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my mother Olga Muñoz de Toro (Chile, 1930–2003) and

my father–in–law Fritz Freund (Germany, 1926–2008).



Preface to the First Edition

In 1917, the British scientist L. F. Richardson made the first reported
attempt to predict the weather by solving partial differential equations nu-
merically, by hand! It is generally accepted that Richardson’s work, though
unsuccessful, marked the beginning of Computational Fluid Dynamics (CFD),
a large branch of scientific computing today. His work had the four distinguish-
ing characteristics of CFD: a practical problem to solve, a mathematical

model to represent the problem in the form of a set of partial differential equa-
tions, a numerical method and a computer, human beings in Richardson’s
case. Eighty years on and these four elements remain the pillars of modern
CFD. It is therefore not surprising that the generally accepted definition of
CFD as the science of computing numerical solutions to partial differential or
integral equations that are models for fluid flow phenomena, closely embodies
Richardson’s work.

Computers have, since Richardson’s era, developed to unprecedented lev-
els and at an ever decreasing cost. The range of application areas giving rise
to practical problems to be solved numerically has increased dramati-
cally. In addition to the traditional demands from meteorology, oceanogra-
phy, some branches of physics and from a range of engineering disciplines,
there are at present fresh demands from a dynamic and fast–moving man-
ufacturing industry, whose traditional build–test–fix approach is rapidly be-
ing replaced by the use of quantitative methods, at all levels. The need for
new materials and for decision–making under environmental constraints are
increasing sources of demands for mathematical modelling, numerical algo-
rithms and high–performance computing. mathematical models have im-
proved, though the basic equations of continuum mechanics, already available
more than a century before Richardson’s first attempts at CFD, are still the
bases for modelling fluid flow processes. Progress is required at the level of
thermodynamics, equations of state, and advances into the modelling of non–
equilibrium and multiphase flow phenomena. numerical methods are per-
haps the success story of the last eighty years, the last twenty being perhaps
the most productive. This success is firmly based on the pioneering works of
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scientists such as von Neumann, whose research on stability explained and
resolved the difficulties experienced by Richardson. This success would have
been impossible without the contributions from Courant, Friedrichs, Richt-
myer, Lax, Oleinik, Wendroff, Godunov, Rusanov, van Leer, Harten, Roe,
Osher, Colella, Yee, and many others. The net result is: more accurate, more
efficient, more robust and more sophisticated numerical methods are available
for ambitious practical applications today.

Due to the massive demands on CFD and the level of sophistication of
numerical methods, new demands on education and training of the scientists
and engineers of the present and the future have arisen. This book is an
attempt to contribute to the training and education in numerical methods for
fluid dynamics and related disciplines.

The contents of this book were developed over a period of many years of
involvement in research on numerical methods, application of the methods
to solve practical problems and teaching scientist and engineers at the post–
graduate level. The starting point was a module for a Masters Course in Com-
putational Fluid Dynamics at the College of Aeronautics, Cranfield, UK. The
material was also part of short courses and lectures given at Cranfield, UK; the
Ernst Mach Institute, Freiburg, Germany; the Shock Wave Research Centre,
Tohoku University, Sendai, Japan; the Department of Mathematics and the
Department of Civil and Environmental Engineering, University of Trento,
Italy; the Department of Mathematics, Technical University Federico Santa
Maria, Chile; the Department of Mechanics, Technical University of Aachen,
Germany; and the Manchester Metropolitan University (MMU), Manchester,
UK.

This book is about modern shock–capturing numerical methods for solv-
ing time–dependent hyperbolic conservation laws, with smooth and discon-
tinuous solutions, in general multidimensional geometries. The approach is
comprehensive, practical and, in the main, informal. All necessary items of
information for the practical implementation of all methods studied here, are
provided in detail. All methods studied are illustrated through practical nu-
merical examples; numerical results are compared with exact solutions and in
some cases with reliable experimental data.

Most of the book is devoted to a coherent presentation of Godunov meth-
ods. The developments of Godunov’s approach over the last twenty years have
led to a mature numerical technology, that can be utilised with confidence to
solve practical problems in established as well as new areas of application.
Godunov methods rely on the solution of the Riemann problem. The exact
solution is presented in detail, so as to aid the reader in applying the solution
methodology to other hyperbolic systems. We also present a variety of approx-
imate Riemann solvers; again, the amount of detail supplied will hopefully aid
the reader who might want to apply the methodologies to solve other prob-
lems. Other related methods such as the Random Choice Method and the Flux
Vector Splitting Method are also included. In addition, we study centred (non–
upwind) shock–capturing methods. These schemes are much less sophisticated
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than Godunov methods, and offer a cheap and simple alternative. High–order
extensions of these methods are constructed for scalar PDEs, along with their
Total Variation Diminishing (TVD) versions. Most of these TVD methods
are then extended to one–dimensional non–linear systems. Techniques to deal
with PDEs with source terms are also studied, as are techniques for multidi-
mensional systems in general geometries.

The presentation of the schemes for non–linear systems is carried out
through the time–dependent Euler equations of gas dynamics. Having read
the relevant chapters/sections, the reader will be sufficiently well equipped to
extend the techniques to other hyperbolic systems, and to advection–reaction–
diffusion PDEs.

There are at least two ways of utilising this book. First, it can be used as
a means for self–study. In the presentation of the concepts, the emphasis has
been placed on clarity, sometimes sacrificing mathematical rigour. The typical
reader in mind is a graduate student in a department of engineering, physics,
applied mathematics or computer science, embarking on a research topic that
involves the implementation of numerical methods, from first principles, to
solve advection–reaction–diffusion problems. The contents of this book may
also be useful to numerical analysts beginning their research on algorithms,
as elementary background reading. Such users may benefit from a compre-
hensive self–study of all the contents of the book, in a period of about two
months, perhaps including the practical implementation and testing of most
numerical methods presented. Another class of readers who may benefit from
self–studying this book are scientists and engineers in industry and research
laboratories. At the cost of some repetitiveness, each chapter is almost self–
contained and has plenty of cross–referencing, so that the reader may decide
to start reading this book in the middle or jump to the last chapter.

This book can also be used as a teaching aid. Academics involved in the
teaching of numerical methods may find this work a useful reference book.
Selected chapters or sections may well form the bases for a final year under-
graduate course on numerical methods for PDEs. In a mathematics or com-
puter science department, the contents may include: some sections of chapter
1, chapters 2, 5, 13, some sections of chapter 14, chapter 15 and some sections
of chapter 16. In a department of engineering or physics, one may include
chapters 3, 4, 6, 7, 8, 9, 10, 11, 12, 15, 16 and 17. A postgraduate course may
involve most of the contents of this book, assuming perhaps a working knowl-
edge of compressible fluid dynamics. Short courses for training engineers and
scientists in industry and research laboratories can also be based on most of
the contents of this book.

