa<o0, (10.4)
U(x’o)_{UR if >0,

evaluated at x/t = 0. Fig. 10.1 shows the structure of the exact solution of
the Riemann problem for the z—split, three dimensional Euler equations, for
which the vectors of conserved variables and fluxes are

p pu
pu pu® +p

U=|pv|, F= puv . (10.5)
pw puw

E u(E +p)
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The value z/t = 0 for the Godunov flux corresponds to the t—axis. See Chaps.
4 and 6 for details. The piece-wise constant initial data, in terms of primitive
variables, is

PL PR
ur, UR
Wr=|v, |, Wgr=]|uvg| . (10.6)
wr, WR
pL Pr

In Chap. 9 we provided approximations to the state U, +1 (2/t) and obtained

t
(w-a) _ o (u+a)

Fig. 10.1. Structure of the exact solution of the Riemann problem for the z—split
three dimensional Euler equations. There are five wave families associated with the
eigenvalues u — a, u (of multiplicity 3) and u + a.

a corresponding approximate Godunov method by evaluating the physical flux
function F at this approximate state; see (10.3). The purpose of this chapter
is to find direct approzimations to the flux function F, 1 following the novel
approach proposed by Harten, Lax and van Leer [238].

10.2.2 Integral Relations

Consider Fig. 10.2, in which the whole of the wave structure arising from
the exact solution of the Riemann problem is contained in the control volume
[z, xR] x [0,T], that is

$L§TSL, {ERZTSR7 (107)

where S, and Sg are the fastest signal velocities perturbing the initial data
states Uy, and Uy respectively, and T is a chosen time. The integral form of
the conservation laws in (10.4), in the control volume [z, 2] X [0,T] reads

/m U(:c,T)da::/xR U(x7o)dx+/0 F(U(mL,t))dt—/O F(U (2, 1)t .
: - (10.8)
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See Sect. 2.4.1 of Chap. 2 for details on integral forms of conservation laws.
Evaluation of the right—hand side of this expression gives

TR
/ U(:c,T)dac =xpUpr — 2 U + T(FL — FR) R (109)
L

where F;, = F(Up) and Fr = F(Upg). We call the integral relation (10.9)
the consistency condition. Now we split the integral on the left—hand side of
(10.8) into three integrals, namely

TR TS TSr TR
/ Uz, T)dx = / U(z, T)dx + / U(z,T)dx + U(z, T)dx

L TSL TSR

and evaluate the first and third terms on the right—hand side. We obtain

TR TSR
/ U(x,T)dx:/ U(I,T)d$+(TSL —IL)UL—F(.IR—TSR)UR .

TSy
(10.10)
Comparing (10.10) with (10.9) gives

SL . Sk

N\ f // T
1 I
1 |
! |
1 l
! |
f |
1 )
! |
1 |
1 i
Y |

. X
X TSL TSR Xg

Fig. 10.2. Control volume [z, zg] X [0,7] on z—t plane. S;, and Sgr are the fastest
signal velocities arising from the solution of the Riemann problem.

TSg
/ U(x,T)dx:T(SRUR—SLUL-I-FL—FR) . (10.11)
TS,

On division through by the length T'(Sgr — Sp), which is the width of the
wave system of the solution of the Riemann problem between the slowest and
fastest signals at time 7', we have

1 fﬁUmﬂd_&m—&m+&—m

_ T = . 10.12
T(Sr —SL) Jrs, Sr— 5L ( )

Thus, the integral average of the exact solution of the Riemann problem be-
tween the slowest and fastest signals at time 7" is a known constant, provided
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that the signal speeds S and Sy are known; such constant is the right—hand
side of (10.12) and we denote it by

SRURstUL*FFL*FR

uhll —
Sr— 5L

(10.13)

We now apply the integral form of the conservation laws to the left portion
of Fig. 10.2, that is the control volume [z, 0] x [0, T]. We obtain
0
U(,’E,T)dx =-TS, U + T(FL — FOL) R (10.14)
TSy,

where For, is the flux F(U) along the t—axis. Solving for Foz, we find
1 0
FOL:FLstULff U((ﬂ,T)dCﬂ (1015)
T TSy,

Evaluation of the integral form of the conservation laws on the control volume
[0,2R] x [0,T] yields

1 TSR
FOR:FRfSRUR+T/ U(z, T)dx . (10.16)
0

The reader can easily verify that the equality
For =For

results in the consistency condition (10.9). All relations so far are exact, as
we are assuming the exact solution of the Riemann problem.

10.3 The HLL Approximate Riemann Solver

Harten, Lax and van Leer [244] put forward the following approximate
Riemann solver

R U, if % <S5,
U(z,t) = ¢ UM if 5, <2 < Sp, (10.17)
Ugr if % 2>S5gr,

where UM is the constant state vector given by (10.13) and the speeds Sy, and
S are assumed to be known. Fig. 10.3 shows the structure of this approximate
solution of the Riemann problem, called the HLL Riemann solver. Note that
this approximation consists of just three constant states separated by two
waves. The Star Region consists of a single constant state; all intermediate
states separated by intermediate waves are lumped into the single state UM,
The corresponding flux F! along the t-axis is found from the relations (10.15)
or (10.16), with the exact integrand replaced by the approximate solution
(10.17). Note that we do not take F"!' = F(U"!). The non-trivial case of
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t

Sk

hil

— 17 T~

Fig. 10.3. Approximate HLL Riemann solver. Solution in the Star Region consists
of a single state UM separated from data states by two waves of speeds S1 and Sg.

interest is the subsonic case Sy, < 0 < Sgi. Substitution of the integrand in
(10.15) or (10.16) by U in (10.13) gives

FM' =F, + S, (UM —Uyp), (10.18)

or
FM' = Fp 4 Sp(UM — Ug) . (10.19)

Note that relations (10.18) and (10.19) are also obtained from applying
Rankine-Hugoniot conditions across the left and right waves respectively; see
Sect. 2.4.2 of Chap. 2 and Sect. 3.1.3 of Chap. 3 for details on the Rankine—
Hugoniot conditions. Use of (10.13) in (10.18) or (10.19) gives the HLL flux

SrFr — S Fr+ S Sr(Ur —Uyp)

Fhll —
Sr—SL

(10.20)

The corresponding HLL intercell flux for the approximate Godunov method
is then given by

Fr it 0<SL,

SrF;, — S.FRr + SLSR(UR — UL)

i1 = S5, ,if S, <0< Sk, (10.21)

Fr it 0>Sg.

Given an algorithm to compute the speeds Sy, and Sr we have an approximate
intercell flux (10.21) to be used in the conservative formula (10.2) to produce
an approximate Godunov method. Procedures to estimate the wave speeds Sy,
and Sg are given in Sect. 10.5. Harten, Lax and van Leer [244] showed that the
Godunov scheme (10.2), (10.21), if convergent, converges to the weak solution
of the conservation laws. In fact they proved that the converged solution is
also the physical, entropy satisfying, solution of the conservation laws. Their
results actually apply to a larger class of approximate Riemann solvers. One of
the requirements is consistency with the integral form of the conservation laws.
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That is, an approximate solution ﬁ(m, t) is consistent with the integral form
of the conservation laws if, when substituted for the exact solution U(z,t) in
the consistency condition (10.9), the right-hand side remains unaltered.

A shortcoming of the HLL scheme is exposed by contact discontinuities,
shear waves and material interfaces, or any type of intermediate waves. For
the Euler equations these waves are associated with the multiple eigenvalue
A2 = A3 = Ay = wu. See Fig. 10.1. Note that in the integral (10.12), all
that matters is the average across the wave structure, without regard for the
spatial variations of the solution of the Riemann problem in the Star Region.
As pointed out by Harten, Lax and van Leer themselves [244], this defect of the
HLL scheme may be corrected by restoring the missing waves. Accordingly,
Toro, Spruce and Speares [541], [542] proposed the so called HLLC' scheme,
where C stands for Contact. In this scheme the missing middle waves are put
back into the structure of the approximate Riemann solver.

10.4 The HLLC Approximate Riemann Solver

The HLLC scheme is a modification of the HLL scheme described in the
previous section, whereby the missing contact and shear waves in the Euler
equations are restored. The scheme was first presented in terms of the time—
dependent, two dimensional Euler equations [541], [542]. Early applications
include the steady supersonic two—dimensional Euler equations [532] and the
time—dependent two dimensional shallow water equations [193], [194].

10.4.1 Useful Relations

Consider Fig. 10.2, in which the complete structure of the solution of
the Riemann problem is contained in a sufficiently large control volume
[z, xr] x [0,T]. Now, in addition to the slowest and fastest signal speeds
Sr and Sk we include a middle wave of speed S,; for the Euler equations
this corresponds to the multiple eigenvalue Ay = A3 = A\y = u. See Fig. 10.4.
Evaluation of the integral form of the conservation laws in the control volume
reproduces the result of equation (10.12), even if variations of the integrand
across the wave of speed S, are allowed. Note that the consistency condition
(10.9) effectively becomes the condition (10.12). By splitting the left-hand
side of integral (10.12) into two terms we obtain

1 TSr 1 TS,
TG =50 ro, O T = 5 =5 fy, U D
1 TSr
—l—m /TS* Uz, T)dx .

(10.22)
We define the integral averages
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t

s, Sx Sk
I A
U*L U*R
UL UR
X
0

Fig. 10.4. HLLC approximate Riemann solver. Solution in the Star Region consists
of two constant states separated from each other by a middle wave of speed S..

1 TS,

Uy =———-——
ETT(S. S0 Jrs,

Uz, T)dx ,
(10.23)

1 TSr
Upe U, T)dz .
R = TS =5) /Ts* (. T)

By substitution of (10.23) into (10.22) and use of (10.12), the consistency
condition (10.9) becomes

Sx — S, Sr — S« _ rrhil
<SR - SL) U, + <SR - SL) U,p = Uk, (10.24)

where U™ is given by (10.12)-(10.13). The HLLC approximate Riemann
solver is given as follows

Ug ,if <5z,
R S T T
Ur ,if $>85r
We seek a corresponding HLLC numerical flux defined as
F, ,if 0<5p,
Fhite _ F.p,if S, <08, (10.26)

’L-‘r% F*R,lfS*SOSSRv
FR7if OZSR7

with the intermediate fluxes F,.; and F.p still to be determined. Fig. 10.4
shows the structure of the HLLC approximate Riemann solver.

By integrating over appropriate control volumes, or more directly, by ap-
plying Rankine-Hugoniot Conditions across each of the waves of speeds Sy,
S«, Sr, we obtain

F*L:FL+SL(U*L7UL), (1027)
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F.r =F.p + S*(U*R - U*L) , (1028)
F.p=Fpr+ Sr(U.r —Up) . (10.29)

Compare relations (10.27) and (10.29) for the HLLC scheme with (10.18) and
(10.19) for the HLL scheme. Substitution of F,., from (10.27) and F.g from
(10.29) into (10.28) gives identically the consistency condition (10.24). Hence
conditions (10.27)—(10.29) are sufficient for ensuring consistency; these are
three equations for the four unknowns vectors U,r,, F.r, Uir, Fig.

10.4.2 The HLLC Flux for the Euler Equations

We seek the solution for the two unknown intermediate fluxes F,; and
F.r. From (10.27)-(10.29) we see that it is sufficient to find solutions for the
two intermediate state vectors U, and U,g. There are more unknowns than
equations and some extra conditions need to be imposed, in order to solve the
algebraic problem. Obvious conditions to impose are those satisfied by the
exact solution; for pressure and normal component of velocity we have

Ux], = UxR = Ux ,
and for tangential velocity components we have
Usx, = VL, , UxR = VR, (1031)
Wy, = WL, , WxR = WR -
See Chap. 4. In addition, it is entirely justified, and convenient, to set

S, = u, (10.32)

and thus if an estimate for S, is known, the normal velocity component .,
in the Star Region is known. Now equations (10.27) and (10.29) can be re—
arranged as

StU,p —F.p =5,U, —F, (10.33)

and
SrU.r — F.gp = SgUir — Fg, (10.34)

where the right-hand sides of (10.33) and (10.34) are known constant vectors.
We also note the useful relation between U and F, namely

F(U)=uU+pD, D=]0,1,0,0,u]" . (10.35)

Assuming that the wave speeds Sy, and Sk are known and performing alge-
braic manipulations of the first and second components of equations (10.33)—
(10.34) one obtains the following solutions for pressure in the two Star Regions

p«r = pr +pr(SL —ur)(S« —ur), p«r =pr+ pPr(SR — UR)(Sk —UR) .
(10.36)
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From (10.30) p.1, = ps«gr, which from (10.36) allows us to obtain an expression
for the speed S, purely in terms of the assumed speeds Sy, and Sk, namely

_PR—PL prur(Sr —ur) — prur(Sr — UR)

S
pr(Sr —ur) — pr(Sr — ur)

(10.37)

Thus, we only need to provide estimates for Sp, and Sg, just as for the simpler
HLL solver.

Algebraic manipulation of (10.33) and (10.34) and using the corresponding
values p.r, and p.g from (10.36) gives the intermediate fluxes F.; and F.p
as

F*K:FK#*SK(U*K*UK) s (1038)

for K=L and K=R, with the intermediate states given as

1
S
SK—UK VK
U, = _
o= (o) v
Ex PK
— + Sy —ug) |Si + ———
PK ( K) PK(SK—UK)

(10.39)
The final choice of the HLLC flux is made according to (10.26).

A variation in the formulation of the HLLC solver (10.38)-(10.39) is the
following. From equations (10.33) and (10.34) we may write the following
solutions for the state vectors U, and U,p

_ SkUg —Fg +p.xDs
N St — S, ’

U.x D, =[0,1,0,0,5,] , (10.40)

with p.z, and p.r as given by (10.36). Substitution of p.x from (10.36) into
(10.40) followed by use of (10.27) and (10.29) gives direct expressions for the
intermediate fluxes as

S«(SkUk —Fg) + Sk(px + pr(Sx — ur)(Ss —uk))Dx
Sk — S,

F.x = , (10.41)
with the final choice of the HLLC flux made again according to (10.26).

We remark here that the HLLC formulation (10.38)—(10.39) enforces the
condition p.;, = p.r, which is satisfied by the exact solution. In the alterna-
tive HLLC formulation (10.41) we relax such condition, being more consistent
with the pressure approximations (10.36).

A different HLLC flux is obtained by assuming a single mean pressure
value in the Star Region, and given by the arithmetic average of the pressures
in (10.36), namely
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1
Prr= i[pL +pr+pL(SL —ur)(S« —ur) + pr(Sr —ur) (S« —ur)] . (10.42)

Then the intermediate state vectors are given by

_ SkUg —Fg + PLrD,

U*K SK — S*

(10.43)

Substitution of these into (10.27) and (10.29) gives the fluxes F,; and F.r

as
S*(SKUK — FK) + Sk PrrD,

Sk — S«
Again the final choice of HLLC flux is made according to (10.26).

F.x = (10.44)

Remark: general equation of state. All manipulations so far, assuming that
wave speed estimates for S, and Sgi are available, are valid for any equation
of state. The equation of state only enters in prescribing estimates for Sy and
Skr.

10.4.3 Multidimensional and Multicomponent Flow

Here we consider extensions of the HLLC solver to two areas of application,
namely multidimensional flow and multicomponent flow.

The presentation of the HLLC scheme has been made for the z—split three—
dimensional Euler equations, for which the corresponding eigenvalues are de-
noted here as A1 = u — a, Ao = w (multiplicity 3), A3 = u + a, where u
is the normal velocity component and a is the speed of sound. In a general
multidimensional situation, see Chapt. 16, one usually requires the flux in the
direction normal to a volume (or element) interface, which is not necessarily
aligned with any of the Cartesian directions. In this case the form of the gov-
erning equations remains identical to the z—split system (10.4), (10.5). There
will be a normal and two tangential components of velocity as before, and all
the results obtained so far will be applicable.

In the study of multicomponent flow, one considers the advection of chemi-
cal species by the flow, the carrier fluid. For example, let us consider m species
of concentrations ¢;, for [ = 1,...,m, advected with the normal fluid speed wu.
This means that for each species we can write the following advection equation

Orqi +u0zq =0,

for I = 1,...,m. Note that these equations are written in non—conservative
form. However, by combining these with the continuity equation we obtain a
conservative form of these equations, namely

(le)t+(puql)LE :Oa for I = 1,...,777/.
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The eigenvalues of the enlarged system are as before, with the exception of
Ao = u, which now, in three space dimensions, has multiplicity m 4+ 3. These
conservation equations can then be added as new components to the conser-
vation equations in (10.1) or (10.4), with the enlarged vectors of conserved
variables and fluxes given as

[ o] [ pu ]
pu pu? +p
pU pUY
pw puw

u=| B |, po|UE+D) (10.45)

Pq1 pugL
P pugy

| PGm | | pugm

The HLLC flux accommodates these new equations in a very natural way,
and nothing special needs to be done. If the HLLC flux (10.38) is used, with
F as in (10.45), then the intermediate state vectors are given by

1
S
VK
WK
By DK
) o + (S — uk) S*+pK(SK—uK)
(Ch)K

Sk —uk

U.rx = pK (SK—S*

(@)x

L (qm)K |
(10.46)
for K = L and K = R. In this manner the HLLC flux will resolve the
additional intermediate fields as the exact Riemann solver.