Eleuterio Toro
Manchester, UK
March 1997.
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More than a decade has elapsed since the publication of the first edition of this
book. During this period the response from readers the world over has been
overwhelming, from students and academics to senior researchers. This decade
has also witnessed a significant increase in the use of numerical methods, not
only in the traditional areas such as physics and industrial processes, but also
in biology, economics, social sciences and in inter–disciplinary research areas.
We also observe a new trend in mathematical modelling and numerical simu-
lation. Numerical methods are steadily moving from being a simulation tool
for engineering design in technology, to being an indispensable instrument in
science, for studying and understanding phenomena of the most varied kind.
The expectation is that a simulation will represent the solution of the actual
mathematical model. Such expectation implies the need for more and more
high–quality research on new and more accurate numerical methods and the
need for better training of scientists at the undergraduate and post–graduate
levels at universities and higher education institutions. I expect that this new
edition of the book will continue to play a role in such endeavours.

In this edition I have included three new chapters, chapters 18 to 20. Chapter
18 is about a multi–dimensional extension of the centred FORCE flux stud-
ied in Chapter 7, for one–dimensional systems; in a sense, this new chapter
is a response to the increasing role of the so–called centred methods. These
have the advantage of avoiding the direct solution of the classical Riemann
problem, in the conventional manner. As a result, the applicability of these
centred schemes is more general than that of conventional upwind methods;
this feature is specially useful when having to solve complicated systems, for
which the solution of the Riemann problem may be difficult or impossible
to obtain. The new FORCE scheme applies to two and three space dimen-
sions on general structured and unstructured meshes and can be extended to
high order of accuracy in space and time in the frameworks of finite volume
and discontinuous Galerkin finite element methods. The second new addition,
chapter 19, is about the high–order, or generalized, Riemann problem, the
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Cauchy problem for hyperbolic balance laws whose initial conditions are two
smooth vectors separated by a discontinuity at the origin. The solution of the
generalized Riemann problem serves as the building block for constructing
fully discrete, one–step Godunov–type schemes of arbitrary order of accuracy
in both space and time. This chapter is effectively a generalization of the ma-
terial of this book studied in previous chapters and responds to the general
trend of improving the accuracy, in space and time, of numerical methods for
solving evolutionary partial differential equations. These high–order numerical
schemes can be constructed in the frameworks of finite volume and discon-
tinuous Galerkin finite element methods. The third new chapter, chapter 20,
contains an introduction to these high–order methods in the framework of
finite volumes.

This edition of the book contains a substantially revised version of the HLLC
Riemann solver of chapter 10. This responds to many communications re-
ceived from readers and to new developments of the technique and its use for
very ambitious scientific and technological applications. Some modifications
to chapter 21 have also been carried out, as well general corrections to errors
pointed out by readers.

This book, in spite of being introductory in nature, continues to be a book
used mainly by researchers, and is perhaps too advanced for teaching under-
graduate students. As a result, a new more elementary book is being written
in collaboration with Enrico Bertolazzi and Gianluca Vignoli. This new book,
to be published by Springer in 2009, is specifically designed for teaching un-
dergraduate students in Science and Engineering, with plenty of exercises,
case studies and miniprojects. On the other hand, in order to respond to re-
search needs for better and more sophisticated numerical methods, we are
currently preparing a new book, in collaboration with Claus–Dieter Munz,
Vladimir Titarev and Michael Dumbser. This book will deal with advanced,
high–order, finite volume and discontinuous Galerkin numerical methods for
structured and unstructured meshes in multiple space dimensions, to be pub-
lished by Springer in 2009.

I gratefully acknowledge the contribution of some collaborators to the prepara-
tion of this third edition. In particular I thank two of my former PhD students,
Dr. Vladimir Titarev, now at Cranfield University, UK and Dr. Cristóbal Cas-
tro, now at the Technical University of Munich, Germany. I also thank two
former post–doctoral fellows, Dr. Martin Käser, now at the Technical Uni-
versity of Munich, Germany and Dr. Michael Dumbser, now a colleague in
my group at Trento University, Italy. Thanks are also due to colleague Enrico
Bertolazzi and to visiting scholars Maŕıa Nofuentes (Universidad de Córdoba,
Spain) and Arturo Hidalgo (Universidad Politécnica de Madrid, Spain), who
kindly helped in various ways in the preparation of the material.
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1

The Equations of Fluid Dynamics

In this chapter we present the governing equations for the dynamics of
a compressible material, such as a gas, along with closure conditions in the
form of equations of state. Equations of state are statements about the nature
of the material in question and require some notions from Thermodynamics.
There is no attempt to provide an exhaustive and rigourous derivation of the
equations of continuum mechanics; such a task is beyond the scope of this
book. Instead, we give a fairly self–contained summary of the equations and
the Thermodynamics in a manner that is immediately useful to the main
purpose of this book, namely the detailed treatment of Riemann solvers and
numerical methods.

The presentation of the equations is unconventional. We first introduce the
differential form of the Euler equations along with basic physical quantities
and thermodynamic relations leading to equations of state. Then the effects
of viscous diffusion and heat transfer are added to the Euler equations. After
this, the fundamental integral form of the equations is introduced; conven-
tionally, this is the starting point for presenting the governing equations. This
chapter contains virtually all of the necessary background on Fluid Dynamics
that is required for a fruitful study of the rest of the book. It also contains
useful information for those wishing to embark on complex practical applica-
tions. A hierarchy of submodels is also presented. This covers four systems of
hyperbolic conservation laws for which Riemann solvers and upwind methods
are directly applicable, namely (i) the time–dependent Euler equations, (ii)
the steady supersonic Euler equations, (iii) the shallow water equations and
(iv) the artificial compressibility equations associated with the incompress-
ible Navier–Stokes equations. Included in the hierarchy are also some simpler
models such as linear systems and scalar conservation laws.

Some remarks on notation are in order. A Cartesian frame of reference
(x, y, z) is chosen and the time variable is denoted by t. Transformation to
other coordinate systems is carried out using the chain rule in the usual way,
see Sect. 16.7.2 of Chap. 16. Any quantity φ that depends on space and time
will be written as φ(x, y, z, t). In most situations the governing equations will
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2 1 The Equations of Fluid Dynamics

be partial differential equations (PDEs). Naturally, these will involve partial
derivatives for which we use the notation

φt ≡
∂φ

∂t
, φx ≡ ∂φ

∂x
, φy ≡ ∂φ

∂y
, φz ≡ ∂φ

∂z
.

We also recall some basic notation involving scalars and vectors. The dot
product of two vectors A = (a1, a2, a3) and B = (b1, b2, b3) is the scalar
quantity

A · B = a1b1 + a2b2 + a2b3 .

Given a scalar quantity φ that depends on the spatial variables x, y, z the
gradient operator ∇ as applied to φ is the vector

grad φ ≡ ∇φ ≡ (
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z
) .

The divergence operator applies to vectors and the result is a scalar quantity;
for a vector A, the divergence of A is

div A ≡ ∇ · A ≡ ∂a1

∂x
+

∂a2

∂y
+

∂a3

∂z
.

1.1 The Euler Equations

In this section we consider the time–dependent Euler equations. These are
a system of non–linear hyperbolic conservation laws that govern the dynamics
of a compressible material, such as gases or liquids at high pressures, for which
the effects of body forces, viscous stresses and heat flux are neglected.

There is some freedom in choosing a set of variables to describe the flow
under consideration. A possible choice is the so called primitive variables or
physical variables, namely, ρ(x, y, z, t) = density or mass density, p(x, y, z, t) =
pressure, u(x, y, z, t) = x–component of velocity, v(x, y, z, t) = y–component
of velocity, w(x, y, z, t) = z–component of velocity. The velocity vector is
V = (u, v, w). An alternative choice is provided by the so called conserved
variables. These are the mass density ρ, the x–momentum component ρu, the
y–momentum component ρv, the z–momentum component ρw and the total
energy per unit mass E. Physically, these conserved quantities result natu-
rally from the application of the fundamental laws of conservation of mass,
Newton’s Second Law and the law of conservation of energy. Computationally,
there are some advantages in expressing the governing equations in terms of
the conserved variables. This gives rise to a large class of numerical methods
called conservative methods, which will be studied later in this book. We next
state the equations in terms of the conserved variables under the assumption
that the quantities involved are sufficiently smooth to allow for the operation
of differentiation to be defined. Later we remove this smoothness constraint
to allow for solutions containing discontinuities, such as shock waves.
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1.1.1 Conservation–Law Form

The five governing conservation laws are

ρt + (ρu)x + (ρv)y + (ρw)z = 0 , (1.1)

(ρu)t + (ρu2 + p)x + (ρuv)y + (ρuw)z = 0 , (1.2)

(ρv)t + (ρuv)x + (ρv2 + p)y + (ρvw)z = 0 , (1.3)

(ρw)t + (ρuw)x + (ρvw)y + (ρw2 + p)z = 0 , (1.4)

Et + [u(E + p)]x + [v(E + p)]y + [w(E + p)]z = 0 . (1.5)

Here E is the total energy per unit volume

E = ρ (
1
2
V2 + e) , (1.6)

where
1
2
V2 =

1
2
V · V =

1
2
(u2 + v2 + w2)

is the specific kinetic energy and e is the specific internal energy. One generally
refers to the full system (1.1)–(1.5) as the Euler equations, although strictly
speaking the Euler equations are just (1.2)–(1.4).

The conservation laws (1.1)–(1.5) can be expressed in a very compact
notation by defining a column vector U of conserved variables and flux vectors
F(U), G(U), H(U) in the x, y and z directions, respectively. The equations
now read

Ut + F(U)x + G(U)y + H(U)z = 0 , (1.7)

with

U =

⎡
⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
E

⎤
⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎣

ρu
ρu2 + p

ρuv
ρuw

u(E + p)

⎤
⎥⎥⎥⎥⎦

,

G =

⎡
⎢⎢⎢⎢⎣

ρv
ρuv

ρv2 + p
ρvw

v(E + p)

⎤
⎥⎥⎥⎥⎦

, H =

⎡
⎢⎢⎢⎢⎣

ρw
ρuw
ρvw

ρw2 + p
w(E + p)

⎤
⎥⎥⎥⎥⎦

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.8)

It is important to note that F = F(U), G = G(U), H = H(U); that is,
the flux vectors are to be regarded as functions of the conserved variable
vector U. Any set of PDEs written in the form (1.7) is called a system of
conservation laws. As partial derivatives are involved we say that (1.7) is a
system of conservation laws in differential form. The differential formulation
assumes smooth solutions, that is, partial derivatives are assumed to exist.
There are other ways of expressing conservation laws in which the smoothness
assumption is relaxed to include discontinuous solutions.
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1.1.2 Other Compact Forms

An even more compact way of expressing equations (1.1)–(1.5) involves
tensors. First note that the spatial derivatives in (1.1) can be expressed in
terms of the divergence operator e.g.

div(ρV) = ∇ · (ρV) = (ρu)x + (ρv)y + (ρw)z .

Thus equation (1.1) for conservation of mass can be written as

ρt + ∇ · (ρV) = 0 . (1.9)

As the divergence operator may also be applied to tensors, the three momen-
tum equations for conservation of momentum can be written in compact form
as

(ρV)t + ∇ · (ρV ⊗ V + pI) = 0 , (1.10)

where V ⊗ V is the tensor product and I is the unit tensor. These are given
respectively by

V ⊗ V =

⎛
⎝

u2 uv uw
vu v2 vw
wu wv w2

⎞
⎠ , I =

⎛
⎝

1 0 0
0 1 0
0 0 1

⎞
⎠ .

The conservation of energy equation can be written as

Et + ∇ · [(E + p)V] = 0 . (1.11)

In fact the complete system of equations (1.9)–(1.11) can be written in diver-
gence form as

Ut + ∇ · H = 0 , (1.12)

where H is the tensor

H =

⎡
⎣

ρu ρu2 + p ρvu ρwu u(E + p)
ρv ρuv ρv2 + p ρwv v(E + p)
ρw ρuw ρvw ρw2 + p w(E + p)

⎤
⎦ . (1.13)

Note that the rows of the tensor H are the flux vectors F, G and H, under-
stood as row vectors. For computational purposes it is the compact conserva-
tive form (1.7)–(1.8) of equations (1.1)–(1.5) that is most useful. In Chap. 3 we
study some mathematical properties of the Euler equations and in Chap. 4 we
solve exactly the Riemann problem for the one–dimensional Euler equations
for ideal and covolume gases. Numerical methods for the Euler equations are
discussed in Chaps. 6–12, 14 and 16.
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1.2 Thermodynamic Considerations

The stated governing partial differential equations (1.1)–(1.5) for the dy-
namics of a compressible material are insufficient to completely describe the
physical processes involved. There are more unknowns than equations and
thus closure conditions are required. Physically, such conditions are state-
ments related to the nature of the material or medium. Relation (1.6) defines
the total energy E in terms of the velocity vector V involved in equations
(1.1)–(1.5) and a new variable e, the specific internal energy. One therefore
requires another relation defining e in terms of quantities already given, such
as pressure and density, as a closure condition. For some applications, or when
more physical effects are added to the basic equations (1.1)–(1.5), other vari-
ables, such as temperature for instance, may need to be introduced.