Note that the tangential velocity components v and w are special cases of

passive scalars; compare (10.46) with (10.39) for ¢ = v and ¢ = w.

10.5 Wave—Speed Estimates

In order to determine completely the numerical fluxes in both the HLL
and HLLC Riemann solvers we need to provide an algorithm for computing
the wave speeds Sz, and Sgi. For the HLLC scheme one requires in addition an
estimate for the speed of the middle wave S., but as seen in (10.37), this can
in fact be computed once Sy, and Sg are known. Thus the pending task is to
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determine estimates for S and Sg. One approach is to estimate the speeds
directly; another approach relies on pressure estimates in the Star Region,
which are then utilised to obtain S, and Sg using exact wave relations.

10.5.1 Direct Wave Speed Estimates

The most well known approach for estimating bounds for the minimum and
maximum signal velocities present in the solution of the Riemann problem is
to provide, directly, wave speeds Sy, and Si. Davis [150] suggested the simple
estimates

S, =up —ay, Spr=ur-+agr (10.47)

and
Sy =min{ur —ar,ugp —ar} , Sp=max{ur+ar,ur+ar} . (10.48)

These estimates make use of data values only, are exceedingly simple but are
not recommended for practical computations. Both Davis [150] and Einfeldt
[181], proposed to use the Roe [407] average eigenvalues for the left and right
non—linear waves, that is

Sp=u—a, Sp=u+a, (10.49)
where u and a are the Roe-average particle and sound speeds respectively,
given as follows

1/2

VPLUL + \/PRUR 6= (7_1)(}}_ @?) ; (10.50)

VPL+ PR

with the enthalpy H = (E + p)/p approximated as

i VPLHL + \/prHR (10.51)
VPL /PR ' '

Complete details of the Roe Riemann solver are given in Chap. 11.

- 1
U = z
2

Motivated by the Roe eigenvalues Einfeldt [181] proposed the estimates
Sp=u—-d, Sgp=u+d, (10.52)
for his HLLE solver, where

PV PL(I2L + pRa%q

NN +nm2(ug —ug)? (10.53)

and

1 JPiVPR
2 = §m . (1054)
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These wave speed estimates are reported to lead to effective and robust
Godunov—type schemes. More details on the HLLE solver and its modification
HLLEM, are found in [182]. In this paper the authors also analyze the effect
of the choice of wave speed estimates on the Riemann solver and introduce
the concept of positively conservative Riemann solvers, for the Euler equa-
tions. These are solvers for which, for physically admissible data, density and
internal energy remain positive during the calculations. See Batten et al. [32]
for further discussion on direct wave speed estimates.

Davis made some observations regarding the relationship between the cho-
sen wave speeds and some well-known numerical methods. Suppose that for a
given Riemann problem we can identify a positive speed ST. Then by choos-
ing Sy = —S* and Sg = ST in the HLL flux (10.20) one obtains a Rusanov
flux [418]

Foorj = %(FL +FR) - %swUR _u). (10.55)
As to the choice of the speed ST, Davis [150] considered
St =max{|uy —ar |,|ugr —agr |,|ur +ar | ,|ur+agl} .
Actually, the above speed is bounded by
ST =max{|u | +ar,| ur | +ar} - (10.56)

This choice is likely to produce a more robust scheme and is also simpler than
Dayvis’s choice.

Another possible choice is ST = S . the maximum wave speed present
at the appropriate time found by imposing the Courant stability condition;
see Sect. 6.3.2 of Chap. 6. This speed is related to the time step At and the
grid spacing Ax via

C flAI
sno= 70& ; (10.57)
where C.p; is the Courant number coefficient, usually chosen (empirically)
to be Cep; = 0.9, for a scheme of linear stability limit of unity. For C.r; = 1

one has ST = %, which results in the Lax—Friedrichs numerical flux
1 Ax (
2 At
See Sect. 5.3.4 of Chap. 5 and Sect. 7.3.1 of Chap. 7.

In the next section we propose a different way of finding wave—speed esti-
mates.

1
Fi+1/2 - i(FL + FR) - UR - UL) . (1058)

10.5.2 Pressure—Based Wave Speed Estimates

A different approach for finding wave speed estimates was proposed by
Toro et. al. [542], whereby one first finds an estimate for the pressure p, in
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the Star Region. Then, estimates for S; and Sg are derived. This is a simple
task and several reliable choices are available. Suppose we have an estimate
ps for the pressure in the Star Region. Then we choose the following wave
speeds

Sp =wur —arqr, SrR=UR+agrqr, (10.59)
where
1 if p. <pr
qr = 1/2 (10.60)
+1 .
1+%(p*/pk—1) if p.>opK.

This choice of wave speeds discriminates between shock and rarefaction waves.
If the K wave (K = L or K = R) is a rarefaction then the speed Sk corre-
sponds to the characteristic speed of the head of the rarefaction, which carries
the fastest signal. If the wave is a shock wave then the speed corresponds to
an approximation of the true shock speed; the wave relations used are exact
but the pressure ratio across the shock is approximated, because p, is an ap-
proximation to the pressure behind the shock wave. We propose to use the
state approximations of Chap. 9 to find p..

The PVRS approximate Riemann solver [502] presented in Sect. 9.3 of
Chap. 9 gives

1 1
Ppors = 5(p1 +PR) = 5 (ur —ur)pa, (10.61)
where ) .
p=5pL+pr), a=glar+ar). (10.62)

This approximation for pressure can be used directly into (10.59)—(10.60) to
obtain wave speed estimates for the HLL and HLLC schemes. See also Eq.
(9.28) of Chapt. 9 for alternative estimates for p,.

Another choice is furnished by the Two—Rarefaction Riemann solver TRRS
of Sect. 9.4.1 of Chap. 9, namely

1/z
+ _ =1 _
Ptr = o 1 P 2 (URZ UL) ) (1063)
ar/pi + ar/py
where
N —1
Pip= (“) Coa=1 (10.64)
PR 2y
The Two—-Shock Riemann solver TSRS of Sect. 9.4.2 of Chap. 9 gives
—A
Dre = 91.(po)pr + gr(Po)PR U (10.65)

gz(po) + gr(po)

where
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Ak
p+ Bk

1/2
QK(p) = |: :| , Po = max(oappvrs) 5 (1066)

for K =L and K = R.

In computational practice we could use the hybrid scheme of Sect. 9.5.2 of
Chap. 9 to determine p, See Chap. 9 for full details. The HLL approximate
Riemann solver with the hybrid pressure-based wave speed estimates has been
implemented in the NAG routine DO3PXF [319] for Godunov—type methods to
solve the time—dependent, one dimensional Euler equations for ideal gases. For
ideal gases we find that the simplified PVRS scheme, with p, = maz(0, ppyrs)
is very simple and also is found to be sufficiently robust.

10.6 Summary of HLLC Fluxes

Here we summarize the HLLC scheme, based on a particular choice of
wave speeds. To compute the HLLC flux one performs the following steps:
e Step I: pressure estimate. Compute estimate for the pressure p, in the Star

Region as

DPx = max(07ppvrs) y  Ppurs = %(pL +pR) - %(UR - UL)/Sa s
(10.67)

p=3pr+pr), a=z(aL+ar).

There are other possible choices for estimating the pressure p.. See (10.63)

and (10.65).
o Step II: wave speed estimates. Compute the wave speed estimates for S,
and Sk as
Sp=ur —arqr, Sr=Uugr+arqr, (10.68)
with
1 if p. <pk
= 10.69
aK vt 12 (10.69)
1+7(P*/p1<—1) if pe > pr -

Then compute the intermediate speed S, in terms of Sy and Sy as

_Pr—DPL + prur(Sy —ur) — prur(Sr — uR)

S,
pr(SL —ur) — pr(Sk — ur)

(10.70)

Other choices of S;, and Sk are possible. See for example (10.49) and
(10.52)
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o Step III: HLLC flux. Compute the HLLC flux, according to
Fp if 0< 5y,

F.p it S, <0<8,,
F?ﬁ% = (10.71)
F*R if S* S 0 S SR )

Fr if 0> Sgr,

with
F*K:FK+SK(U*K—UK> (10.72)
and
1
S
B Sk —ux VK
U.k = pk (SK sy ) wie
LBy DK
— + (Sk —uk) |Sk + ————
PK ( ) pK(SK — uK)

(10.73)
There are two variants of the HLLC flux in the third step, as seen below.

e Step III: HLLC flux, Variant 1. Compute the numerical fluxes as

S (SkUk —Fg) + Sk(px + pr(Skx — ur) (S« — ux))D.

F.x = ,
" Sk — 5.
D, =[0,1,0,0,5,]T ,
(10.74)
and the final HLLC flux chosen according to (10.71).
o Step III: HLLC fluz, Variant 2. Compute the numerical fluxes as

S.(SkUkg — F Sk PrrD,

P — (SkUk —Fk) + SkPrLr ’ (10.75)

Sk — 5.

with D, as in (10.74) and

1
Prr = §[pL+pR+pL(SL_uL)(S*_UL)+pR(SR_UR)(S*_UR)] . (10.76)

The final HLLC flux is chosen according to (10.71).
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10.7 Contact Waves and Passive Scalars

Here we study the special case of a passive scalar ¢(z,t) transported with
the fluid speed u(z,t). The time-dependent, one dimensional Euler equations
are augmented by the extra conservation law

(pa)t + (pqu)z = 0. (10.77)

Consider the special IVP in which p = constant, p = constant, u = constant
and

o _Jar if <0,
o(e.0) =anle) = { 2 L 20 (10.78)
Clearly, the non—trivial part of the exact solution is
q(z,t) = qo(x — ut) . (10.79)

Application of the HLL Riemann solver to this problem gives the following
expression for the numerical flux

1 1 1 1
hil __
i+;—2(1+M)fi+2(1—M)fi+1, (10.80)

where M = % is the Mach number and the wave speeds have been taken to
be
S, =u—a, Sgp=u+ta.

Obviously, this flux applies only in the subsonic regime u—a < 0 < u+ a. For
sonic flow, the flux (10.80) reduces identically to the Godunov flux computed
from the exact Riemann solver. For subsonic flow 1/M > 1 and the resulting
scheme is more diffusive than the Godunov method when used in conjunction
with the exact Riemann solver. For the special case

M= At

Ax

the HLL scheme reproduces the Lax—Friedrichs method, which is exceedingly
diffusive, see Chaps. 5 and 6. The limiting case of a stationary passive scalar
is the worst. Note that the analysis includes the important cases ¢ = v and
q = w, the tangential velocity components in three-dimensional flow.

The analysis for an isolated contact can be carried out in a similar manner;
by using an appropriate choice of the wave speeds the resulting HLL flux is
identical to (10.80), and thus the same observations as for a passive scalar
apply. The HLLC solver, on the other hand, behaves as the exact Riemann
solver; for the limiting case in which the wave is stationary, the HLLC numer-
ical scheme gives infinite resolution; the reader can verify this algebraically. In
the next section on numerical results we compare the HLL and HLLC schemes
for this type of problems; see Fig. 10.9. The relevance of these observations is
that the HLL scheme, unlike the HLLC scheme, will add excessive numerical
dissipation to the resolution of special but important flow features such as
material interfaces, shear waves and vortices.
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10.8 Numerical Results

Here we assess the performance of Godunov’s first—order method used in
conjunction with the HLL and HLLC approximate Riemann solvers presented
in this chapter. The HLLC results shown correspond to the version (10.38)—
(10.39). For both HLL and HLLC, the wave speed estimates for Sy and Sg
are based on a pressure estimate obtained from the adaptive scheme of sec-
tion 9.5.2 of Chapter 9. For HLLC we note that, for the tests considered, all
three versions of HLLC give identical results when using the simple algorithm
(10.67)—(10.70).

We select seven test problems for the one-dimensional, time dependent
Euler equations for ideal gases with v = 1.4; these have exact solutions. In
all chosen tests, data consists of two constant states W, = [pr,, ur,, pL]T and
Wr = [pr,ur,pr]T, separated by a discontinuity at a position x = zy. The
states W, and Wy are given in Table 10.1. The exact and numerical solutions
are found in the spatial domain 0 < z < 1. The numerical solution is computed
with M = 100 cells and the CFL condition is as for all previous computations,
see Chap. 6; the chosen Courant number coefficient is C.qg = 0.9; boundary
conditions are transmissive.

The exact solutions were found by running the code HE-EIRPEXACT of
the library NUMERICA [518] and the numerical solutions were obtained by
running the code HE-E1IGODFLUX of NUMERICA.

Test| pL ur, PL PR UR PR
1 1.0 0.75 1.0 | 0.125 0.0 0.1
2 1.0 -2.0 0.4 1.0 2.0 0.4
3 1.0 0.0 [1000.0| 1.0 0.0 0.01
4 15.99924| 19.5975 [460.894|5.99242| -6.19633 [46.0950
5 1.0 |-19.59745] 1000.0 | 1.0 [-19.59745] 0.01
6 | 1.4 0.0 1.0 1.0 0.0 1.0
7] 14 0.1 1.0 1.0 0.1 1.0

Table 10.1. Data for seven test problems with exact solution

Test 1 is a modified version of Sod’s problem [453]; the solution has a right
shock wave, a right travelling contact wave and a left sonic rarefaction wave;
this test is useful for assessing the entropy satisfaction property of numerical
methods. The solution of Test 2 consists of two symmetric rarefaction waves
and a trivial contact wave; the Star Region between the non-linear waves is
close to vacuum, which makes this problem a suitable test for assessing the
performance of numerical methods for low—density flows. Test 3 is designed to
assess the robustness and accuracy of numerical methods; its solution consists
of a strong shock wave of shock Mach number 198, a contact surface and a
left rarefaction wave. Test 4 is also a very severe test, its solution consists of
three strong discontinuities travelling to the right. A detailed discussion on the
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exact solution of Tests 1 to 4 is found in Sect. 4.3.3 of Chap. 4. Test 5 is also
designed to test the robustness of numerical methods but the main reason for
devising this test is to assess the ability of the numerical methods to resolve
slowly—moving contact discontinuities. The exact solution of Test 5 consists of
a left rarefaction wave, a right-travelling shock wave and a stationary contact
discontinuity. Test 6 corresponds to an isolated stationary contact wave and
Test 7 corresponds to an isolated contact moving slowly to the right. The
purpose of Tests 6 and 7 is to illustrate the likely performance of HLL and
HLLC for contacts, shear waves and vortices. For each test problem we select a
convenient position zq of the initial discontinuity and the output time. These
are stated in the legend of each figure displaying computational results.

We compare computed results with the exact solution for three first—order
methods, namely the Godunov method used in conjunction with the HLL and
HLLC approximate Riemann solvers, and the Rusanov scheme. In all three
schemes we compute wave speed estimates by using the adaptive noniterative
scheme of Sect. 9.5.2 of Chapt. 9. Figs. 10.5 to 10.9 show results for Godunov’s
method with the HLLC Riemann solver. Figs. 10.10 to 10.14 show results
for the Godunov method with the HLL Riemann solver and Figs. 10.15 to
10.19 show results for Rusanov’s method. Fig. 10.20 shows results aimed at
comparing the performance of HLL and HLLC for isolated, stationary and
slowly moving contact discontinuities.

The numerical results obtained from the Godunov method in conjunction
with the HLL and HLLC approximate Riemann solvers are broadly similar
to those obtained from Godunov’s method in conjunction with the exact Rie-
mann solver. See results of Chapt. 6. Some points to note are the following: the
sonic rarefaction of Test 1 is better resolved by the HLL and HLLC approxi-
mate Riemann solvers than by the exact Riemann solver. The resolution of the
stationary contact (non-isolated) of Test 5 by the HLLC Riemann solver is
comparable with that of the exact Riemann solver. The HLL Riemann solver
however, as anticipated by the analysis of Sect. 10.7, diffuses the contact wave
to similar levels seen in the Flux Vector Splitting methods of Steger—Warming
and van Leer, see results of Chap. 8. The advantage of HLLC over HLL is
the resolution of slowly-moving contact discontinuities; this point is further
emphasised by the results of Tests 6 and 7 for an isolated contact wave. The
HLLC Riemann solver preserves the excellent entropy—satisfaction property
of the HLL Riemann solver. The Rusanov scheme is broadly similar to the
HLL Riemann solver in that it also diffuses slowly moving contacts. For Test 1
containing a sonic rarefaction however, the Rusanov scheme is clearly inferior
to the HLL scheme, compare Fig. 10.15 with Fig. 10.10.

The results of Tests 6 and 7 using both the HLL and the HLLC schemes
are shown in Fig. 10.20. As anticipated by the analysis of Sect. 10.7, the
HLL scheme will give unacceptably smeared results for stationary and slowly
moving contact waves. The HLLC behaves like the exact Riemann solver for
this type of problem; it has much less numerical dissipation for slowly moving
contacts and it gives infinite resolution for stationary contact waves. The
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same observations apply to augmented systems of equations containing species
equations, and to shear waves and vortices in multiple space dimensions.