Central to providing closure conditions is a discussion of the fundamen-
tals of Thermodynamics. This introduces new physical variables and provides
relations between variables. Under certain conditions the governing equations
may be approximated so as to make such discussion of Thermodynamics un-
necessary; two important examples are incompressible flows and isentropic
flows [112]. The specific internal energy e has an important role in the First
Law of Thermodynamics, while the entropy s is intimately involved with the
Second Law of Thermodynamics. Entropy plays a fundamental role not just
in establishing the governing equations but also at the level of their mathe-
matical properties and the designing of numerical methods to solve them. In
addition to the basic thermodynamic variables density ρ, pressure p, temper-
ature T , specific internal energy e and entropy s, one may define other new
variables that are combinations of these.

1.2.1 Units of Measure

A brief discussion of physical quantities and their units of measure is essen-
tial. We consistently adopt, unless otherwise stated, the International System
of Units or SI Units. Three basic quantities are length (l), mass (m) and time
(t). The unit of measure of length is: one metre = 1 m. Submultiples are: one
decimetre = 10−1 m, one centimetre = 10−2 m, one millimetre = 10−3 m.
Multiples are: 101 m, 102 m and 103 m = one kilometre. From length one can
establish the units of measure of area: one square metre = 1 m2 and the units
of measure of volume: one cubic metre = 1 m3. The unit of measure of mass
is: one kilogram = 1 kg. A useful submultiple is: one gram = 1 g = 10−3 kg.
As density is ρ = m/V , where V is the total volume of the system, the unit of
measure of density is: one kilogram per cubic metre = 1 kg/m3 = 1 kg m−3.
The unit of measure of time is: one second = 1 s. The unit of measure of speed
is: one metre per second =1 m/s= 1 m s−1. The unit of measure of acceleration
is: one metre per second per second = 1 m/s2= 1 m s−2. The unit of measure
of force is: one Newton = 1 N. The Newton N is defined as the force required
to give a mass of 1 kg an acceleration of 1 m s−2. Newton’s Second Law states
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that force = constant × mass × acceleration. The value of the unit of force is
then chosen so as to make force = 1 when constant = 1. Therefore the unit of
force (N) is: 1 kg m s−2. We now give the unit of measure of pressure. Pressure
p is the magnitude of force per unit area and therefore its unit of measure is:
one Newton per square metre = 1 N m−2 ≡ 1 Pa : one Pascal. Two common
units of pressure are 1 bar=105 Pa and 1 atm (atmosphere) = 101 325 Pa. An
important rule in manipulating physical quantities is dimensional consistency.
For example, in the expression ρu2 + p in the momentum equation (1.2), the
dimensions of ρu2 must be the same as those of (pressure) p. This is easily
verified.

To introduce the unit of measure of energy we first recall the concept of
Work. Work (W ) is done when a force produces a motion and is measured as
W = force × distance moved in the direction of the force. The unit of measure
of work is: one Joule = 1 J. One Joule is the work done when the point of
application of a force of 1 N moves through a distance of 1 m in the direction
of the force. As energy is the capacity to perform work, the unit of measure
of energy is also one Joule. The temperature T will be measured in terms of
the Thermodynamic Scale or the Absolute Scale, in which the unit of measure
is: one kelvin = 1 K.

Thermodynamic properties of a system that are proportional to the mass
m of the system are called extensive properties. Examples are the total energy
E and the total volume V of a system. Properties that are independent of m
are called intensive properties; examples are temperature T and pressure p.
Extensive properties may be converted to their specific (intensive) values by
dividing that property by its mass m. For instance, from the total volume
V we obtain the specific volume v = V/m (the reader is warned that v is
also used for velocity component). As ρ = m/V , the specific volume is the
reciprocal of density. The units of measure of other quantities will be given as
they are introduced.

1.2.2 Equations of State (EOS)

A system in thermodynamic equilibrium can be completely described by
the basic thermodynamic variables pressure p and specific volume v. A family
of states in thermodynamic equilibrium may be described by a curve in the p–
v plane, each characterised by a particular value of a variable temperature T .
Systems described by the p–v–T variables are usually called p–v–T systems.
There are physical situations that require additional variables. Here we are
only interested in p–v–T systems. In these, one can relate the variables via
the thermal equation of state

T = T (p, v) . (1.14)

Two more possible relations are

p = p(T, v) , v = v(T, p) .
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The p–v–T relationship changes from substance to substance. For thermally
ideal gases one has the simple expression

T =
pv

R
, (1.15)

where R is a constant which depends on the particular gas under considera-
tion.

The First Law of Thermodynamics states that for a non–adiabatic sys-
tem the change Δe in internal energy e in a process will be given by
Δe = ΔW + ΔQ, where ΔW is the work done on the system and ΔQ is
the heat transmitted to the system. Taking the work done as dW = −pdv one
may write

dQ = de + pdv . (1.16)

The internal energy e can also be related to p and v via a caloric equation of
state

e = e(p, v) . (1.17)

Two more possible ways of expressing the p–v–e relationship are

p = p(v, e) , v = v(e, p) .

For a calorically ideal gas one has the simple expression

e =
pv

γ − 1
=

p

ρ(γ − 1)
, (1.18)

where γ is a constant that depends on the particular gas under consideration.
The thermal and caloric equations of state for a given material are closely

related. Both are necessary for a complete description of the thermodynamics
of a system. Choosing a thermal EOS does restrict the choice of a caloric
EOS but does not determine it. Note that for the Euler equations (1.1)–(1.5)
one only requires a caloric EOS, e.g. p = p(ρ, e), unless temperature T is
needed for some other purpose, in which case a thermal EOS needs to be
given explicitly.

1.2.3 Other Variables and Relations

The entropy s results as follows. We first introduce an integrating factor
1/T so that the expression

de + pdv =
(

∂e

∂v
+ p

)
dv +

∂e

∂p
dp

in (1.16) becomes an exact differential. Then the Second Law of Thermody-
namics introduces a new variable s, called entropy, via the relation

Tds = de + pdv . (1.19)
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For any process the change in entropy is Δs = Δs0 + Δsi, where Δs0 is the
entropy carried into the system through the boundaries of the system and
Δsi is the entropy generated in the system during the process. Examples of
entropy–generating mechanisms are heat transfer and viscosity, such as may
operate within the internal structure of shock waves. The Second Law of
Thermodynamics states that Δsi > 0 in any irreversible process. Only in a
reversible process is Δsi = 0.

Another variable of interest is the specific enthalpy h. This is defined in
terms of other thermodynamic variables, namely

h = e + pv . (1.20)

One can also establish various relationships amongst the basic thermodynamic
variables already defined. For instance from (1.19)

de = Tds − pdv , (1.21)

that is to say, one may choose to express the internal energy e in terms of the
variables appearing in the differentials, i.e.

e = e(s, v) . (1.22)

Also, taking the differential of (1.20) we have dh = de + pdv + vdp, which by
virtue of (1.21) becomes

dh = Tds + vdp , (1.23)

and thus we can choose to define h in terms of s and p, i.e.

h = h(s, p) . (1.24)

Relations (1.22) and (1.24) are called canonical equations of state and, unlike
the thermal and caloric equations of state (1.14) and (1.17), each of these
provides a complete description of the Thermodynamics. For instance, given
(1.22) in which e is a function of s and v (independent variables) the pressure
p and temperature T follow as

p = −
(

∂e

∂v

)

s

, T =
(

∂e

∂s

)

v

. (1.25)

Relations (1.25) follow from comparing

de =
(

∂e

∂s

)

v

ds +
(

∂e

∂v

)

s

dv

with equation (1.21). It is conventional in Thermodynamics to specify clearly
the independent variables in partial differentiation, as changes of variables
often take place. In (1.25), obviously the independent variables are s and v,
as is also indicated in (1.22). For instance, the first partial derivative in (1.25)
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means differentiation of e with respect to v while holding s constant; the
second partial derivative in (1.25) means differentiation of e with respect to s
while holding v constant. In a similar manner, equation (1.24) (where s and
p are the independent variables) produces T and v from relation (1.23) and

dh =
(

∂h

∂s

)

p

ds +
(

∂h

∂p

)

s

dp .

Hence,

T =
(

∂h

∂s

)

p

, v =
(

∂h

∂p

)

s

. (1.26)

The Helmholtz free energy f is defined as

f = e − Ts . (1.27)

A corresponding canonical EOS is

f = f(v, T ) ,

from which one can obtain

s = −
(

∂f

∂T

)

v

, p = −
(

∂f

∂v

)

T

. (1.28)

Two more quantities can be defined if a thermal EOS v = v(p, T ) is given.
These are the volume expansivity α (or expansion coefficient) and the isother-
mal compressibility β, namely

α =
1
v

(
∂v

∂T

)

p

, β = −1
v

(
∂v

∂p

)

T

. (1.29)

Using equations (1.28) and (1.27) we obtain
(

∂s

∂v

)

T

=
(

∂p

∂T

)

v

=
α

β
,

from which it can be shown that
(

∂e

∂v

)

T

=
αT − βp

β
. (1.30)

The heat capacity at constant pressure cp and the heat capacity at constant
volume cv (specific heat capacities) are now introduced. In general, when an
addition of heat dQ changes the temperature by dT the ratio c = dQ/dT
is called the heat capacity of the system. For a process at constant pressure
relation (1.16) becomes

dQ = de + d(pv) = dh ,
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where definition (1.20) has been used. The heat capacity cp at constant pres-
sure becomes cp = dQ/dT = dh/dT . From (1.23), since dp = 0, dh = Tds.
Assuming h = h(T, p) we obtain

cp =
(

∂h

∂T

)

p

= T

(
∂s

∂T

)

p

. (1.31)

The heat capacity cv at constant volume may be written, following a similar
argument, as

cv =
(

∂e

∂T

)

v

= T

(
∂s

∂T

)

v

. (1.32)

The speed of sound is another variable of fundamental interest. For flows in
which particles undergo unconstrained thermodynamic equilibrium one de-
fines a new state variable a, called the equilibrium speed of sound or just
speed of sound. Given a caloric equation of state

p = p(ρ, s) , (1.33)

one defines the speed of sound a as

a =

√(
∂p

∂ρ

)

s

. (1.34)

This basic definition can be transformed in various ways using established
thermodynamic relations. For instance, given a caloric EOS in the form h =
h(p, ρ), from (1.23) we can write

(
∂h

∂p

)

ρ

dp +
(

∂h

∂ρ

)

p

dρ = Tds +
1
ρ

[(
∂p

∂ρ

)

s

dρ +
(

∂p

∂s

)

ρ

ds

]
.

Setting ds = 0 and using definition (1.34) we obtain

a2 = −

(
∂h
∂ρ

)
p(

∂h
∂p

)
ρ
− 1

ρ

.

For a thermally ideal gas h = h(T ) and thus

a2 =

(
∂h
∂T

)
p

(
∂T
∂ρ

)
p(

∂h
∂T

)
p

(
∂T
∂p

)
ρ
− 1

ρ

.

From (1.31)
(

∂h
∂T

)
p

= cp and, if the thermal EOS (1.15) is acceptable, we
obtain
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a =
√

γ(T )RT =
√

γp

ρ
. (1.35)

For a general material the caloric EOS is a functional relationship involving
the variables p–ρ–e. One may also use the specific volume v = 1/ρ instead
of density ρ. The derived expression for the speed of sound a depends on
the choice of independent variables. Two possible choices and their respective
expressions for a are

p = p(ρ, e) , a =
√

p
ρ2 pe + pρ ,

e = e(ρ, p) , a =
√

p
ρ2ep

− eρ

ep
,

⎫
⎬
⎭ (1.36)

where subscripts denote partial derivatives.

1.2.4 Ideal Gases

We consider gases obeying the ideal thermal EOS

pV = nRT , (1.37)

where V is the volume, R = 8.134×103 J kilomole−1K−1, called the Universal
Gas Constant, and T is the temperature measured in degrees kelvin (K).
Two more universal constants are now introduced. Recall that a mole of a
substance is numerically equal to ω gram and contains 6.02 × 1023 particles
of that substance, where ω is the relative atomic mass (RAM) or relative
molecular mass (RMM); 1 kilomole = ω kg. One kilomole of a substance
contains NA = 6.02 × 1026 particles of that substance. The constant NA is
called the Avogadro Number. Sometimes this number is given in terms of one
mole. The Boltzmann Constant k is now defined as k = RNA; n in (1.37) is
the number of kilomoles in volume V , that is n = N/NA and N is the number
of molecules. On division by the mass m = nω we have

pv = RT , R =
R
ω

, (1.38)

where R is called the Specific Gas Constant or simply Gas Constant. Solving
for v we write the ideal gas thermal equation of state as

v = v(T, p) =
RT

p
. (1.39)

The volume expansivity α and the isothermal compressibility β defined by
(1.29) become

α =
1
T

, β =
1
p

. (1.40)

Substitution of these into (1.30) gives
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(
∂e

∂v

)

T

= 0 .

This means that if the ideal thermal EOS (1.39) is assumed, then it follows
that the internal energy e is a function of temperature alone, that is e = e(T ).
In the particular case in which

e = cvT , (1.41)

where the specific heat capacity cv is a constant, one speaks of a calorically
ideal gas, or a polytropic gas.