10.9 Closing Remarks

We have first studied HLL and HLLC approximate Riemann solvers for
the split three-dimensional Euler equations. Then we have indicated the man-
ner in which these solvers can be extended to three—dimensional flow and to
multicomponent flow, noting that HLLC will perform as the exact Riemann
solver in these more general situations. This is due to the fact that tangential
velocity components and species concentrations are all represented by the in-
termediate characteristic field Ao = u, where u is understood as the normal
velocity component. HLLC, unlike HLL, captures correctly this characteristic
field, which is enough to correctly capture contact discontinuities, shear waves
and contact discontinuities associated with all the species equations.

The approximate Riemann solvers of this chapter may be applied in con-
junction with the Godunov first-order upwind method presented in Chap. 6.
Second-order Total Variation Diminishing (TVD) extensions of the schemes
are presented in Chap. 13 for scalar problems and in Chap. 14 for non—linear
one dimensional systems. In Chap. 15 we present techniques that allow the ex-
tension of these schemes to solve problems with source terms. In Chap. 16 we
study techniques to extend the methods of this chapter to three-dimensional
problems. Implicit versions of the HLL and HLLC Riemann solvers have been
developed by Batten, Leschziner and Goldberg [33], who have also applied the
schemes to turbulent flows. The HLLC scheme can be used as the building
block for high—order methods, semi discrete, fully discrete, finite volume and
discontinuous Galerkin finite element methods, on structured and unstruc-
tured grids. See for example [6], [86], [237], [334], [361], [382], [553] and [572].
At this stage, two useful remarks on the HLLC flux are worth mentioning.
The first concerns the positivity /negativity of the momentum flux Safranov
[420]. The second (Dr V. A. Titarev, personal communication) concerns the
question of robustness of the choice of wave speeds in the HLL and HLLC
solvers for the case of very high speed flow inpinging on solid stationary walls;
some of the well known wave speed estimates may fail.

Perhaps the most significant advance of the HLLC approach concerns sys-
tems with more than three distinct characteristic fields, such as systems for
multiphase flow and the MHD equations, for example. A proper treatment
of these, following the HLLC approach, requires the construction of an ap-
propriate wave model that includes, ideally, all the characteristic fields of the
relevant system. Developments in this direction are found, for example, in

[230], [474] and [75].



Density

Pressure

0.5
Position

0.5
Position

Velocity

Internal energy

1.6

0.8

3.8

10.9 Closing Remarks

0 0.5
Position

0 0.5
Position

337

Fig. 10.5. Godunov’s method with HLLC Riemann solver applied to Test 1, with
xo = 0.3. Numerical (symbol) and exact (line) solutions are compared at time 0.2.
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Fig. 10.6. Godunov’s method with HLLC Riemann solver applied to Test 2, with
zo = 0.5. Numerical (symbol) and exact (line) solutions are compared at time 0.15.
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Fig. 10.7. Godunov’s method with HLLC Riemann solver applied to Test 3, with
xo = 0.5. Numerical (symbol) and exact (line) solutions are compared at time 0.012.
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Fig. 10.8. Godunov’s method with HLLC Riemann solver applied to Test 4, with
zo = 0.4. Numerical (symbol) and exact (line) solutions are compared at time 0.035.
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Fig. 10.9. Godunov’s method with HLLC Riemann solver applied to Test 5, with
xo = 0.8. Numerical (symbol) and exact (line) solutions are compared at time 0.012.
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Fig. 10.10. Godunov’s method with HLL Riemann solver applied to Test 1, with
zo = 0.3. Numerical (symbol) and exact (line) solutions are compared at time 0.2.
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Fig. 10.11. Godunov’s method with HLL Riemann solver applied to Test 2, with
xo = 0.5. Numerical (symbol) and exact (line) solutions are compared at time 0.15.
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Fig. 10.12. Godunov’s method with HLL Riemann solver applied to Test 3, with
zo = 0.5. Numerical (symbol) and exact (line) solutions are compared at time 0.012.
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Fig. 10.13. Godunov’s method with HLL Riemann solver applied to Test 4, with
xo = 0.4. Numerical (symbol) and exact (line) solutions are compared at time 0.035.
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Fig. 10.15. Rusanov’s method applied to Test 1, with 2o = 0.3. Numerical (symbol)
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Fig. 10.17. Rusanov’s method applied to Test 3, with o = 0.5. Numerical (symbol)
and exact (line) solutions are compared at time 0.012.
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The Riemann Solver of Roe

Perhaps, the most well-known of all approximate Riemann solvers today,
is the one due to Roe, which was first presented in the open literature in 1981
[407]. Since then, the method has not only been refined, but it has also been
applied to a very large variety of physical problems. Refinements to the Roe
approach were introduced by Roe and Pike [416], whereby the computation
of the necessary items of information does not explicitly require the Roe av-
eraged Jacobian matrix. This second methodology appears to be simpler and
is thus useful in solving the Riemann problem for new, complicated sets of
hyperbolic conservations laws, or for conventional systems but for complex
media. Glaister exploited the Roe-Pike approach to extend Roe’s method to
the time-dependent Euler equations with a general equation of state [208],
[209]. The large body of experience accumulated by many workers over a con-
siderable period of time has led to various improvements of the scheme. As
originally presented the Roe scheme computes rarefaction shocks, thus vio-
lating the entropy condition. Harten and Hyman [243], Roe and Pike [416],
Roe [414], Dubois and Mehlman [167] and others, have produced appropri-
ate modifications to the scheme. Einfeldt et. al. [182] produced corrections
to the basic Roe scheme to avoid the so—called vacuum problem near low—
density flows; they also showed that in fact this anomaly afflicts all linearised
Riemann solvers.

Ambitious applications of the Roe scheme were presented by Brio and Wu
[80], who utilised Roe’s method to solve the Magneto-Hydrodynamic equa-
tions (MHD). Clarke et. al. [118] applied the method in conjunction with
adaptive gridding to the computation of two—dimensional unsteady detona-
tion waves in solid materials. Giraud and Manzini [206] produced parallel
implementions of the Roe scheme for two-dimensional Gas Dynamics. LeV-
eque and Shyue [313] have applied the Roe scheme in the context of front
tracking in two space dimensions. Marx has applied the Roe scheme to solve
the incompressible Navier—Stokes equations [345], [346] and the compressible
Navier-Stokes equations [344] using implicit versions of the scheme; see also
McNeil [348]. The method has also been applied to multiphase flows; Toro

E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 345
DOI 10.1007/b7976-1_11, (© Springer-Verlag Berlin Heidelberg 2009
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[501] solved reactive multi-phase problems in the context of propulsion sys-
tems via a phase-splitting procedure; recently, Sainsaulieu [421] has extended
the Roe scheme to a class of multiphase flow problems without phase splitting.
The purpose of this chapter is to present the approximate Riemann solver
of Roe as applied to the three-dimensional time dependent Euler equations.
For the numerical methods considered here, we only need to derive the Rie-
mann solver for the split three—dimensional equations. After a general intro-
duction to the method, we present both the methodology of Roe and that
of Roe and Pike. Both methodologies are suitably illustrated via the simpler
isothermal equations. Useful background reading is found in Chaps. 2 to 6.

11.1 Bases of the Roe Approach

In this section we describe the Roe approach for a general system of m hy-
perbolic conservation laws. Detailed application of the scheme to the isother-
mal and Euler equations are given in subsequent sections.

11.1.1 The Exact Riemann Problem and the Godunov Flux

We are concerned with solving numerically the general Initial Boundary
Value Problem (IBVP)

PDEs : U, + F(U), =0,
ICs  :U(x,0) =UO(z), (11.1)
BCs :U(0,t) =Uy(t), UL, t) = U,(t),

in a domain z; < x < x,, utilising the explicit conservative formula

At
Urtl — Uy + =2 [F.
1 K3 + Ax[ (3
We assume the solution of IBVP (11.1) exists. In Chap. 6 we defined the
Godunov intercell numerical flux

~F,.1]. (11.2)

1
2

Fz‘+% = F(UH-%(O)) ) (11.3)

in which U; 1 (0) is the exact similarity solution U, 1 (z/t) of the Riemann
problem
U, +FU), =0,
| Unifz<0, (11.4)
Ulz,0) = {UR if >0

evaluated at x/t = 0. Fig. 11.1 shows the structure of the exact solution of
the Riemann problem for the z—split three dimensional Euler equations, for
which the vectors of conserved variables and fluxes are
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p pu
pU qu +p

U=|pv |, F= puv . (11.5)
pw puw
E u(E + p)

The Star Region between the left and right waves contains the unknowns of
the problem. The particular value at /t = 0 corresponds to the t—axis and is
the value required by the Godunov flux. See Chaps. 4 and 6 for details. The
piece—wise constant initial data, in terms of primitive variables, is

PL PR
ur UR
WL = v s WR: VR . (11.6)
wy, WR
pr PR

Fig. 11.1. Structure of the solution of the Riemann problem for the x—split three
dimensional Euler equations

In Chap. 4 we provided an algorithm to compute the exact solution
U, 1(z/t) and in Chap. 6 we utilised this solution in the Godunov method.
In Chap. 9 we provided approximations to the state U, 1 (x/t) and obtained
a corresponding approximate Godunov method by evaluating the physical
flux function F at this approximate state. The purpose of this chapter is to
find direct approzimations to the flur function F,, 1 following the approach
proposed by Roe [407] and Roe and Pike [416].

11.1.2 Approximate Conservation Laws

Roe [407] solved the Riemann problem (11.4) approximately. By introduc-
ing the Jacobian matrix
OF

(11.7)



348 11 The Riemann Solver of Roe
and using the chain rule the conservation laws
U, +FU), =0
in (11.4) may be written as
U, +AU)U,=0. (11.8)

Roe’s approach replaces the Jacobian matrix A(U) in (11.8) by a constant
Jacobian matrix o
A =AU, Up), (11.9)

which is a function of the data states Uy, Ug. In this way the original PDEs
in (11.4) are replaced by B
U, +AU, =0. (11.10)

This is a linear system with constant coefficients. The original, Riemann prob-
lem (11.4) is then replaced by the approzimate Riemann problem

U, +AU, =0

Up,z<0 ) 11.11

which is then solved ezactly. The approximate problem results from replacing
the original non—linear conservation laws by a linearised system with constant
coeflicients but the initial data of the exact problem is retained.

For a general hyperbolic system of m conservation laws, the Roe Jacobian
matrix A is required to satisfy the following properties:

Property (A): Hyperbolicity of the system. A is required to have real eigen-
values \; = \;(U, Ug), which we choose to order as

M <A< <Ay (11.12)

and a complete set of linearly independent right eigenvectors

Y, k? . k7 (11.13)
Property (B): Consistency with the exact Jacobian
A(U,U)=A(U). (11.14)
Property (C): Conservation across discontinuities
F(Ugr)-F(UL)=A (Uzp-Uyp). (11.15)

Property (A) on hyperbolicity is an obvious requirement; the approximate
problem should at the very least preserve the mathematical character of the
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original non-linear system. Property (B) ensures consistency with the conser-
vation laws. Property (C) ensures conservation. It also ensures exact recogni-
tion of isolated discontinuities; that is, if the data Uy, Ug are connected by a
single, isolated discontinuity, then the approximate Riemann solver recognises
this wave exactly. Note however that this does not mean that the correspond-
ing, approximate, Godunov method with the Roe approximate numerical flux
will in general give exact solutions for isolated discontinuities.

The construction of matrices satisfying properties (A)—(C) for general hy-
perbolic systems can be very complicated and thus computationally unattrac-
tive. For the specific case of the Euler equations of Gas Dynamics Roe [407]
proposed a relatively simple way of constructing a matrix A. Later, Roe and
Pike [416] proposed a simpler approach, where the explicit construction of A
is actually avoided.

11.1.3 The Approximate Riemann Problem and the Intercell Flux

Once the matrix A(Uy, Ug), its eigenvalues S\i(UL, Upg) and right eigen-

vectors K (UL, Ug) are available, one solves the Riemann problem (11.11)
by direct application of methods discussed in Sect. 2.3 of Chap. 2 and Sect.
5.4 of Chap. 5, for linear hyperbolic systems with constant coefficients. By
projecting the data difference

AU=Ur-Ug

onto the right eigenvectors we write

AU=Ug-U, =Y &K, (11.16)
i=1
from which one finds the wave strengths &; = &;(Up,Ug). The solution

Ui (z/t) evaluated along the t—axis, x/t = 0, is given by

U (0)=U,+ > ak”, (11.17)
Xi<0
or )
U,y (0)=Ur— Y aK". (11.18)
Xi>0

We now find the corresponding numerical flux. Recall that we have replaced
the original set of conservation laws in (11.4) by the constant coefficient linear
system (11.10); this can be viewed as a modified system of conservation laws

U, +FU),=0, (11.19)

with flux function
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F(U)=AT. (11.20)

The corresponding numerical flux, see (11.3), is not the obvious choice
Fi+% =A ﬁw%@) )

where ﬁi+% (0) is given by any of (11.17)—(11.18). That this would be incor-
rect becomes obvious when, for instance, assuming right supersonic flow in
(11.17) one would compute an intercell flux F, 1 # Fr. Instead, the correct
expression for the corresponding numerical flux is obtained from any of the
integral relations

1 0
FOL = FL - SLUL e U(:c,T)dx ; (1121)
T TSL
1 TSk
FOR:FR_SRUR'FT/ U(:L‘,T)dfl,‘, (1122)
0

derived in Sect. 10.2 of Chap. 10. Here Sp, S are the smallest and largest
signal speeds in the exact solution of the Riemann problem with data Up, Upg
and T is a positive time. If the integrand U(z,t¢) in (11.21) or (11.22) is
replaced by some approximate solution, then equality of the fluxes Fo; and
For requires the approximate solution to satisfy a Consistency Condition, see
Sect. 10.2 of Chap. 10.

If U, 1(z,t) is the solution of the Riemann problem for the modified
conservation laws (11.19) with data Uy, Ug, then the integrals in (11.21) and
(11.22) respectively, are

/T | Uiy @ D) = TE(UL) - F(U, 5 0)] - TSV, (1129
and

/ " U,y (2. T)dz = TF(T,.,(0) - F(UR) + TSxUx . (1124)
0

Substitution of (11.23) and (11.24) into (11.21) and (11.22) gives

For = F(ﬁi-&-% (0)) +F(Ur) — F(UL) (11.25)
and - -

For = F(U,,4(0)) + F(Ug) — F(Up) . (11.26)
Finally, by using ﬁi+% (0) as given by (11.17) or (11.18) and the definition of
the flux F = A U we obtain the numerical flux as

Froy=F+ Y iK', (11.27)
Xi<0
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or ‘
Fiy=Fr— Y arK" . (11.28)
Xi>0
Alternatively, we may also write

1 )
Fi+%=§(FL+FR)—§Zai\Ai|K . (11.29)

i=1

We remark that all previous relations (11.19)—(11.29) are valid for any
hyperbolic system and any linearisation of it. In order to compute Roe’s nu-
merical flux for a particular system of hyperbolic conservation laws, one re-
quires expressions for the wave strengths @;, the eigenvalues \; and the right

eigenvectors K" in any of the flux expressions (11.27)—(11.29). Note that the
Jacobian matrix A(Up,Ug) is not explicitly required by the numerical flux.

In the next two sections we give details on methodologies to find &;, A; and
K(Z). There are two approaches, namely the original approach presented by
Roe in 1981 [407] and the Roe-Pike approach [416].

11.2 The Original Roe Method

In order for the approximate Godunov method based on (11.2) with the
Roe-type numerical flux (11.27)—(11.29) to be completely determined, we need
to find the average eigenvalues \;, the corresponding averaged right eigenvec-
tors K“ and averaged wave strengths &;. In his original paper [407] Roe finds
an averaged Jacobian matrix A, the Roe matrix, from which 5\2», K(l) and @;
follow directly. In constructing a matrix A the properties (A)~(C), equations
(11.12)—(11.15), are enforced. It is not difficult to think of candidates A that
satisfy the first two properties. Property C is crucial and is the one that nar-
rows down the choices. Roe showed that the existence of a matrix A satisfying
Property C is assured by the mean value theorem. An early line of attack in
constructing a matrix A satisfying all desirable properties is reported by Sells
[440]. Roe identifies some disadvantages of this approach; it is argued, for in-
stance, that the construction is far from unique and that the resulting schemes
are too complicated.

A breakthrough in constructing A resulted from Roe’s ingenious idea of
introducing a parameter vector Q, such that both the vector of conserved
variables U and the flux vector F(U) could be expressed in terms of Q. That
is

U=U(Q), F=F(Q). (11.30)

Two important steps then follow. First, the changes

AU =Uy - U, , AF =F(Ug) - F(U.) (11.31)
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can be expressed in terms of the change AQ = Qr — Q. Then, averages are
obtained in terms of simple arithmetic means of Q. Next, we illustrate the
technique as applied to a simple set of conservation laws.

11.2.1 The Isothermal Equations
Consider the isothermal equations

U;+FU), =0,

o=[u]=[a]s e= (A =fwte S

where a is a constant sound speed. See Sect. 1.6.2 of Chap. 1. See also Sect.
2.4.1 of Chap. 2, where the eigenstructure of the equations is given. The exact
Jacobian, eigenvalues and corresponding right eigenvectors are

Al) = [aQEUZ 21u] ’

M=u—a, =u+ta, (11.33)

1 1
1) — (2) —
K {u—a] » K {u—ka} ’

Choose the parameter vector

o-fa]--[g] e

Then U and F can be expressed in terms of the components ¢i,¢qs of Q,

namely
2
[ I N a
|:U2:| “Q Lh(b] ( )
and ;
F=|/l=|,0% } 11.36
[fJ [q§+a2q% (130

One now looks for an averaged vector Q = (g1, G2)”. This is found by simple
arithmetic averaging

o= |21 _ [ L+ eR
Q= {62} —2(QL+QR)—2 |:\/EUL+\/P7RUR:| . (11.37)

Then two matrices B = B(Q) and C = C(Q) are found, such that the jumps
AU and AF in (11.31) can be expressed in terms of the jump AQ, namely

AU =BAQ; AF =CAQ. (11.38)
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Use of these two expressions produces
AF = (CB ) AU, (11.39)
which if compared with condition (C), equation (11.15), produces the Roe

averaged matrix
1

A=CB . (11.40)
Matrices B and C satisfying (11.38) are
= 2q1 0 = 2 ¢
B=|""_1|; C= U 11.41
[ G2 QJ [QCLZm 2(13} ( )
which the reader can easily verify. The sought Roe matrix is then
% 0 1
A= [GQ _ a2 2&] , (11.42)

where u is the Roe averaged velocity and is given by

\/PLUL + \/PRUR (11.43)
VPL + /PR ' '

Compare (11.42) with the matrix in (11.33). As the sound speed «a is constant,
no averaged p is required.

Having found A one computes the averaged eigenvalues, eigenvectors and
wave strengths. The eigenvalues of A are

=

M=l—a; AM=1i+a (11.44)
and are all real. The corresponding averaged right eigenvectors are
KW - {f } K = [f ] (11.45)
uU—a u—+a

and are easily seen to be linearly independent. Thus condition (A) is satisfied.
To find the wave strengths &; we solve the 2 x 2 linear system, see (11.16),
A )
AU = { “1} Y aK".
AUQ .
i=1
The solution is easily verified to be
_ Auq (@ + a) — Aug
a1 = y
2a
_ —Aui (T — a) + Aug
Qg = )
2a
with the obvious definitions Auy = pr — pr, Aus = prur — prur. The
corresponding Roe numerical flux F;, 1 now follows from using (11.43)—(11.46)

into any of the expressions (11.27)—(11.29).

(11.46)
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11.2.2 The Euler Equations

Here we present the Roe Riemann solver as applied to the Riemann prob-
lem (11.4)—(11.5) for the z—split three dimensional time dependent Euler equa-
tions for ideal gases. Details of the Euler equations are found in Sect. 1.1 and
Sect. 1.2 of Chap. 1; mathematical properties of the Euler equations are stud-
ied in Chap. 3.

The exact, z—direction Jacobian matrix A(U) is

0 1 0 0 O
FH-w? = (3-y)u —v —Fw
A= —uv v u 0o o0, (11.47)
—Uw w 0 v 0
ful(y = 3)H — a®] H — Au? —Auv —Juw yu
where 4 = v — 1. The eigenvalues are
M=u—a, Aa=X3=M=u, As=u+ta, (11.48)

where a = y/vp/p is the sound speed. The corresponding right eigenvectors
are

1 1 0
u—a U 0
KM = v ;s KO=1 v | ; K®=|1
w w 0
H —ua %VQ v
(11.49)
0 1
0 u+a
KW=1]0|; KO®= v
1 w
w H + ua
Here H is the total enthalpy
E
g-Ztp (11.50)
p
and F is the total energy per unit volume
L o
E = ipV + pe , (11.51)
with
V2 =u? +0? +w? (11.52)

and e denoting the specific internal energy, which for ideal gases, see Sect. 1.2
of Chap. 1, is



e =
Roe chooses the parameter vector

q1
q2
q3
q4
g5

o
If

p
(v—=1p"
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(11.53)

, (11.54)

Te e~

which has the property that every component u; of U and every component
fi of F(U) in (11.4)-(11.5) is a quadratic in the components ¢; of Q. For
instance u; = ¢ and fi; = q1¢o, etc. Actually, the property is also valid for
the components of the G and H fluxes for the full three-dimensional Euler

equations.

As done for the isothermal equations, see equations (11.38), one can ex-
press the jumps AU and AF in terms of the jump AQ via two matrices B
and C. Roe [407] gives the following expressions

2¢1 0 0 0 0
2 ¢ 0 0 0
B=| & 0 g 00 (11.55)
(14 0 0 61 0
i —1_. ~—1 —1_
q5 i i A v A q1
v v v Y Y
and
2 a1 0 0 0
y—1_ ~v+1_. ~vy—=-1_ ~y—=1_ ~v—1_
5 q2 — q3 — vzl a1
- v v
C= 0 Gs Go 0 0 (11.56)
0 qa 0 2 0
0 qs 0 0 G2
The sought Roe matrix is then given by
A=BC ' (11.57)

The eigenvalues of A are

M=0—a, A=

>
I
S
s
Il
=3}
NN
&

I
I~g]
_|_
Q

(11.58)
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and the corresponding right eigenvectors are

1 1
- (1) v - (2) a - (3)
K = v ; K v ; K=
W W
H — aa V2
0 1
0 i+a
V- o] . &® = ;
1 i
W H +aa

QOO O

(11.59)

The symbol 7 in (11.58), (11.59) denotes a Roe average for a variable . The

relevant averages are given as follows
\PLUL + \/PRUR
VoL + PR

VPLVL + \/PRVR
VoL +per

VPLWL + \/PRWR
VPL + /PR ’

j7 VoLHL + \/prHR
VPL T /PR 7

a=((r-DH-3V)" .

<
Il

(S
Il

W

Nl

whereV2—fL + 02 + 02

(11.60)

In order to determine completely the Roe numerical flux F, i1 we need, in
addition, the wave strengths &;. These are obtained by pl"Q]eCtlIlg the jump
AU onto the right, averaged eigenvectors (11.59), namely

Aav=% K"
i=1
When written in full these equations read
651+642+6é5 :Au1 ,
5[1(71 — 6~L) + 5\(2& + 6&5(17, + &) = A’UQ y
O~éll~} —+ 5{2@ —+ dg —+ 5&517 = AU3 s

6&1’(1)+5[2’lj]+0?4 +5[5’(I) = A’U,4 s

(11.61)

(11.62)

(11.63)
(11.64)
(11.65)
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- 1~ .

& (H — aa) + §V2d2 + a3 + Guth + G5 (H + @a) = Aus . (11.66)
Here the right-hand side terms of equations (11.62)—(11.66) are known: they
are jumps Awu; in the conserved quantity w;, namely

Aui = (ui)R — (’LLZ)L .

Before solving these equations we note that in the purely one-dimensional
case
G=w=0, as=au=0, K =K (11.67)

and the problem reduces to solving (11.62), (11.63) and (11.66) for &1, s and
@, with terms involving ag and a4 being absent.

For the x—split three dimensional problem the system (11.62)—(11.66) may
be viewed in exactly the same manner as for the one-dimensional case. Use
of equation (11.62) into (11.64) and (11.65) gives directly

0~43 = AU3 — ﬁAul ; 5{4 = AU4 — ’LZJAU1 . (1168)

Then one solves (11.62), (11.63) and (11.66) for &;, G, ds. Computationally,
it is convenient to arrange the solution as follows

@ _q

Gy = ’sz L [Aul(ﬁ[ — @) + @Aug — Aus|
a
o = QL [Aui (T + a) — Aug — ado) (11.69)
a
Qs = Auq — (d1 +5&2) R
where
M5 = AU5 — (AU3 — ﬁAUl)’lj - (AU4 - ’UNJAul)’IIJ . (1170)

An Algorithm

To compute the Roe numerical flux F, 1 according to any of the formulae
11.27)—(11.29) we do the following:

Compute the Roe average values for u, 0, w, H and @ according to (11.60).
Compute the averaged eigenvalues \; according to (11.58).

Compute the wave strengths &; according to (11.68)—(11.70).
Use all of the above quantities to compute F; 1 according to any of the

formulae (11.27)~(11.29).

For the pure one-dimensional case, virtually all the required information
for the application of the above algorithm is contained in this Chapter. An
entropy fix is given in Sect. 11.4. The remaining items such as choosing the
time step size and boundary conditions are found in Chap. 6. For two and
three dimensional applications the reader requires the additional information
provided in Chap. 16.

1)
2)
3) Compute the averaged right eigenvectors K(Z) according to (11.59).
4)
5)

NN N S S
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11.3 The Roe—Pike Method

Recall that solving the Riemann problem (11.4) approximately using Roe’s

method means finding averaged eigenvalues N, right eigenvectors K(l) and

wave strengths a;, so that the Roe numerical flux may be evaluated by any
of the formulae (11.27)—(11.29). In the previous section this task was carried
out by following the original Roe approach, where the averaged Jacobian
matrix A is first sought. In this section we present a different approach, due
to Roe and Pike [416], whereby the construction of A is avoided; instead,
one seeks directly averages of a set of scalar quantities that can then be used
to evaluate the eigenvalues, right eigenvectors and wave strengths needed in
formulae (11.27)—(11.29).

11.3.1 The Approach

The approach assumes, of course, that the appropriate original system is
hyperbolic and that analytical expressions for the eigenvalues \; and the set of
linearly independent right eigenvectors K are available. Analytical expres-
sions &; for the wave strengths require extra work via an extra linearisation.
One then selects a suitable vector of scalar quantities, typically the vector W

of primitive variables in (11.6) or variations of it, for which an average W is

to be found. The values of 5\1-7 K(Z) and &; are then found by direct evaluation

of the analytical expressions for \;, K" and &; at the state W. There are
two distinct steps in the Roe-Pike approach.

Linearisation about a Reference State

To find analytical expressions for the wave strengths «; Roe and Pike
assume a linearised form of the governing equations based on the assumption
that the data states Uy and Upg are close to a reference state Ij, to order
O(A?). Linearisation of the conservation laws in (11.4) about this state U
gives

OF "
where R
U;+AU, =0 (11.71)

is an approximation to the original conservation laws. Here A is the Jacobian
matrix, assumed available, computed at the reference state U. Eigenvalues
and right eigenvectors follow. Analytical expressions for the wave strengths
&; in the solution of the linear Riemann problem

U, +AU, =0,
(ULifz<0, (11.72)
U(x’o)_{URz’f x>0,
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are found by decomposing the data jump AU onto the right eigenvectors, in
the usual way; see Sect. 2.3 of Chap. 2 and Sect. 5.4 of Chap. 5. That is we

solve

AU=Uz-U, =Y ak". (11.73)

k=1
Before proceeding, we note that this linearisation is not the Roe linearisation
resulting from the Roe matrix A it is merely a step to find some sufficiently
simple analytical expressions for the wave strengths, which can then be eval-
uated at the unknown Roe—Pike average state W, yet to be found.

The Algebraic Problem for the Average State

The sought Roe-Pike average vector W is then found by first setting

(1)

=& (W), N =MW), K’ =KD(W); (11.74)

the analytical expressions for \A;, K® and &; are evaluated at the unknown
average state W. Then W is found by solving the algebraic problem posed
by the following two sets of equations

m

AU=Uz-U, =Y aK" (11.75)
k=1
and .
AF=Fp-F, =Y anK" . (11.76)
k=1

In the following section we illustrate the Roe-Pike approach in terms of a
simple system of conservation laws.

11.3.2 The Isothermal Equations

We solve the Riemann problem

U, +F(U), =0, -
(ULifa<0, 11.77
U(‘T’O){URif 20,

for the isothermal equations using the Roe-Pike approach; the vectors U
and F are given in (11.32). The exact Jacobian matrix, eigenvalues and right
eigenvectors are

0 1
AU) = [az—uz 2u] ’
M=u—a, a=u+a, (11.78)

Ku):[ 1 ] K<2>:[ 1 }
u—al’ u-+a
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Linearisation about a Reference State

Assume that the data states Uy, and Upg are close to a state U to ordqr
O(A?). Linearisation of the conservation laws in (11.77) about this state U
gives linear Riemann problem

U, +AU, =0,
[Upifz<o0, (11.79)
U(x’o)_{URz’f x>0,

Here A is the Jacobian A evaluated at the reference state U, which in terms
of primitive variables is denoted by W = (p, )" The complete eigenstructure
is

AD) = [a20 Q2 21u] ’

M=t—a, o=0+a, (11.80)

o[ w1
u—al’ u+a

Recall that the sound speed a is constant. We look for solutions of (11.79).
The system is linear with constant coefficients. One can therefore deploy ap-

propriate techniques studied in Sect. 2.3 of Chap. 2 and Sect. 5.4 of Chap. 5.
We decompose the data jump AU onto the right eigenvectors as follows

(&) (2)

2
AU=Uz-U, =Y &K = K" + a,k? | (11.81)

k=1

where analytical expressions for the coefficients &1, &9 are to be found. Writing
(11.81) in full gives
Ap:pR—pL :@1 +6¢2 5 (1182)

Alpu) = (pu)r — (pu)p, = 61 (it — a) + G+ a) . (11.83)

It can easily be shown that
A(pu) = pAu+ aAp + O(A?) , (11.84)
where the leading term in O(A?) is
(pr — p)(ur — @) — (pr — p)(ur — @) .
By neglecting O(A?), (11.83) becomes
pAu+ uAp = &1 (4 — a) + ao(t + a) . (11.85)

Solving equations (11.82) and (11.85) gives the sought analytical expressions
for &y and o, namely
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1 A 1 A
G1 =3 [Ap—ﬁ“] , = [Apﬂs“] - (11.86)
a 2 a

Compare these with expressions (11.46). The reader may easily verify that,
to within O(A?), the following two sets of equations are identically satisfied

AU =Up - Uy, = idkK(k) CAF=Fp—F, = idkxkk(’“) . (11.87)
k=1 k=1
Here we give details for the second set. In full, these equations read
Apu) = da Ay + Gz (11.88)
Apu? + pa?) = é1 M (4 — a) + oo (i + a) . (11.89)
Equation (11.88) may be written as
pAu+ UAp = 0(bdy + &) + a(bo — &1)

which after using (11.86) becomes an identity. To prove (11.89) we first expand
its left-hand side

Apu® + pa®) = 2puAu + 02 Ap + a* Ap .
The right-hand side of (11.89) can be expressed as
(G + Go) (4% + a®) + 20a(dg — G1)
Therefore, after use of (11.86), equation (11.89) becomes an identity and thus
the second set of equations in (11.87), to order O(A?), is identically satisfied.
The Algebraic Problem for the Average State

For the general case in which the data states Uy, and Upg are not necessar-
ily close, the Roe—Pike approach proposes the algebraic problem of finding the
Roe—Pike averages p and @ such that the two conditions (11.75) and (11.76)
are valid, namely

2 2
Aau=% uk", ar=% ank". (11.90)
k=1 k=1

Here, according to (11.74), ., A\ and K(k) are obtained by evaluating the
available analytical expressions at the sought averages p,u. For the wave
strengths these are given by (11.86). For the eigenvalues and right eigenvectors
they are given by (11.78). We then set

1 A 1 A
fy = = [Ap — ﬁ“} , Qg == [Ap—kﬁu} : (11.91)
2 a 2 a
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M=t—-a, \p=1i+a, (11.92)

= (1) 1 ~(2) 1
kO[N] R[] 1199

Writing conditions (11.90) in full produces

Ap =ay + as , (11.94)

Alpu) = a1 (a2 —a) + az(a +a) , (11.95)
A(pu) = 5\16&1 + 5\25[2 s (11.96)
A(pu2—|—a2p) = 5\15&1(’&—(1)+/~\20~42(ﬂ+a) . (1197)

These are a set of four non-linear algebraic equations for the two unknowns p
and @. Note however that, by virtue of (11.91), (11.94) is an identity, for any
average value p. Also, (11.95) is identical to (11.96) and thus we work with
(11.96) and (11.97) only. From equation (11.96) one obtains

Apu) = a(ay + a2) + alaz — ay).
Use of (11.91) here leads to
Alpu) = pAu + aAp . (11.98)
From (11.97) we write
Apu? + pa®) = (a1 + ao) (@ + a®) + 2aii(Gy — &) ,
which after using (11.91) and the exact relation
Alpu® + pa®) = A(pu?) +a® Ap

leads to the result
A(pu?) = 20pAu + 02 Ap . (11.99)

Elimination of p from (11.98) and (11.99) leads to a quadratic equation for ,
namely
Apii® — 2A(pu)i + A(pu®) =0 . (11.100)

This equation has two solutions, namely

A(pu) + /[A(pu)]2 = ApA(pu?)
Ap ’

U= (11.101)
After using the definition Ar = rg — rp the discriminant is found to be

PLPR(A“)2 )

which simplifies (11.101) to
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A(pu) £ Au\/prpr
Ap '

W= (11.102)

The root obtained by taking the negative sign in (11.102) produces the Roe—
averaged velocity

i YPLUL VPRt (11.103)
VPL T /PR
Compare (11.103) with (11.43). From (11.98) we obtain

ﬁ: VPLPR - (11104)

We have thus found algebraic expressions for the sought Roe—Pike averages p
and u. We observe that the second root obtained by taking the positive sign
in (11.102) leads to the spurious solution

%:\/\/’%“L . (11.105)

There is a very good reason for rejecting this as a useful solution; in the trivial
case pr = pr, ur # ug the solution @ is not even defined.
Having found the Roe—Pike averages p and @ we can then compute the wave
- . 5 . . (k) .
strengths ay, the eigenvalues A\ and the right eigenvectors K= * according to
expressions (11.91)—(11.93). The Roe numerical flux F;, 1 to be used in the
conservative formula (11.2) can now be obtained from any of the relations
(11.27)—(11.29).