It is possible to relate cp and cv via the general expression

cp = cv +
α2Tv

β
. (1.42)

For a thermally ideal gas equations (1.39) and (1.40) apply and thus

cp − cv = R . (1.43)

A necessary condition for thermal stability is cv > 0 and for mechanical
stability β > 0 [35]. From (1.42) the following inequalities result

cp > cv > 0 . (1.44)

The ratio of specific heats γ, or adiabatic exponent, is defined as

γ =
cp

cv
, (1.45)

which if used in conjunction with (1.43) gives

cp =
γR

γ − 1
, cv =

R

γ − 1
. (1.46)

For a calorically ideal gas (polytropic gas ) γ is a constant and for a thermally
ideal gas γ is a function of temperature, i.e. γ = γ(T ).

In order to determine the caloric EOS (1.41) we need to determine the
specific heat capacities, cv in particular. Molecular Theory and the principle
of equipartition of energy [439] can also provide an expression for the specific
internal energy of a molecule. In general a molecule, however complex, has M
degrees of freedom, of which three are translational. Other possible degrees
of freedom are rotational and vibrational. From Molecular Theory it can be
shown that if the energy associated with any degree of freedom is a quadratic
function in the appropriate variable expressing that degree of freedom, then
the mean value of the energy is 1

2kT where k is the Boltzmann constant.
Moreover, from the principle of equipartition of energy this is the same for
each degree of freedom. Therefore, the mean total energy of a molecule is
ē = 1

2MkT , and for N molecules we have
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Nē =
1
2
MNkT ,

from which the specific internal energy is

e =
1
2
MRT .

Use of (1.32) gives directly

cv =
(

∂e

∂T

)

v

=
1
2
MR ,

and thus we obtain
cp =

M + 2
2

R .

The ratio of specific heats becomes

γ =
M + 2

M
. (1.47)

From the thermal EOS for ideal gases (1.39) we have

e =
1
2
Mpv .

But from (1.43) and (1.46)

M =
2

γ − 1

and hence
e =

pv

(γ − 1)
=

p

(γ − 1)ρ
, (1.48)

which is the expression for the specific internal energy advanced in (1.18).
The theoretical expressions for cp, cv and γ in terms of R and M are found

to be very accurate for monatomic gases, for which M = 3 (three translational
degrees of freedom). For polyatomic gases rotational and vibrational degrees
of freedom contribute to M but now the expressions might be rather inac-
curate when compared with experimental data. A strong dependence on T is
observed. However, the inequality 1 < γ < 5

3 , predicted from (1.47) for the
limiting values M = 3 and M = ∞, holds true.

1.2.5 Covolume and van der Waal Gases

A very simple generalisation of the ideal–gas thermal EOS, pv = RT , is
the so–called covolume equation of state

p(v − b) = RT , (1.49)
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where b is called the covolume and in SI units has dimensions of m3kg−1.
This EOS applies to dense gases at high pressure for which the volume occu-
pied by the molecules themselves is no longer negligible. There is therefore a
reduction in the volume available to molecular motion. This type of correc-
tion to the ideal gas EOS is said to have first been suggested by Clausius.
Hirn is credited with first having written down EOS (1.49). Sometimes, this
equation is also called the Noble–Abel EOS. In the study of propulsion sys-
tems, gaseous combustion products at very high densities are reasonably well
described by the covolume EOS. In its simplest version the covolume b is a
constant and is determined experimentally or from equilibrium thermochemi-
cal calculations. Corner [141] reports on good experimental results for a range
of solid propellants and observes that b changes very little, usually in the range
0.9 × 10−3 ≤ b ≤ 1.1 × 10−3. The best values of b lead to errors of no more
than 2% and thus there is some justification in using (1.49) with b constant.
A more accurate covolume EOS defines b as a function of ρ, i.e. b = b(ρ).
Such dependence of b on ρ can be given in either tabular or algebraic form.
A simple example of an algebraic form is b(ρ) = exp−0.4ρ, for ρ < 2 g cm−3.
The thermal covolume EOS (1.49) leads to a caloric covolume EOS e = e(p, ρ)
with a corresponding sound speed a. These are given by

e =
p(1 − bρ)
ρ(γ − 1)

, a =
[

γp

(1 − bρ)ρ

] 1
2

, (1.50)

where γ is the ratio of specific heats as before.
The covolume EOS (1.49) can be further corrected to account for the forces

of attraction between molecules, the van der Waal forces. These are neglected
in both the ideal and covolume equations of state. Accounting for such forces
results in a reduction of the pressure by an amount c/v2, where c is a quantity
that depends on the particular gas under consideration. Thus from (1.49) the
pressure is corrected as

p =
RT

v − b
− c

v2
.

Then we can write
(p +

c

v2
)(v − b) = RT . (1.51)

This is generally known as the van der Waal’s equation of state for real gases.
General background on Thermodynamics and equations of state can be

found in virtually any textbook on Thermodynamics or Gas Dynamics. We
particularly recommend the book by Sears and Salinger [439], Chap. 1 of the
book on Gas Dynamics by Becker [35] and the book by Clarke and McChesney
[119]. The review paper by Menikoff and Plohr [349] is highly relevant to the
themes of this book. A useful reference on equations of state for combustion
problems is [573].

So far, we have presented the Euler equations for the dynamics of a com-
pressible medium along with some elementary notions on Thermodynamics
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so that a closed system is obtained. Given initial and boundary conditions
the conservation equations can be solved. In this book we are interested in
numerical methods to solve the governing equations.

1.3 Viscous Stresses

Here we augment the Euler equations (1.7) by adding the physical effects
of viscosity. Strictly speaking it is only the momentum equations in (1.7) that
are modified. The stresses in a fluid, given by a tensor S, are due to the effects
of the thermodynamic pressure p and the viscous stresses. Thus the stress
tensor can be written as

S = −pI + Π , (1.52)

where pI is the spherically symmetric tensor due to p, I is the unit tensor as in
(1.10) and Π is the viscous stress tensor. It is desirable to express S in terms of
flow variables already defined. For the pressure contribution this has already
been achieved by defining p in terms of other thermodynamic variables via an
equation of state. Recall that equations of state are approximate statements
about the nature of a material. In defining the viscous stress contribution Π
one may resort to the Newtonian approximation, whereby Π is related to the
derivatives of the velocity field V = (u, v, w) via the deformation tensor

D =

⎡
⎢⎢⎢⎢⎣

ux
1
2 (vx + uy) 1

2 (wx + uz)

1
2 (uy + vx) vy

1
2 (wy + vz)

1
2 (uz + wx) 1

2 (vz + wy) wz

⎤
⎥⎥⎥⎥⎦

.