=

11.3.3 The Euler Equations

We solve the Riemann problem (11.4) for the xz-split, three dimensional
Euler equations using the Roe—Pike method. Assuming the analytical expres-
sions (11.48)—(11.49) for the eigenvalues and eigenvectors, one then linearises
the equations about a state U to find analytical expressions for the wave
strengths; this is done under the assumption that both data states Up,Upg
are close to U to O(A?). This leads to the linear system

U, + AU, =

U, 2<0 (11.106)

U(I7t){UR $>0?

The Jacobian matrix A is obtained by evaluating the exact Jacobian matrix
(11.47) at the state U; the eigenvalues \; are

M=0—a, = A=M=10, \s=0+a (11.107)

and the right eigenvectors K@ are
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1 1 0
i—a @ 0
KW = 0 KA =] 0 | ; K® =1
W W 0
H —aa 2 o
(11.108)
0 1
0 i+
KO =1]0]; KO = b
1 W
W H + ta

By expanding the data jump AU onto the right eigenvectors we write
)
~ (1
AU = > 4K (11.109)
i=1

The solution of this 5 x 5 linear system will provide analytical expressions
for the wave strengths ¢&;. As a matter of fact we can use the solution for
the wave strengths obtained in the Roe original method, (11.68)—(11.70), and
reinterpret the solution appropriately. These are

@3 = AU3 — @A’U,l 5
él4 = AU4 — 1I)Au1 y

do = L2 [Aug (H — 62) + 6 Aug — Aus) (11.110)

a2

o) = %[A’Uzl(a + &) — AUQ — &dg] s

a5 = Auy — (1 + ao) ,
where
Augy = Aug — (Auz — 9Aup ) o — (Aug — 0 Aup ) (11.111)
By applying the operator
A(rs) = FAs + 3Ar + O(A?) (11.112)

and neglecting O(A?) we arrive at the following solution:

. 1 A

T [Ap — padu] |

Go = Ap — Ap/a? |

&g = pAv (11.113)
Gy = [)AU) )

~ 1 A

a5 = 55 [Ap + paAu]
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The second step in the Roe—Pike method is to find an average state

W = (p, i, 0,w,a)", (11.114)

Au=Y aK", (11.115)
1=1
>\ = 0)
AF =Y & K" (11.116)
=1

is satisfied, where

= (1)

& =a(W), A=MW), K’ =KOW), (11.117)

with \; and K(®) given by (11.48)-(11.49) and &; given by (11.113). Details
of the algebra for the one-dimensional case are given by Roe and Pike [416].
For the z—split three dimensional case the solution for the average vector W

18
P = /PLPR

\/KTLUL‘F\/KEUR
VPL+ VPR
\/piL’UL—l—\/[EUR
VRN
me+me
VPL+ PR
FI:\/[TLHL—F\/KTRHR

VRN

<3
Il

(S
Il

(11.118)

W =

-2
where V© = @2 + 02 + @?. These are identical to the Roe averages obtained

by the original Roe method, see (11.60). Now a;, \; and K(l) are computed
according to (11.117) and then the Roe intercell flux F; 1 follows from any
of the formulae (11.27)—(11.29).

An Algorithm

To compute the Roe numerical flux F, 1 according to any of the formulae
(11.27)—(11.29) we do the following:
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(1) Compute the Roe average values according to (11.118).

(2) Compute the eigenvalues \; using the analytical expressions (11.107) eval-
uated on the averages (11.118).

(3) Compute the right eigenvectors using the analytical expressions (11.108)
evaluated on the averages (11.118).

(4) Compute the wave strengths using the analytical expressions (11.113)
evaluated on the averages (11.118).

(5) Use all of the above quantities to compute F; 41 according to any of the

formulae (11.27)-(11.29).

Before applying the scheme as described to practical problems, a modi-
fication to handle sonic flow correctly is required. This is the subject of the
next section.

11.4 An Entropy Fix

Linearised Riemann problem solutions consist of discontinuous jumps only.
See Sect. 2.3 of Chap. 2. This can be a good approximation for contacts and
shocks, in that the discontinuous character of the wave is correct, although
the size of the jump may not be correctly approximated by the linearised
solution. Rarefaction waves, on the other hand, carry a continuous change
in flow variables, and as time increases, they tend to spread; that is spatial
gradients tend to decay. Quite clearly then, the linearised approximation via
discontinuous jumps is grossly incorrect. In a practical computational set up
however, it is only in the case in which the rarefaction wave is transonic, or
sonic, where linearised approximations encounter difficulties; these show up
in the form of unphysical, entropy violating discontinuous waves, sometimes
called rarefaction shocks.

11.4.1 The Entropy Problem

Consider the Riemann problem whose initial data is that of Test 1 in Table
11.1. The structure of the exact solution of this problem, depicted in Fig. 11.2,
contains a left sonic rarefaction, a contact discontinuity of speed u, and a right
shock wave. As the left rarefaction is sonic the eigenvalue A\ = u — a changes
from negative to positive, as the wave is crossed from left to right. There is a
point at which Ay = v — a = 0, giving the sonic flow condition u = a.

)\1(UL) =Sgr =ur —ar, <0
is the speed of the head of the rarefaction and
M(UsL) = St = s —asr, >0

is the speed of the tail. Fig. 11.4 shows the numerical (symbols) and exact
(line) solutions of this problem, where the numerical solution is obtained by
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Roe’s method as described so far. The numerical solution within the rarefac-
tion exhibits a discontinuity within the wave; this discontinuity is unphysical,
it violates the entropy condition. See Sect. 2.4.2 of Chap. 2. Recall that a
physically admissible discontinuity of speed S requires S, > S > S, where S
and S, are characteristic speeds behind and ahead of the wave respectively.
That is, characteristics move into the discontinuity; the limiting case of par-
allel characteristic speeds is that of a contact discontinuity. For the example
above, the opposite happens. See Sect. 2.4.2 of Chap. 2, for a discussion on
entropy—violating solutions.

t

SHL (Xlzu-a) S

Left sonic rarefaction

Fig. 11.2. Left transonic rarefaction wave. Left eigenvalue A1 = u — a changes sign
as the wave is crossed from left to right

Roe’s solver can be modified so as to avoid entropy violating solutions. This
is usually referred to as an entropy fiz. Harten and Hyman [243] suggested
an entropy fix for Roe’s method, which has widespread use. Other ways of
correcting the scheme have been discussed by Roe and Pike [416], Roe [414],
Sweby [469] and Dubois and Mehlman [167], amongst others. Here we present
the details of the Harten—Hyman approach.

11.4.2 The Harten—Hyman Entropy Fix

The general approach is presented in the original paper of Harten and
Hyman of 1983 [243]. A description can also be found in [308]. The presen-
tation here is tailored specifically to the time—dependent Euler equations, for
which we only need to consider the left and right non-linear waves associated
with the eigenvalues A\y = u — a and A5 = u + a respectively. Our version of
the Harten—-Hyman entropy fix relies on estimates for particle velocity u, and
sound speeds a.r, a«r in the Star Region; see Figs. 11.1 and 11.2. Various
ways of finding these are given in Sect. 11.4.3.



368 11 The Riemann Solver of Roe

Left Transonic Rarefaction

Consider the situation depicted in Fig. 11.2. Assuming u, and a.; are
available, we compute the speeds

M =ur—ar; M =u.—a. . (11.119)

If
Mo<0< A (11.120)

then the left wave is a transonic, or sonic, rarefaction wave. In these cir-
cumstances the entropy fix is required and is enforced as follows. The single
jump
(1

U., - U, =K (11.121)
travelling with speed A1 is split into two smaller jumps Ugy, — Uy and U, —
Ug;, travelling respectively at speeds A\F and AF, where Ugy, is a transonic
state yet to be found; see Fig. 11.3. Application of the integral form of the
conservation laws, see Chaps. 3 and 10, gives

M (Ugp —U,p) + AH(UL — Ugy) = M (UL - U,yp), (11.122)

from which we obtain

(M = A)UL+ (A = \)U.
VY2 '

Ugy, = (11.123)

To compute the Roe intercell flux we adopt the one-sided formulae (11.27),
namely

L - R
on 'y M
!
1
it .' U
X
0
v .
L
Yst
L - U,

Fig. 11.3. Entropy fix for left transonic rarefaction wave. Single jump U., — Uy
travelling with speed \; is split into the two jumps Ugs; — U and U, — Ugy,
travelling with speeds A\l and Af. Profile shown is a representation a single variable
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s (k)
Fiii=Fr+ Z Aap K (11.124)
AL <0

where in the present case the summation applies to the single jump Ugy, — U,
travelling with speed A" < 0; in view of (11.122) the jump is

AF =)

Usy —Up = ——+%
(A= AD)

(U, —Uyp). (11.125)

But the Roe approximation gives
U., - U, =&K' (11.126)
and thus the flux jump (AF)¥ across the wave of speed Al is
YL T Y
(AFR)L =\ ()\R )\L> 1K (11.127)

By defining the new wave speed

- A — A
X = AF (Alg A;) , (11.128)
the intercell flux (11.27) becomes

F, =Fr+naK' (11.129)

Right Transonic Rarefaction

For a right transonic rarefaction, the entropy fix procedure is entirely anal-
ogous to the left rarefaction case. Assuming the speeds u. and a.r are avail-
able, we compute the two wave speeds

MNo=u,+ar, N =ur+tag. (11.130)

If
MN<0< A\ (11.131)

then the right wave is a transonic rarefaction wave. The transonic state Ugg
is defined between the waves of speeds A} and A\¥ and is given by

\E - ;\S)UR + (5\5 - M)U.r
A= NE

Ugp = (11.132)

Next we define the new wave speed

- As — A
X5 = A (A; Ai) (11.133)
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and then use the one-sided flux formula (11.28) to compute the numerical
flux. The resulting Roe numerical flux is

F 1 =Fr - hsasK . (11.134)

In the present version of the Harten-Hyman entropy fix we have used
the one-sided flux formulae (11.27) and (11.28). The procedure can be easily
adapted for use in conjunction with the centred formulae (11.29), if desired.

Next we discuss ways of finding the speeds wu, a.;, and a.r needed to
implement the entropy fix.

11.4.3 The Speeds uy, a4, xR

The star states U,p, U,gr are required in order to obtain the speeds u,,
as1, axp and thus the characteristic speeds in (11.119) and (11.130). We
present various possible alternatives.

The Roe—Averaged States

Given the Roe—averaged &; and K(Z) one can find the state U, as

U..=U;+a K", (11.135)

which leads to

_ pLur + 651(11 — C~l)

P*L:PL"‘rdl, U

?

pr+an (11.136)
pe= (3= 1) [Br +an(H —aa) - Spore?] .
Then we compute the sound speed

VP«
PxL

Ay, = (11.137)
and thus the speeds A\¥ and A in Eq. (11.119) follow. For the right wave one
has

U.r = Ug — @K | (11.138)

which produces

_ prUp — as(u+a)

PR = @5 (11.139)
pe=(y—1) {ER — as(H + aa) — %p*Rui} ,

P«R = PR — Q5 , Us

The sound speed follows as axr = ,/Zf; and thus the wave speeds AZ and
At in Eq. (11.130) are determined.
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The PVRS Approximation

Another way of estimating the required wave speeds is by using the
Primitive—Variable Riemann Solver (PVRS) of Toro [502] presented in Sect.
9.3 of Chap. 9. The relevant solution values are

Py = %(pL +pr) + 3(up —ug)pa,

Usx = Q(UL +'UJR) + %(pL *pR)/(ﬁ&) ) (11.140)
PxL = PL + (urL —uws)p/a,
PxR = PR + (U* - 'U/R)ﬁ/a )

with 1 1

In order to avoid negative pressures we recommend replacing the linearised
solution p, by max {0, p.}. The sound speeds a.r,, a.r are then computed in
the usual way.

TRRS Approximation

Another possibility is to use the Two-Rarefaction Riemann Solver (TRRS)
discussed in Chap. 9, Sect. 9.4.1. The pressure p, is given by

b = ar +ar = 15 (up —ur) (11.142)
aL/pi + ar/pg 7
with z = 72—_1 For the left non—linear wave the sound speed and particle
velocity follow directly as
2
a*L:aL(p*/pL)z , Ux :'LLL"‘W(GL_G/*L) . (11.143)
For the right non-linear wave we have
2
a*R:aR(p*/pR)z , Ux ZUR+W(Q*R_(IR) . (11.144)

Hence speeds (11.119) and (11.130) are determined.

Other Alternatives

Both the PVRS and the Roe linearised solutions for the speeds u., a.r,
a.p may fail in the vicinity of low density flow [182]. The TRRS approxima-
tion presented above would not suffer from such difficulties; in fact, in the
case in which both non—linear waves are rarefactions such an approximation
would be exact. But as seen in equations (11.142)—(11.144) there are four
fractional powers to be computed in each case, which makes this approxima-
tion rather expensive to use. A robust and yet more efficient scheme is the
Two—-Shock Riemann Solver (TSRS) [509] of Sect. 9.4.2, Chap. 9. Even better
is the adaptive Riemann solver scheme of Sect. 9.5.2, Chap. 9.
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11.5 Numerical Results and Discussion

Here we illustrate the performance of Godunov’s first—order upwind method
used in conjunction with the Roe approximate Riemann solver, discuss the
results and point directions for extending the method.

11.5.1 The Tests

We select five test problems for the one—dimensional, time dependent Euler
equations for ideal gases with v = 1.4; these have exact solutions. In all
chosen tests, data consists of two constant states Wy, = [pr,ur,pr]? and
Wr = [pr,ur,pr]T, separated by a discontinuity at a position x = . The
states W, and Wy are given in Table 11.1. The exact and numerical solutions
are found in the spatial domain 0 < z < 1. The numerical solution is computed
with M = 100 cells and the CFL condition is as for all previous computations,
see Chap. 6; the chosen Courant number coefficient is C.qg = 0.9; boundary
conditions are transmissive.

The exact solutions were found by running the code HE-EIRPEXACT of
the library NUMERICA [519] and the numerical solutions were obtained by
running the code HE-E1IGODFLUX of NUMERICA.

Test| pr, Uy, PL PR UR, PR
1 1.0 0.75 1.0 0.125 0.0 0.1
2 1.0 -2.0 0.4 1.0 2.0 0.4

3 1.0 0.0 1000.0| 1.0 0.0 0.01
4 15.99924| 19.5975 [460.894|5.99242| -6.19633 |46.0950
5 1.0 |-19.59745| 1000.0 | 1.0 |-19.59745| 0.01

Table 11.1. Data for five test problems with exact solution, for the
time—dependent, one dimensional Euler equations

Test 1 is a modified version of Sod’s problem [453]; the solution has a right
shock wave, a right travelling contact wave and a left sonic rarefaction wave;
this test is useful in assessing the entropy satisfaction property of numerical
methods. The solution of Test 2 consists of two symmetric rarefaction waves
and a trivial contact wave; the Star Region between the non—linear waves is
close to vacuum, which makes this problem a suitable test for assessing the
performance of numerical methods for low—density flows. Test 3 is designed to
assess the robustness and accuracy of numerical methods; its solution consists
of a strong shock wave of shock Mach number 198, a contact surface and a
left rarefaction wave. Test 4 is also a very severe test, its solution consists of
three strong discontinuities travelling to the right. A detailed discussion on the
exact solution of the test problems is found in Sect. 4.3.3 of Chap. 4. Test 5 is
also designed to test the robustness of numerical methods but the main reason
for devising this test is to assess the ability of numerical methods to resolve
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slowly—moving contact discontinuities. The exact solution of Test 5 consists of
a left rarefaction wave, a right—travelling shock wave and a stationary contact
discontinuity. For each test problem we select a convenient position zq of the
initial discontinuity and the output time. These are stated in the legend of
each figure displaying computational results.

11.5.2 The Results

The computed results for Tests 1 to 5 using the Godunov first—order
method in conjunction with the Roe approximate Riemann solver are shown
in Figs. 11.4-11.8, where the numerical solution is shown by the symbols and
the full line denotes the exact solution. As discussed earlier, Fig. 11.4 shows
the results obtained from the Roe Riemann solver without the entropy fix and,
as expected, the computed solution is obviously incorrect. Fig. 11.5 shows the
corresponding results from the modified scheme using the Harten—-Hyman en-
tropy fix presented in the previous section. These results are, to plotting accu-
racy, almost indistinguishable from those obtained by the Godunov method in
conjunction with the exact Riemann solver; see Fig. 6.8, Chap. 6. As a matter
of fact, near the sonic point, the modified Roe solution looks slightly better;
it also looks better than the Flux Vector Splitting solution, with the van Leer
splitting, see Fig. 8.4 of Chap. 8. The HLL and HLLC solutions of Chap.
10, still seem to be the most accurate near sonic points. Compare also with
the Osher results of Chap. 12. As anticipated, the Roe solver will fail near
low—density flows; Test 2 contains two strong rarefactions with a low density
and low pressure region in the middle and the Roe method, as described, does
actually fail on this test. To compute successfully this kind of flows one must
modify the Roe solver following the methodology of Einfeldt et. al. [182]. The
results for Tests 3 and 4 are virtually identical to those of Godunov’s method
with the exact Riemann solver, as the reader can verify by comparing Figs.
11.6 and 11.7 with Figs. 6.10 and 6.11 of Chap. 6. The results for Test 5 are
also very similar to those obtained from the Godunov method with the exact
Riemann solver; note however that the (non-isolated) stationary contact is
not as sharply resolved as with the approximate HLLC Riemann solver of
Chapt. 10, see Fig. 10.9. As expected of course, the resolution of the station-
ary contact is better than that of the Flux Vector Splitting Method with the
Steger—Warming splitting and that with the van Leer splitting, see Figs. 8.14
and 8.15 of Chap. 8.

11.6 Extensions

The Roe approximate Riemann solver, following the original method of
Roe and that of Roe and Pike, has been presented and illustrated via the
isothermal equations of gas dynamics and the split three-dimensional, time
dependent Euler equations. Details of the Roe solver for the three-dimensional
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steady supersonic Euler equations are found in the original paper of Roe [407].
For one—dimensional applications all the required information is contained in
this chapter and Chap. 6. Second—order Total Variation Diminishing (TVD)
extensions of the schemes are presented in Chap. 13 for scalar problems and
in Chap. 14 for non-linear one dimensional systems. In chap. 15 we present
techniques that allow the extension of these schemes to solve problems with
source terms. In Chap. 16 we study techniques to extend the methods of this
chapter to three—dimensional problems.
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Fig. 11.4. Godunov’s method with Roe’s Riemann solver (no entropy fix) for Test
1, zo = 0.3. Numerical (symbol) and exact (line) solutions compared at time 0.2
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Fig. 11.5. Godunov’s method with Roe’s Riemann solver applied to Test 1, with
xo = 0.3. Numerical (symbol) and exact (line) solutions are compared at time 0.2
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Fig. 11.6. Godunov’s method with Roe’s Riemann solver applied to Test 3, with
zo = 0.5. Numerical (symbol) and exact (line) solutions are compared at time 0.012
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Fig. 11.7. Godunov’s method with Roe’s Riemann solver applied to Test 4, with
zo = 0.4. Numerical (symbol) and exact (line) solutions are compared at time 0.035
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zo = 0.8. Numerical (symbol) and exact (line) solutions are compared at time 0.012
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The Riemann Solver of Osher

Osher’s approximate Riemann solver is one of the earliest in the literature.
The bases of the approach were communicated in the papers by Engquist and
Osher in 1981 [185] and Osher and Solomon the following year [372]. Appli-
cations to the Euler equations were published later in a paper by Osher and
Chakravarthy [370]. Since then the scheme has gained increasing popularity,
particularly within the CFD community concerned with Steady Aerodynam-
ics; see for example the works of Spekreijse [458], [459], Hemker and Spekreijse
[247], Koren and Spekreijse [290], Qin et. al. [393], [394], [395], [396], [390],
[391], [392]. One of the attractions of Osher’s scheme is the smoothness of the
numerical flux; the scheme has also been proved to be entropy satisfying and
in practical computations it is seen to handle sonic flow well. A distinguish-
ing feature of the Osher scheme is its performance near slowly—moving shock
waves; see Roberts [406], Billett and Toro [60] and Arora and Roe [19]. The
scheme is closely related to the Flux Vector Splitting approach described in
Chap. 8 and, as Godunov’s method of Chap. 6, it is a generalisation of the
CIR scheme described in Chap. 5 for linear hyperbolic systems with constant
coefficients. For a scalar conservation law, van Leer [562] studied in detail
the relationship between the Osher scheme and some other Riemann solvers
available at the time. Useful background material for reading this chapter is
found in the previous Chaps. 2, 3, 5, 6, 8 and 9.

The derivation of the Osher intercell numerical flux depends on integra-
tion in phase space. Such operation involves the choice of integration paths,
intersection points and sonic points. The integration paths are taken to be
integral curves associated with the set of right eigenvectors and to date there
are essentially two ways of ordering these integration paths. The most recent
approach orders the integration paths such that these correspond to physically
meaningful relations across wave families in physical space. In the current lit-
erature this is called physical ordering or P—ordering. Osher’s original scheme
utilises the ordering of paths that is precisely the inverse of the P—ordering;
this is usually called O-ordering. Intersection and sonic points are computed
via Generalised Riemann Invariants.

E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 377
DOI 10.1007/b7976-1_12, (© Springer-Verlag Berlin Heidelberg 2009
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The purpose of this chapter is to present the Osher scheme in a way that
can be directly applied to practical problems involving hyperbolic conserva-
tion laws. We first describe the principles behind Osher’s method as applied
to any non-linear system of hyperbolic conservation laws. We then give de-
tailed applications of the approach to a single scalar equation, to the isentropic
equations of Gas Dynamics and to the split three-dimensional time depen-
dent Euler equations for ideal gases. For one-dimensional applications, all the
required information is found in this chapter and in Chap. 6.

12.1 Osher’s Scheme for a General System

Here we give, in a self-contained manner, some of the basic aspects of the
Osher scheme for a general non—linear system of hyperbolic conservation laws.

12.1.1 Mathematical Bases

Osher’s approach to upwind differencing provides an approximation to the
Godunov numerical flux of Chap. 6 and results from evaluating the physical
flux F(U) at various states Uy; these include the data states Uy, Ug, intersec-
tion points and sonic points. Consider a system of m hyperbolic conservation
laws

U;+FU),=0 (12.1)
and the conservative scheme
At
n+1 n

to solve it numerically. The objective of this chapter is to provide an expression
for the numerical flux F, 1 following Osher’s approach.

We assume (12.1) to be strictly hyperbolic with eigenvalues

M(U) < A (U) < -+ < A (U) (12.3)

and corresponding right eigenvectors
KYwU), K?wW), .-, Km™U).
From hyperbolicity, the Jacobian matrix
A(U) =0F/0U (12.4)

is diagonalisable, that is

A(U) = K(U)A(U)KY(U), (12.5)

where K(U) is the non—singular matrix whose columns are the right eigen-
vectors of A(U), that is
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K(U) = [KD(U); K@ (U);-- K" (U) (12.6)
and A(U) is the diagonal matrix formed by the eigenvalues \;(U)
A (U) - 0
AU) = | 2 (12.7)
0 o A(U)

See Sect. 2.3 of Chap. 2 and Sect. 3.2 of Chap. 3. As done in Sect. 2.3 of Chap.
2 for linear systems with constant coefficients, we introduce the following
notation

AF(U) = max(A\;(U),0) ;A7 (U) = min(\:(U),0) (12.8)
to define diagonal matrices
N0
AT(U) = | . (12.9)
Ar(0) 0
A-(U)=|: L (12.10)
0 -5 (U)
and
A (U)] 0
AU = | ¢ . (12.11)
0 A (U)]
We also introduce
|A(U)] = K(U)|A(U) K™ (U) . (12.12)
But
Ai(U)] = A (U) = A7 (U)
and hence

[A(U)| = AT(U) - A~ (U),
which if substituted in (12.12) gives

|A(U)| = A*(U) — A~ (U), (12.13)

with
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AT(U) = K(U)AT(U)K 1 (U) (12.14)

and
A~ (U)=KU)A (U)K Y(U). (12.15)

These matrices produce a splitting of the Jacobian matrix as
AU)=A"TU)+A (U), (12.16)

where AT (U) has positive or zero eigenvalues and A~ (U) has negative or zero
eigenvalues. Note that this is a direct generalisation to non-linear systems of
the Jacobian splitting for linear systems with constant coefficients performed
in Sect. 5.4 of Chap. 5. See also Sect. 8.2.2 of Chap. 8 on the Flux Vector
Splitting approach.

12.1.2 Osher’s Numerical Flux

Osher’s approach assumes that there exist vector—valued functions F*(U)
and F~(U) that satisfy

F(U) = F*(U) + F(U) (12.17)
and SF+ SF-
5T AT(U); 5T = A~ (U). (12.18)

If the initial data Uy, Ug of the Riemann problem for the conservation laws
(12.1) is denoted by

Uy=U,=U0}; U =Ur=U},, (12.19)
then the corresponding numerical flux to be used in (12.2) is
F,.1 =F"(Up) +F (Uy). (12.20)

Sect. 8.2.2 of Chap. 8. Using the integral relations

Y A(U)IU = F(U,) - F(Uy)
Uy
and U,
AT (U)dU =F*(U;) - F*(Uy) ,
Uyg

we can express (12.20) in three different forms, namely

U,
Fipy =F(Up) + [ A7(U)aU, (12.21)
0
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U,
Fi 1 =F(U) - AT (U)dU (12.22)
Uy
and
1 1 [
Py = 5 [F(Ug) + (U] - 5/ |A(U)[dU . (12.23)
Uy

Compare these flux formulae with those of Sect. 5.4.2 of Chap. 5 for linear
systems with constant coefficients and with those for the Roe flux in Sect.
11.1.3 of Chap. 11.

The integration with respect to U in (12.21)—(12.23) is carried out in phase
space R". Elements of this vector space are vectors

U = [ug,uz, -, um|” (12.24)

whose components u; are real numbers. In general, the integrals (12.21)—
(12.23) depend on the integration path chosen. Osher’s approach is to select
particular integration paths so as to make the actual integration tractable.

12.1.3 Osher’s Flux for the Single—Wave Case

The solution of the Riemann problem for (12.1) with data Ug, Uy has
m waves, in general. Osher’s scheme utilises partial information on the so-
lution to provide integration paths to evaluate the integrals (12.21)—(12.23),
which in turn produce an expression for the numerical flux. Consider first the
simplest case in which all waves in the solution of the Riemann problem, ex-
cept for that associated with the eigenvalue \;(U) and eigenvector K (U),
are trivial. That is, the states Uy and U; are connected by a single j—wave.
Associated with any vector field K(*)(U), there are integral curves. These
have the property that their tangent lies in the direction of the eigenvector
K®)(U), at any point U in phase space. For background on integral curves
see [308] and [596]. An integration path I;(U) is now taken to be an integral
curve of K(*)(U) connecting Uy and Uj. It is important to note here that the
eigenvector K(*)(U) and the eigenvalue \,(U) associated with the relevant
integration path are not necessarily those corresponding to the non—trivial
j—wave family in question.

Suppose I (U) is parameterised by U(£), 0 < ¢ < &, and

Up=U(0), Uy=U&) (12.25)
then
dl;é’f) —K®(U(g)) . (12.26)

By performing a change of variables, utilising (12.25)—(12.26) and the fact
that A, (U) is an eigenvalue of A~ (U) with eigenvector K*)(U), we have

U1 {1
A~ (U)dU = / A UKD [U())de (12.27)
Ug 0
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We first consider the case in which the k—th field is linearly degenerate, that
is A\, (U) is constant along I;(U); see Sect. 2.4.3 of Chap. 2 and Sect. 3.1.3
of Chap. 3. If A\;(U) > 0 VU along I;;(U), then A\, (U) = 0, see (12.8), and
thus from (12.27) we have

U.
A~ (U)dU =0. (12.28)
Uy

If \x(U) <0 VU along I;(U), then manipulations of (12.27) give

31 dF
dU /
Uo f

U,
A7 (U)dU = F(U;) — F(Uy) . (12.29)
Uy
Hence, if the k—field is linearly degenerate, use of (12.28) and (12.29) in the
one-sided flux formula (12.21) gives the Osher’s intercell flux as

and thus

F(Ug) if A\, >0
= (12.30)
F(Uy) if A\, <0.

An entirely equivalent derivation of the Osher flux results from using the flux
formulae (12.22) or (12.23). Note that in the case of a single wave associated
with a linearly degenerate field, the Osher flux is identical to the Godunov
flux if j = k.

We next consider the case in which the k—th field is genuinely non-linear,
that is the eigenvalue A\, (U) is monotone along I}, (U). This means that A, (U)
changes sign at most once, along I}, (U). If A\t (U) does not change sign along
I;:(U) then this is simply like the linearly degenerate case above and the flux
is given by (12.30). If Ax(U) changes sign at £ = £g, then there are two cases
to consider. First assume

A[U)] =20, VE€[0,8s]; MU <0, VEe[§s,&].

Then (12.27) can be split into an integral between 0 and g and an integral
between &g and &;. The first integral is zero, as A,/ (U) = min(A,(U),0) and
A:(U) > 0, see (12.8). The second integral gives

El
[ GG d = (o) - F(us) .

where Ug = U(¢g) and is called a sonic point. The case

A[UE)] <0, VE€[0,8s]5 M[U(E)] =0, V¢ € [€s,8]
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can be treated in a similar way to give
U,
A~ (U)dU =F(Ug) — F(Uy) .
Uyg

Collecting results, for a single wave, we have

F(U;) — F(Uy) if \,(U) <0,
/Ul A~ (U)dU = F(U;) — F(Ug) if \e(Up) >0, M:(U;) <0,
U M (Us) =0,
F(Us) — F(Uo) if /\k(UO) <0 ,)\k(Ul) >0,
A(Us) =0.

By substituting these expressions into the one—sided flux formula (12.21) we
obtain the Osher intercell flux, for the case in which the states Uy and U,
are connected by the single j—wave.

F(Uo) , Ae(U) >0,
F(U,), Ae(U) <0,
F;,1 ={ F(Uo) +F(Uy) —F(Us) , Ae(Uo) 2 0,A:(U1) <0, (12.31)
’ Ak(Us) =0,
F(Us) s /\k(U()) <0 7>\k(U1) >0,
A(Ug) = 0.

These results can be applied directly to any scalar, non—linear conservation
law

us + f(u), =0. (12.32)
12.1.4 Osher’s Flux for the Inviscid Burgers Equation

Consider (12.32) with flux function
flu) = zu”. (12.33)

This gives the inviscid Burgers equation; see Sect. 2.4.2 of Chap. 2. Recall
that the exact solution of the Riemann problem for (12.32)—(12.33) with data
ur = Ug, UR = Uy i

ug if ¢/t <8 = F(ug+ uq)
u(z/t) =
up ifx/t > 8

(12.34)
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when ug > u; (shock case), and
ug ifx/t <wg,
u(z/t) =< z/t ifug <az/t <wuy, (12.35)
up fa/t>wu,

when up < up (rarefaction case). As, trivially, the only eigenvalue is the char-
acteristic speed A = u, direct application of (12.31) gives

f('l.to) lf Up, U > 0 s

f(ul) if Ug, Uy < 07
- (12.36)
fluo) + fur) ifup>0>uy,

0 if ug <0 <up .

At the sonic point ug = 0 and thus f(ug) = 0. Note that the Godunov flux
god

it3?
to Osher’s flux (12.36), except in the case of a transonic shock (ug > 0 > uq),

where
god | flug) if S >0,
i+3 | f(u1) otherwise .

obtained from the exact solution to the Riemann problem, is identical

For a full discussion on the relationship between the Godunov scheme, with the
exact Riemann solver, and approximate Riemann solvers, including Osher’s
scheme, see the paper by van Leer [562].

12.1.5 Osher’s Flux for the General Case

In the previous section we analysed Osher’s numerical flux for the case of
two states Ug, U; connected by a single wave, where an integration path was
chosen to be tangential to a right eigenvector. For the general case of m wave
families Osher chooses a set {I;(U)}, k = 1,---,m, of partial integration
paths such that I;(U) is tangential to K*)(U) and two successive paths
I;,(U) and I;41(U) intersect at a single point

Uk/m = I, (U) N 1,11 (U) (12.37)

in phase space, called an intersection point. The data points Uy and U; are
now to be interpreted as

Uo=Up_1yym, U1 =Uyp,, .
The total integration path is the union of all partial paths, namely

I(U) = UL(U) . (12.38)
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Fig. 12.1 illustrates a choice of integration paths for the case of a 3 x 3 hyper-
bolic system such as the one—dimensional, time dependent Euler equations.
The vectors Uy, Uy /3, Uy 3 and Uj are vectors in phase space R? and can be
thought of as being the four constant states arising in the exact solution to
the corresponding Riemann problem represented in physical space z—t in Fig.
12.1. See Chap. 4 for details of the exact solution of the Riemann problem
for the Euler equations. The points U% and U% are the intersection points in
phase space, and the points Ugg and Ug; are a representation of the potential
sonic points that may arise from the non-linear fields associated with A;(U)
and /\3(U)

t
A,(U) A ) A)
Uy b 1 Uy
l' IS
Iy Uso K Ug
]
1
U 1
0 1 Ul= X
0

Fig. 12.1. Possible configuration of integration paths I;(U), intersection points
U%, U% and sonic points Ugg, Ug; in physical space z—t for a 3 x 3 system

For the general case, and assuming for the moment that the intersection
points (12.37) and sonic points are known, the integration along I(U) to
evaluate (12.21), say, can now be performed by integrating along each partial
integration path Ij(U). But since these have been chosen to be tangential
to the corresponding eigenvector K(¥) (U), the results of the previous section,
see (12.31), can now be applied directly. The determination of the intersection
points Uy /,,, and sonic points requires extra information about the solution of
the Riemann problem. Traditionally, these have been determined by the use
of Generalised Riemann Invariants, in at least two different ways, as we shall
see.