The Newtonian assumption is an idealisation in which the relationship be-
tween Π and D is linear and homogeneous, that is Π will vanish only if D
vanishes, and the medium is isotropic with respect to this relation; an isotropic
medium is that in which there are no preferred directions. By denoting the
stress tensor by

Π =

⎡
⎣

τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

⎤
⎦ , (1.53)

the Newtonian approximation becomes

Π = 2ηD + (ηb −
2
3
η)(divV)I , (1.54)

or in full
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τxx = 4
3ηux − 2

3η(vy + wz) + ηb divV ,

τyy = 4
3ηvy − 2

3η(wz + ux) + ηb divV ,

τzz = 4
3ηwz − 2

3η(ux + vy) + ηb divV ,

τxy = τyx = η(uy + vx) ,

τyz = τzy = η(vz + wy) ,

τzx = τxz = η(wx + uz) .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.55)

In the Newtonian relationship (1.54) there are two scalar quantities that are
still undetermined, these are the coefficient of shear viscosity η and the co-
efficient of bulk viscosity ηb. Approximate expressions for these are obtained
from experimentation and results from Molecular Theory. In particular, for
monatomic gases Molecular Theory based on the hard sphere assumption
gives ηb = 0, which is found to agree well with experiment. For polyatomic
gases ηb �= 0 and appropriate values for ηb are to be given experimentally.
Concerning the coefficient of shear viscosity η, it is observed that, as long as
temperatures are not too high, η depends strongly on temperature and only
slightly on pressure. Again, Molecular Theory and experimentation suggest
that η be proportional to Tn; in fact n = 1

2 in Molecular Theory. A relatively
accurate relation between η and T is the Sutherland formula

η = C1

[
1 +

C2

T

]−1 √
T , (1.56)

where C1 and C2 are two experimentally adjustable constants. When T is
measured in kelvin, η has the units of kg m−1s−1. For the case of air one has

C1 = 1.46 × 10−6 , C2 = 112 K .

Sutherland’s formula describes the dependence of η on T rather well for a
wide range of temperatures, provided no dissociation or ionisation take place.
These phenomena occur at very high temperatures where the dependence of η
on pressure p, in addition to temperature T , cannot be neglected. Useful back-
ground on high temperature gas dynamics is found in the book by Anderson
[9] and in the book by Clarke and McChesney [119].

In summary, the Navier–Stokes equations (momentum equations) can now
be written in differential conservation law form as

(ρV)t + ∇ · (ρV ⊗ V + pI − Π) = 0 , (1.57)

where Π is given by (1.55) with ηb = 0. Compare with the Euler equations
(1.10).
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1.4 Heat Conduction

Influx of energy contributes to the rate of change of total energy E. We
denote by Q = (q1, q2, q3)T the energy flux vector, which results from (i) heat
flow due to temperature gradients, (ii) diffusion processes in gas mixtures and
(iii) radiation. Here we only consider effect (i) above. Q is identical to the
heat flux vector caused by temperature gradients. In a similar manner to that
in which viscous stresses were related to gradients of the velocity vector V,
one can relate Q to gradients of temperature T via Fourier’s heat conduction
law

Q = −κ∇T , (1.58)

where κ is a positive scalar quantity called the coefficient of thermal con-
ductivity or just thermal conductivity, and is yet to be determined. Note the
analogy between η and κ. This analogy between η and κ goes further in that
κ, just as η, depends on T but only slightly on pressure p. In fact, Molecu-
lar Theory says that κ is directly proportional to η. Under the assumption
that the specific heat at constant pressure cp is constant, the dimensionless
quantity

Pr ≡
cpη

κ
(1.59)

is a constant, and is called the Prandtl number. For monatomic gases Pr is
very nearly constant. For air in the temperature range 200 K ≤ T ≤ 1000 K
Pr differs only slightly from its mean value of 0.7. A formula attributed to
Eucken [35] relates Pr to the ratio of specific heats γ via

Pr =
4γ

9γ − 5
, (1.60)

to account for departures from calorically ideal gas behaviour.
When the effects of viscosity and heat conduction are added to the basic

Euler equations (1.7) one has the Navier–Stokes equations with heat conduc-
tion

Ut + Fa
x + Ga

y + Ha
z = Fd

x + Gd
y + Hd

z , (1.61)

where U is the vector of conserved variables, the flux vectors Fa, Ga and Ha

are the inviscid fluxes (a stands for advection) for the Euler equations as given
by (1.8) and the respective flux vectors Fd, Gd and Hd (d stands for diffusion)
due to viscosity and heat conduction are
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Fd =

⎡
⎢⎢⎢⎢⎣

0
τxx

τxy

τxz

uτxx + vτxy + wτxz − q1

⎤
⎥⎥⎥⎥⎦

,

Gd =

⎡
⎢⎢⎢⎢⎣

0
τyx

τyy

τyz

uτyx + vτyy + wτyz − q2

⎤
⎥⎥⎥⎥⎦

,

Hd =

⎡
⎢⎢⎢⎢⎣

0
τzx

τzy

τzz

uτzx + vτzy + wτzz − q3

⎤
⎥⎥⎥⎥⎦

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.62)

The form of the equations given by (1.61) splits the effect of advection on
the left–hand side from those of viscous diffusion and heat conduction on the
right–hand side. For numerical purposes, the particular form of the equations
adopted depends largely on the numerical technique to be used to solve the
equations. One possible approach is to split the advection effects from those
of viscous diffusion and heat conduction during a small time interval Δt, in
which case form (1.61) is perfectly adequate. An alternative form is obtained
by combining the fluxes due to advection, viscous diffusion and heat con-
duction into new fluxes so that the governing equations look formally like a
homogeneous system (zero right–hand side) of conservation laws

Ut + Fx + Gy + Hz = 0 ,

F = Fa − Fd , G = Ga − Gd , H = Ha − Hd .

⎫
⎬
⎭ (1.63)

This form is only justified if the numerical method employed actually ex-
ploits the coupling of advection, viscosity and heat conduction when defining
numerical approximations to the flux vectors F, G, and H in (1.63).

1.5 Integral Form of the Equations

The actual derivation of the governing equations, such as the Euler and
Navier–Stokes equations stated earlier, is based on integral relations on control
volumes and their boundaries. The differential form of the equations results
from further assumptions on the flow variables (smoothness). In the absence of
viscous diffusion and heat conduction one obtains the Euler equations. These
admit discontinuous solutions and the smoothness assumption that leads to
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the differential form no longer holds true. Thus one must return to the more
fundamental integral form involving integrals over control volumes and their
boundaries. From a computational point of view there is another good reason
for returning to the integral form of the equations. Discretised domains result
naturally in finite control volumes or computational cells. Local enforcement of
the fundamental equations in these volumes lead to Finite Volume numerical
methods.