12.2 Osher’s Flux for the Isothermal Equations

The isothermal equations

U, +FU), =0, (12.39)

U:[p}, F(U):{ pu } (12.40)

pu® +a’p
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have Jacobian matrix
A(U) = { ,0 0 } (12.41)

with eigenvalues
MU)=u—a, XU =u+ta, (12.42)

and corresponding right eigenvectors

1

u—a

K(U) = { u+a

] , K& = { ! } . (12.43)

Recall that the sound speed a is constant here; for details on the isothermal
equations see Sect. 1.6.2 of Chap. 1 and Sect. 2.4.1 of Chap. 2. The structure
of the exact solution to the Riemann problem for (12.39)—(12.40) with initial
data Uy, Uy is depicted in Fig. 12.2 in the z—t plane, where the intersection
point U 1 is identified with the solution of the Riemann problem between the
non—linear waves; potential sonic points are also shown.

A, (V)

Fig. 12.2. Structure of the solution of the Riemann problem for the isothermal
equations in physical space z—t. Integration paths are I; and I2, intersection point
is U%, potential sonic points are Ugg and Ugi; P—ordering

12.2.1 Osher’s Flux with P—Ordering

There are two ways of ordering the integration paths in Osher’s scheme,
namely the original Osher ordering, or O—ordering, and the physical ordering
following valid relations across waves in physical space, or P—ordering. First
we apply P-ordering. It is easy to check, see Sect. 2.4.3 of Chap. 2, that the
Riemann Invariants along the path I (U), across the left wave in physical
space, give

ur +aln(py) =wuo+aln(po) - (12.44)

1
2

Similarly, across the right wave
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ur —aln(py) =uo —aln(py) . (12.45)

The simultaneous solution for PL and (T is

1 1
uy = 5(uo +u1) + 5aln(po/p1) , (12.46)
Uy — U
p1 = +/Pop1 exp {—12(10] (12.47)
and thus the intersection point
U, = [ P3 } (12.48)
* Ly

is determined.

Behaviour of A\1(U) =u —a flljf A~ (U)dU
1u0—a20,u%—a20 0
2uo—a§0,u%—a§0 F%—Fo
3u0—a20,u%—a§0 F%—Fso
4u0—a§0,u%—a20 Fso—Fo

Table 12.1. Evaluation of integral along integration path I (U) with P—ordering,

The left and right sonic points Ugg and Ug; can easily be found by using
the sonic conditions ugg = a from A\ = u —a = 0, ug;y = —a from Ay =
u + a = 0 and the Riemann Invariants. The result is

ugp —a

PSo = Po €Xp [ ] , Uso=a, (12.49)

ur +a

pPS1 = p1 €Xp {— } , Us1 = —a. (12.50)
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Behaviour of \2(U) =u+a f:f; A~ (U)dU
1u%+a20,u1+a20 0
2u%+a§0,m+a§0 Fl—F%
3u%+a20,m+a§0 F, - Fgs1
4u%+a§O,U1+a20 FSlfF%

Table 12.2. Evaluation of integral along integration path I>(U) with P—ordering,
F, = F(Uy)

It is worth remarking at this stage, that the solution (12.46)—(12.47) for the
intersection point is exact when the left and right waves are both rarefaction
waves; in the general case it is an approximation. It is in fact the Two—
Rarefaction approximation TRRS presented in Sect. 9.4.1 of Chap. 9 for the
Euler equations.

Integration Along Partial Paths

In order to compute the Osher flux we use the one—sided flux formula

U,
FiJr% =Fy+ A_(U>dU , (12.51)
Uy

where the integral is evaluated along each of the partial integration paths
I;(U) and I5(U) shown in Fig. 12.2. For each case the integration is performed

according to the local characteristic configuration. Tables 12.1 and 12.2 show
the results for I; (U) and I>(U) respectively. As

U, Ui U,
A= (U)dU= [ * A (U)dU + A~ (U)dU, (12.52)
Up Uy U%

strictly speaking, one should consider all 16 possible characteristic configura-
tions (4,7) that result from Tables 12.1 and 12.2. Closer examination of all
cases reveals that 4 possibilities are unrealisable. These are (1,2), (1,4), (4,2)
and (4,4). For instance case (1,2) contains the requirements
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ur—a>0; ur+a<0. (12.53)

But @ > 0 and thus these two conditions are contradictory. The remaining
12 cases can be tabulated as in the 3 x 4 Table 12.3, which gives the Osher
intercell numerical flux F, 1 We separate conditions on the intersection point
U, (first column) from conditions on the data points Ug and Uy (top row).
Note that in general F; 1 is a combination of physical flux values at several
points in phase space. In contrast, the Godunov flux obtained from the exact
Riemann solver of Chap. 4 and from the approximate Riemann solvers of
Chaps. 9, 10 and 11, consists of a single value. This has a bearing on the
simplicity and computational efficiency of the schemes.

12.2.2 Osher’s Flux with O—Ordering

In the original Osher scheme the ordering of the partial integration paths
I;(U) is inverted. Fig. 12.3 illustrates the corresponding path configuration
for the isothermal equations. The integration path connecting Ug to U% is

tangential to the eigenvector K(Q)(U) and that connecting U% to U is tan-

gential to K (U). Compare with Fig. 12.2. The O-ordering of the Osher
scheme is used both for the integration paths as well as for the determination
of the intersection point U% and the sonic points Ugg, Ugy. The data state

0

Fig. 12.3. Configuration of integration paths I (U), intersection point U% and
potential sonic points Ugo, Ugi in physical space z—t when using the O—ordering

Uy is connected to U, via the right (relation valid across the right wave)
Riemann Invariant to give
upr —aln(py) =wuo —aln(po) .

Compare with (12.44). The data point U; is connected to U, via the left
(relation valid across the left wave) Riemann Invariant to produce

ur +aln(py) =u1+aln(py) .
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uo—a > 0lup—a>0|ug—a <0jup—a <0
ur+a>0lur +a<0|ur +a<0jur+a>0

wi—a>0 Fo Fo+F: |[Fso+F: Fso

2 —Fs1 —Fs1

u%—ago F0+F% F0+F% F%+F1 F

u1+a>0 —Fso —Fso+F —Fgs1 %

2 —Fs1

wita<o Fo+Fsi1| Fo+F, F, Fo

2 —Fso —Fso

Table 12.3. Osher’s intercell flux for the isothermal equations using P—ordering,

Compare with (12.45). The resulting solution is

1 1
uy = §(u0 +uy) + 50 In(p1/po) , (12.54)
Uy —u
p1 = +/Pop1exp {1%0] (12.55)

and thus the intersection point U 1 in (12.48) is determined. The left and
right sonic points are evaluated using the sonic conditions Ao = u+a = 0 and
A1 = u —a = 0 and the right and left Riemann Invariants, respectively. The
result is

Ug + a
ug) = —a , pPso = Poexp {— Oa :| , (12.56)
UL —a
usy =a, pPs1 = p1exp |: 1@ } . (12.57)

Compare solutions (12.54)—(12.57) with (12.46)—(12.50) obtained with the P—
ordering of the Osher scheme. Note that the solution for the intersection point
given by the O-ordering has no physical meaning as a solution for the Star
Region between the left and right wave families. If the exact solution of the
Riemann problem consists of two rarefactions, then solution (12.47) is exact,
in which case the density is expected to decrease; solution (12.55) gives an
increase in density in the Star Region, which is obviously incorrect. We expand
on this point when dealing with the Euler equations later in Sect. 12.3.3.
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Integration along the path I5(U) connecting Uy to U% produces the results
of Table 12.4. The results of integrating along the path I (U) connecting U,

to U are given in Table 12.5.

Behaviour of A2(U) =u+a

1uo+a>0, ur +a>0 0
2uo+a§0,u%+a<0 Fy—Fo
3luo+a>0, ur +a<0 Fi1 —Fso
2
4lup+a <0, ur14+a>0 Fso—Fo

Table 12.4. Integration along

path I2(U) connecting Up to U, (O—ordering),

Behaviour of A1 (U) =u —a

U _
fo A~ (U)dU
2

1u1—a20,u%—a20 0

2u1—a§0,u%—a§0 Fl—F%
3u1—a§0,u%—a20 F, —Fs1
4u1—a20,u%—a§0 F517F%

Table 12.5. Integration along path [;(U) connecting U% to Ui (O-ordering),
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Out of the 16 possible combinations 12 cases are realisable. Table 12.6
gives the Osher numerical flux F, itd for all 12 cases. Compare with Table
12.3 in which the flux is computed using the P—ordering.

up +a > 0|uo +a > Olug +a < 0lup +a <0
ur —a>0lu; —a<0jlur —a<O0luy —a>0

w1 —a>0 Fo Fo+F.1 |Fso+Fu

1 = F
2 —Fs1 —Fs1 50

ur —a <0/ Fo+Fs1 | Fo+F1 |Fso+Fi |Fso+Fg1

FO + FS1 FO + Fl

F F
—Fso —Fso ! st

Table 12.6. Osher’s intercell flux for the isothermal equations using O-ordering of
integration paths, F = F(Uy)

12.3 Osher’s Scheme for the Euler Equations

Here we develop in detail the Osher scheme, with both P and O orderings,
for the time—dependent Euler equations. We first consider the one-dimensional
case

U, + F(U), =0, (12.58)
p pu
U= |pu|, FU=| pu>+p | . (12.59)
E u(E + p)

Details of the Euler equations are found in Sect. 1.1 of Chap. 1 and Chap. 3.
We require an expression for the intercell flux F, 1 in the explicit conservative
formula

At
U;H_l Un + Zx [F

Recall that the Jacobian matrix A(U), see Sect. 3.1.2 of Chap. 3, has eigen-
values

~F, 1] (12.60)

1
2

AM=u—a, do=u,, Aa=u-+a (12.61)
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and right eigenvectors

1 1 1
KO — U—a , K® = u , K® = u-+a . (12.62)
H —ua Lu? H + ua

It is instructive to relate Osher’s scheme to the solution of the Riemann prob-
lem in the classical sense, see Chap. 4 for details. Fig. 12.1 shows the structure
of the solution of the Riemann problem with data Uy, Uy in the x—t plane.
Also shown there are the partial integration paths I (U), I,(U), I3(U), the
intersection points U 1 Uz and the sonic points Ugg, Ug; in phase space;
the illustrated paths follow the P- ordering. There are essentially two steps in
obtaining the Osher flux formulae. First the intersection points U1 and U2
are obtained. We identify these points with the states U, and U*R in the
solution of the Riemann problem, see Chaps. 4 and 9. The second step consists
of evaluating the integral in (12.21), for instance, along the integration paths
I:(U) to obtain the intercell flux.

12.3.1 Osher’s Flux with P-Ordering

The physical or P-ordering of integration paths for the Euler equations is
illustrated in Fig. 12.1. States Uy and U1 are connected by the partial inte-
gration path I;(U), which is taken to be tangential to the right eigenvector
K®(U) in (12.62). Similarly, I;(U) connects U1 to Uz and I3(U) connects
Ug to U;. In the P-ordering the intersection p301nt8 Ijl , Uz and the sonic
points Ugg, Ug; are obtained by using the physically correct Cieneralised Rie-
mann Invariants; see Sect. 3.1.3 of Chap. 3 for details.

Intersection Points and Sonic Points

Effectively, the intersection points U 1 U 2 can be taken to be the solu-
tion of the Riemann problem with data Uy, Uy in the conventional sense. In
the spirit of Osher’s scheme we obtain U 1 and U 2 utilising the Generalised
Riemann Invariants

2
In=u+ 7(11 = constant (12.63)

and

2
Ip=u-— 7&1 = constant (12.64)

to relate Uy to U 1 and U 2 to Uj respectively. Recall that if the left and right
non-linear waves are rarefaction waves then relations (12.63)—(12.64) are ex-
act. These waves can be either shock or rarefactions and thus the derived
intersection points U% and Uz are, in general, approximations. The under-
lying assumption is that in the solution of the Riemann problem with data
Uy, Uy, both non-linear waves are rarefaction waves. This corresponds to the
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Two—Rarefaction approximation TRRS presented in Sect. 9.4.1 of Chap. 9.
Using (12.63) across the left wave gives

2a.1 2a0
* = 12.
Uy + ) up + - 1 ( 65)
and use of (12.64) across the right wave gives
2az 2a;
.= = — . 12.66
U _— =uy po— ( )

Here u, is the common particle velocity for U1 and Uz Recall that, see
Chaps. 3 and 4, the pressure p, is also common, that is
U

=uz = u, = constant , pi =pz = p, = constant . (12.67)

wl
o

In addition to (12.65)—(12.66) the isentropic law applied to the left and right
waves gives

ar = ao(p«/po)”, az =ai(p./p1)”, (12.68)

1
3

with
z=-—. (12.69)

From (12.65) and (12.68) we obtain

2aO _<p*)z |
Uy = Uy — — ] —1] . 12.70
o= =1 |\ | ( )

Similarly, use of (12.66) and (12.68) gives

2 [(p\" ]
e = up + —2 (p) —1 . (12.71)
y—1[\m J

Solving for p, and wu, gives

1
— (uy — —1)/2]*
b= {ao—km (uz1 uo)(z )/ } ’ (12.72)
ao/p§ + a1/pj
:Huo/a0+u1/a1 +2(H—1)/(’y—1) (1273)
* H/(lo + 1/0,1 ’ '
with
H = (po/p1)”
The density values p1,pz could be obtained from (12.68)—(12.69) or more
directly as
1 1
_ p* Y _ pl v
PL =po (po) P2 =M <p1> . (12.74)
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The complete solution for Ui, Uz is given by (12.72)—(12.74). This is
identical to the two-rarefaction approximation of Sect. 9.4.1 of Chap. 9. The
computation of the sonic points Ugg (left wave) and Ug; (right wave) is
performed by first enforcing the sonic conditions \;y = u—a =0 and A3 = u+
a = 0, respectively and then applying the corresponding Generalised Riemann
Invariants. The solution for the left sonic point is

_ -1 2a _
uso = 37U + 337, S0 = Uso

e , (12.75)
pSso = po (%S(f’) T pso=po (%)
For the right sonic point the solution is
us1 = Fqun — 24, as1 = —ug1
i’ . (12.76)
ps1 = p1 (‘%) , DPs1=D1 (%)
Integration Along Partial Paths
We adopt expression (12.21) for the Osher intercell flux
U,
F,.1=Fo+ A~ (U)dU
2 U,
where the integral in phase space along the path
I(U) = Il(U) U IQ(U) @] Ig(U)
gives
U, U, U,
F,o1=Fo+ [ A (U)dUu+ [ > A~ (U)dU+ A= (U)dU . (12.77)
2 U Uy U,

The integration along each partial path I (U) is performed individually and
the results are added to produce F,, 1. The partial integrations are easily
performed following the methodology presented in previous sections. For any
given path there is only one wave involved. The left and right waves define
genuinely non-linear fields, see Sect. 3.1.3 of Chap. 3, and the corresponding
eigenvalue changes sign at most once, generating the sonic—point values. The
second field (middle wave) is linearly degenerate, see Sect. 3.1.3 of Chap. 3,
and thus the eigenvalue A2 (U) is constant along the path I5(U).

The integration results for each path are given in Table 12.7 and are la-
belled A, B and C' respectively. To obtain the intercell flux F, +1 the integral
terms in (12.77) must be selected according to the behaviour of the eigenvalue
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A :|Behaviour of A\;(U) =u—a Ju.2 A= (U)dU
0

1|uw —a >0, u«—a

2 lu—ap <0, us—a

3| uo—ao >0, u«—a

4 {up—ap <0, us—a

B :| Behaviour of A2(U) =u u, A7 (U)dU
1 ux >0 0
2 Ux < 0 F: -F

C :|Behaviour of A3(U) = u+a| Ju, A~ (U)dU
H

1 |ur4+a >0, uc+az >0 0

2
3

2 u1+a1§0,u*+a%§0 FlfF%

3|uxtaz 20, uitar <0 Fi—Fs

4 u*Jra%SO, ur +ar >0 Fs1—F%

Table 12.7. Integration along partial paths for the Euler equations following the
P-ordering, F, = F(Uy)
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A,(U) along the path Ij(U). As seen in Table 12.7 there are 32 possible com-
binations i, j, [; of these only 16 are realisable, which are tabulated as in Table
12.8. Here, in order to identify the correct expression for the resulting intercell
flux F, 41, we split conditions on the intersection points, first column, from
conditions on the data, top row.

UQ—aoZOUQ—(IQZOUQ—GQSOUO—aogo
ur + a1 > 0lur + a1 <0jur +a1 > 0fur +a1 <0
u* >0 F Fo+F; i Fso — Fs1
’U/* _ a% 2 0 0 7FSI S0 +F1
Fo—F
u >0 Fo-Fso | 0 5 Fi+F,;
u —a1 <0| +F1 +F%7F51 F% F ’
3= 3 +F, TSt
Fo—F
u <0 Fo-Fso | 0 b - F; —Fs
* 2 —rgs1 2
u'+az 20| +F3 LF 3 +F
U*SO Fo—FSo FO_FSO F F
ut + az <0| +Fs1 +F4 st !

Table 12.8. Osher’s flux formulae for the Euler equations using P-ordering of
integration paths, F, = F(Uy)

12.3.2 Osher’s Flux with O—Ordering

As originally presented, Osher’s scheme uses the O—ordering of integration
paths; this is precisely the opposite of the P—ordering described previously.
The approach is used consistently to determine the intersection points, the
sonic points and for performing the integration in (12.77). Fig. 12.4 illustrates
the O-ordering of Osher’s scheme as applied to a 3 x 3 system, such as the
one—dimensional Euler equations. We combine the configuration for the in-
tegration paths, the intersection points and the sonic points in phase space
with the Riemann problem solution with data Uy, Uy in physical space x—t.
The O-ordering can now be interpreted as assigning the eigenvalue \3(U) and
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0 1 U]_= X
0

Fig. 12.4. Configuration of integration paths I (U), intersection points U17 U2

and sonic points Ugo, Ug; in physical space x—t for a 3 x 3 system, followmg the
O-ordering

eigenvector K (U) to the wave family with eigenvalue A;(U) and eigenvector
K®(U) (left wave), and vice-versa.

Intersection Points and Sonic Points

First, the intersection points U}; and Uz are determined by using Gen-
eralised Riemann Invariants, as done in Sect. 12.1.3 with P ordering. The
difference is that Uy and U L are connected using the right Riemann Invari-
ant and U 2 is connected to U; using the left Riemann Invariant. Thus we
write

ao (12.78)

fy—la% - 701 - (12.79)

See (12.63)—(12.66). Again, we assume u, and p, are the common particle
velocity and pressure at points U and Uz. Use of (12.68) into (12.78) gives

2 [ p*)z i
Uy = Uy + ————a — — 11, 12.80
oo () ] (12.80)
and use of (12.68) into (12.79) produces
2 [\ ]
Uy = U] — ————Q — ] =11 . 12.81
e () 128y

Solving for p, gives

W=

ao + ay + (uy — uo)(y — 1)/2] (12.82)

ao/p§ + a1/pi

Compare with solution (12.72) using P-ordering. Equations (12.80) and
(12.81) can be rearranged as
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—1 z
Px = Do [7 (us — ug) + 1} , (12.83)
2&0
v 1 *
P« =11 (ur —us) +1] (12.84)
2a1

whose solution for u, is

_ Hug/ag +ui/ay —2(H —1)/(y — 1)

, 12.85
H/(l0+ 1/(11 ( )

Usx

with
v—1
2y
Compare with solution (12.73) using the P—ordering. The solution for p 1 and
P2 is, using the isentropic law,

H=(po/p1)*, z=

1 1
pr = po(P«/P0)7 . pz = pi(p«/p1)7 . (12.86)

1
3
To find the sonic points Ugg and Ug; we first connect Ug to U% via the right
Riemann Invariant to obtain

2 2

71a50—|—u0—771

usog — agp .

Then by enforcing the sonic condition
/\3(U) =ugp +aso =0

along I3(U) and applying the isentropic law one obtains the solution

uso = Luo — 299, aso = —uso
2, , (12.87)
PS0 = Po (%Sg’) , PSo = Do (%)
The solution for the right sonic point Ug; is
ust = T+ a1, as) = ugi
2 , (12.88)
ps1 = p1 (%) , ps1=p (%)
Integration Along Partial Paths
To compute Osher’s intercell flux
U,
FZ-JF% =Fy+ / A~ (U)dU , (12.89)
Uy
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we need to find the integral

U, U% U% U,
A~ (U)dU = A~ (U)dU + A~ (U)dU + / A~ (U)dU .

Uy Uy U% U%
(12.90)
Using the O-ordering one has
U,
P A (U)dU = A~ (U)dU, (12.91)
Uy I3(U)
Uy
P A (U)dU = A~ (U)dU, (12.92)
U, I2(U)
3
U,
A~ (U)dU = A~ (U)dU . (12.93)
U% 1,(U)

The evaluation of the three terms in (12.90) according to (12.91)—(12.93) is
given in Table 12.9, by cases labelled A, B and C respectively. The first column
contains the sub—case numbers. The second column contains the behaviour of
the eigenvalue along the corresponding partial path. For instance in case A
one considers the sign of the eigenvalue A\3(U) along the path I3(U) joining
the points Ug and U:i. The third column contains the resulting integral in
(12.91)—(12.93). There are 32 combinations, of which only 16 are realisable.

Just to illustrate the method of analysis, consider first the combination
(Al, Bl, Cl), that is

Ap:uotao =0, ur a1 >0,
By : U >0,

Ci:iuy—ar >, uy—az>0.

o

As all eigenvalues are positive throughout, the integrals are all zero. The
combination (Aj, Bs, C1) gives

A12UO+GQZO,’LL*+CL%ZO,
Bs: u, <0,
Clzul—a1207u*—a%20.

Clearly these conditions cannot be satisfied simultaneously, u,. < 0 contradicts
Uy — Gz >0, as az > 0.

The Osher intercell flux with O—-ordering is given in table 12.10. The logic
involved can be organised so as to test conditions on the data points (top
row) and conditions on the intersection points (first column). The Osher’s flux
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A :| Behaviour of A\3(U) =u—a fl‘;

ol

5 A~ (U)dU

0

1 U()+a020,u*+aé20 0

2| uo+ao <0, u*+a%§0 Fi—Fy

3| uo+ao >0, u*+a%§0 F. - Fso
3

4 | uo+ao <0, u*+a%20 Fso — Fo

B :| Behaviour of A\2(U) =u

o
£
A
o
"ﬂ

I
B

ol

1 U1—a120,u*—a%20 0

21 ur—a1 <0, us—a

<0 F17F§

3 ulfalzo, Usx — A SO Fs1 —F2
3

4lur—a1 <0, ue—az 20 Fi1 - Fs:

Table 12.9. Osher’s flux for the Euler equations. Evaluation of integral following
O-ordering, F, = F(Uy)
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formulae with P and O ordering given by Tables 12.8 and 12.10 respectively,
are valid for any 3 x 3 non-linear hyperbolic system. The specific properties
of a particular system enter in the determination of the sonic and intersection
points only. The formulae can be directly applied, for instance, to the split
two—-dimensional shallow water equations.

uo + ao > O|uo + ao > Ojup + ao < 0juog +ao <0
ul—a120u1—a1§0u1—a1ZOul—a1§0

Fo—Fso | Fo—Fso
: +Fs1 +F

I~
IN
[e=]

Usx +a Fsi F

wl

us +a1 >0 Fo—F1 | Fo—F1 | Fso—F.1 | Fso—F1
3 3 3 3 3

ux <0 +Fs1 +F, +Fs1 +F1
Fo—-Fs1 Fso—Fs1
= >0
Urmag = Fo +F1 Fso +F.

u*—a§<0 Fo—F% Fo—F% Fso—F% Fso—F%
ux >0 +Fs1 +F; +Fs1 +F1

Table 12.10. Osher’s flux formulae for the Euler equations using O-ordering of
integration paths, F = F(Uy)

12.3.3 Remarks on Path Orderings

It is useful to compare the pressure solutions (12.72) and (12.82) when
computing the intersection points using the P and O orderings for the inte-
gration paths. Let us redefine the respective solutions as

(P) _ |:a0+a1_AU(’Y_1)/2:|1/Z (12 94>
. ao/p§ + a1/pi '
and y
A —1)/217*
p0) — [t ot duly 1)/ , (12.95)
ag/p§ + a1/pf

where Au = wuy — ug is the velocity difference in the data. The reader is
encouraged to review Sect. 4.3.1 of Chap. 4, in which a detailed discussion is
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given on the influence of Au on the solution for pressure in the exact solution.
First we note that pip) = pgfo) when Au = 0 and that for Au # 0 the two
solutions are not only different but more importantly, they have very different
behaviour. This does not seem to matter too much in practical computations,
except for special but important situations. There are at least two cases that
deserve special attention.

The case Au >> 0, see Sect. 4.3.1 of Chap. 4, is associated with strong
rarefaction waves. In fact there is a limit for which the pressure p, becomes
negative and is associate with the pressure positivity condition stated in Sect.
4.3.1 of Chap. 4. In the incipient cavitation case the pressure is 0. The solution
pﬁp) will correctly reflect this physical situation of low—density flow, including
the detection of vacuum. The author is not aware of this having been exploited
in the context of Osher’s Riemann solver with P—ordering. On the other hand,
the solution pio) for Au >> 0 obtained with the O-ordering, will give un-
realistically large values for the pressure at the intersection points, which is
more consistent with the presence of strong shock waves, rather than strong
rarefaction waves. Such large pressure values will lead the Osher scheme to
be very inaccurate or simply to fail for low—density flows, just as linearised
Riemann solvers do; see Einfeldt et. al. [182] for a discussion on numerical
difficulties for low—density flows. We illustrate this point through Test 2 of
Table 12.11, for which the scheme actually fails.

The case Au << 0, see Sect. 4.3.1 of Chap. 4, is associated with strong
shock waves. Again the P—ordering solution (12.94) will correctly reflect this.
However the O-ordering solution (12.95) will not. More importantly, there
will be a limiting strong shock situation for which the O—ordering pressure is
undefined and the scheme will again fail; see Test 5 in Table 12.11. The failure
condition in this case is analytic, namely

ap + a; + Au(y—1)/2 <0. (12.96)

It is paradoxical that the scheme fails in the presence of strong shocks, which
is consistent with large pressure, through a pressure solution pio) that is
undefined for being so close to vacuum conditions. One could devise some
sort of fix to remedy this situation. One possibility is to abandon the O-
ordering altogether or switch to the P—ordering locally, in a kind of adaptive
ordering.

12.3.4 The Split Three—Dimensional Case

The extension of the Osher scheme to two and three-dimensional problems
is straightforward. All methods considered here require expressions for the
split fluxes. In the z—split, three dimensional case, for instance, we require in
addition the y and z momentum flux components puv and puw. In turn, this
requires the extra components pv and pw in the vector of conserved variables
U. These new components will be needed in the intersection points and sonic
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points. But, as seen in Sect. 4.8 of Chap. 4, the exact solution for v and w in
the Riemann problem is given by

qr if ¢/t < u,
oo, t) = , (12.97)
qr if x/t > u,

where ¢ = v and ¢ = w. The approximate solution for the tangential com-
ponents of velocity obtained from using Generalised Riemann Invariants in
the Osher scheme preserves the form of the exact solution (12.97), the only
approximation being that of the normal velocity component u.. Therefore, for
computing Ugg and U% we take vy, and wy; for computing Ug; and U% we
take vp and wg. Solution (12.97) ensures that contact waves and shear waves
(and shear layers in Navier—Stokes applications) are well resolved by Osher’s
scheme, a property that is common to the exact Riemann solver of Chap. 6,
the approximate—state Riemann solvers of Chap. 9, the HLLC Riemann solver
of Chap. 10 and Roe’s solver of Chap. 11.

12.4 Numerical Results and Discussion

Here we illustrate the performance of Godunov’s first—order method used
in conjunction with Osher—type approximate Riemann solvers. We select six
test problems for the one-dimensional time dependent Euler equations for
ideal gases with v = 1.4; these have exact solutions. In all chosen tests, data
consists of two constant states W, = [pr, ur, pL]” and Wr = [pr, ur, pr]?,
separated by a discontinuity at a position z = xy. The states W1, and Wg
are given in Table 12.11. The exact and numerical solutions are found in the
spatial domain 0 < x < 1. The numerical solution is computed with M = 100
cells and the CFL condition is as for all previous computations, see Chap.
6; the chosen Courant number coefficient is C.y = 0.9; boundary conditions
are transmissive. The exact solutions were found by running the code HE-
E1RPEXACT of the library NUMERICA [519] and the numerical solutions
were obtained by running the code HE-E1GODOSHER of NUMERICA.

Test|  pr ur, PL PR UR PR
1 1.0 0.75 1.0 0.125 0.0 0.1
2 1.0 -2.0 0.4 1.0 2.0 0.4
3 1.0 0.0 1000.0 1.0 0.0 0.01
4 15.99924| 19.5975 [460.894(5.99242| -6.19633 [46.0950
5 1.0 |-19.59745| 1000.0 1.0 |-19.59745| 0.01
6 1.0 2.0 0.1 1.0 -2.0 0.1

Table 12.11. Data for six test problems with exact solution, for the
time-dependent one dimensional Euler equations
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Test 1 is a modified version of Sod’s problem [453]; the solution has a right
shock wave, a right travelling contact wave and a left sonic rarefaction wave;
this test is useful in assessing the entropy satisfaction property of numerical
methods. The solution of Test 2 consists of two symmetric rarefaction waves
and a trivial contact wave; the Star Region between the non-linear waves is
close to vacuum, which makes this problem a suitable test for assessing the
performance of numerical methods for low—density flows. Test 3 is designed to
assess the robustness and accuracy of numerical methods; its solution consists
of a strong right shock wave of shock Mach number 198, a contact surface and
a left rarefaction wave. Test 4 is also a very severe test, its solution consists
of three strong discontinuities travelling to the right. A detailed discussion
on the exact solution of the test problems is found in Chap. 4. Test 5 is also
designed to test the robustness of numerical methods but the main reason
for devising this test is to assess the ability of numerical methods to resolve
slowly—moving contact discontinuities. The exact solution of Test 5 consists of
a left rarefaction wave, a right—travelling shock wave and a stationary contact
discontinuity. Test 6 simulates the collision of two uniform streams; the exact
solution consists of two strong symmetric shock waves and a trivial contact
discontinuity. The purpose of Test 6 is to illustrate the fact that Osher’s
scheme with O—ordering will fail for a range of problems of this kind. For each
test problem we select a convenient position o of the initial discontinuity
and the output time. These are stated in the legend of each figure displaying
computational results.

The computed results for Tests 1, 3, 4 and 5 using the Godunov first—
order method in conjunction with the Osher approximate Riemann solver
with O-ordering are shown in Figs. 12.5-12.8. The scheme failed for Tests 2
and 6. The result of Fig. 12.5 is virtually identical to that of the Godunov
method with an exact Riemann solver, Fig. 6.8 of Chap. 6; note also that
both schemes give comparable performance in the vicinity of the sonic point.
The results for Tests 3 and 4, shown in Figs. 12.6 and 12.7, obtained with
O-ordering compare well with those of the exact Riemann solver, except for
the fact that the slowly moving shock in Fig. 12.7 does not have the spurious
oscillations that other Riemann solvers produce [406], [60], [19], [280]; this is
a distinguishing property of the Osher approach.

Results for Tests 1 to 6 from the Osher scheme with P—ordering are shown
in Figs. 12.9-12.14. The results for Tests 1 to 4 are, overall, as accurate as
those obtained from an exact Riemann solver; the P-ordering scheme actually
works for Tests 2 and 6, whereas O—ordering scheme does not; note however
the spurious oscillations in Test 6 near the shocks, a feature of P-ordering
schemes already noted by Osher. For Test 5 the P—ordering scheme gives the
incorrect solution; compare Fig. 12.13 with Fig. 12.8 and note the scales. First,
there are very large unphysical overshoots in density, velocity and pressure.
More intriguing is the fact that the expected right-travelling shock does not
propagate at all; no signal propagates to the right of the initial discontinuity
at © = 0.8. As a matter of fact, it looks as if the shock wave does not actually
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form and the state behind the contact discontinuity has the incorrect values,
see pressure and velocity plots. My numerical results have been confirmed by
Dr N. Qin (private communication), who used an independently written code
to solve Test 5.

Earlier we made some remarks concerning a modified Osher scheme based
on an adaptive ordering. In view of the numerical results it seems as if O—
ordering could be used in all cases except for the two situations in which the
solution of the Riemann problem contains either two shocks or two rarefac-
tions. Such situations could be identified reliably and cheaply by using any of
the approximate state Riemann solvers of Chap. 9.

12.5 Extensions

The approximate Riemann solvers of this chapter may be applied in con-
junction with the Godunov first-order upwind method presented in Chap. 6.
Second-order Total Variation Diminishing (TVD) extensions of the schemes
are presented in Chap. 13 for scalar problems and in Chap. 14 for non-linear
one dimensional systems. In chap. 15 we present techniques that allow the ex-
tension of these schemes to solve problems with source terms. In Chap. 16 we
study techniques to extend the methods of this chapter to three-dimensional
problems.
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Fig. 12.5. Osher scheme with O—ordering applied to Test 1, with g = 0.3. Numer-
ical (symbol) and exact (line) solutions are compared at time 0.2 units
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Fig. 12.6. Osher scheme with O—-ordering applied to Test 3, with ¢ = 0.5. Numer-
ical (symbol) and exact (line) solutions are compared at time 0.012 units
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