1.5.1 Time Derivatives

Before proceeding to the derivation of the equations in integral form we
review some preliminary concepts that are needed. Consider a scalar field
function φ(x, y, z, t), then the time rate of change of φ as registered by an
observer moving with the fluid velocity V = (u, v, w) is given by

Dφ

Dt
=

∂φ

∂t
+ V · gradφ . (1.64)

This time derivative D/Dt following a particle is usually called the substantial
derivative or material derivative. The first term ∂φ/∂t in (1.64) denotes the
partial derivative of φ with respect to time and represents the local rate of
change of φ; the second term in (1.64) is the convective rate of change. The
operator D/Dt can also be applied to vectors in a component–wise manner,
in which case equation (1.64) is to be interpreted as a vector equation. In
particular, we can obtain the substantial derivative of V = (u, v, w), that is

DV
Dt

=
∂V
∂t

+ V · gradV , (1.65)

which in full becomes
⎛
⎜⎜⎜⎜⎝

Du
Dt

Dv
Dt

Dw
Dt

⎞
⎟⎟⎟⎟⎠

T

=

⎛
⎜⎜⎜⎜⎝

∂u
∂t

∂v
∂t

∂w
∂t

⎞
⎟⎟⎟⎟⎠

T

+ (u, v, w) ·

⎡
⎢⎢⎢⎢⎣

∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

⎤
⎥⎥⎥⎥⎦

.

The symbol ( )T denotes transpose of ( ). Actually, equation (1.65) is the
acceleration vector of an element of a moving fluid. Let us now consider

Ψ(t) =
∫ ∫ ∫

V

φ(x, y, z, t) dV , (1.66)

where the integrand φ is any scalar field function and the volume of integration
V is enclosed by a piece–wise smooth boundary surface A that moves with the
material under consideration. It can be shown that the material derivative of
Ψ is given by
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DΨ

Dt
=
∫ ∫ ∫

V

∂φ

∂t
dV +

∫ ∫

A

(n · φV) dA , (1.67)

where n = (n1, n2, n3) is the outward pointing unit vector normal to the
surface A. The proof of statement (1.67) is based on a three dimensional
generalisation of the following result:

d
dα

∫ ξ2(α)

ξ1(α)

f(ξ, α) dξ =
∫ ξ2(α)

ξ1(α)

∂f

∂α
dξ + f(ξ2, α)

dξ2

dα
− f(ξ1, α)

dξ1

dα
. (1.68)

Expression (1.67) can be generalised to vectors Ψ(x, y, z, t) as follows:

DΨ

Dt
=
∫ ∫ ∫

V

∂Φ

∂t
dV +

∫ ∫

A

Φ(n · V) dA . (1.69)

The first term on the right hand side of (1.67) represents the local contribution
of the field φ to the time rate of change of Ψ(t). The second term is the
contribution due to the motion of the surface moving at the fluid velocity
V. The surface integral may be transformed to a volume integral by virtue
of Gauss’s theorem. This states that for any differentiable vector field Φ =
(φ1, φ2, φ3) and a volume V with smooth bounding surface A the following
identity holds ∫ ∫

A

(n · Φ) dA =
∫ ∫ ∫

V

divΦdV . (1.70)

Gauss’s theorem also applies to differentiable scalar fields and tensor fields.

1.5.2 Conservation of Mass

The law of conservation of mass can now be stated in integral form by
identifying the scalar φ in (1.66) and (1.67) as the density ρ. In this case Ψ(t)
in (1.66) becomes the total mass in the volume V . By assuming that no mass
is generated or annihilated within V and recalling that the surface A moves
with the fluid velocity, which means that no mass flows across the surface, we
have DΨ/Dt = 0, or from (1.67)

∫ ∫ ∫

V

∂ρ

∂t
dV +

∫ ∫

A

n · (ρV) dA = 0 .

This is the integral form of the law of conservation of mass corresponding to
the differential form (1.1). This integral conservation law may be generalised
to include sources of mass, which will then appear as additional integral terms.
A useful reinterpretation of the integral form results if we rewrite it as

∫ ∫ ∫

V

∂ρ

∂t
dV = −

∫ ∫

A

n · (ρV) dA . (1.71)

If now V is a fixed control volume independent of time t then the left hand
side of (1.71) becomes
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∫ ∫ ∫

V

∂ρ

∂t
dV =

d
dt

∫ ∫ ∫

V

ρdV ,

and thus is the time–rate of change of the mass enclosed by the volume V .
The right hand side of (1.71) is the net mass inflow, per unit time, over the
mass outflow. That is, the mass enclosed by the control volume V , in the
absence of sources or sinks, can only change by virtue of mass flow through
the boundary of the control volume V . Thus we rewrite (1.71) as

d
dt

∫ ∫ ∫

V

ρdV = −
∫ ∫

A

n · (ρV) dA . (1.72)

Here ρV is the mass flow vector and n ·(ρV) is its normal component through
the surface A with outward unit normal vector n. For computational purposes
this is the formulation of the integral form of the law of conservation of mass
that is most useful.

The integral form is actually equivalent to the differential form (1.1) of
the law conservation of mass if we assume sufficient smoothness of the flow
variables in (1.72). Then we can apply Gauss’s theorem and write

∫ ∫

A

n · (ρV) dA =
∫ ∫ ∫

V

div(ρV) dV .

Then (1.71) becomes
∫ ∫ ∫

V

[
∂ρ

∂t
+ div(ρV)

]
dV = 0 .

As V is arbitrary it follows that the integrand must vanish, that is

ρt + (ρu)x + (ρv)y + (ρw)z = 0 ,

which is (1.1). As pointed out earlier, the Euler equations (1.7) admit dis-
continuous solutions, such as shock waves and contact surfaces. Hence the
differential form (1.7) is not valid in general. The integral form (1.72), how-
ever, remains valid.

1.5.3 Conservation of Momentum

The differential form of the law of conservation of momentum for the
inviscid case was stated as equations (1.2)–(1.5), or in more compact form
involving tensors as equation (1.10), the Euler equations. Equations (1.61)
contain the momentum equations augmented by the effects of viscosity, which
gives the Navier–Stokes equations, and heat conduction. As done for the mass
equation, we now provide the foundations for the law of conservation of mo-
mentum, derive its integral form in quite general terms and show that under
appropriate smoothness assumptions the differential form is implied by the
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integral form. A control volume V with bounding surface A is chosen and the
total momentum in V is given by

Ψ(t) =
∫ ∫ ∫

V

ρV dV . (1.73)

The law of conservation of momentum results from the direct application of
Newton’s law: the time rate of change of the momentum in V is equal to the
total force acting on the volume V . The total force is divided into surface
forces fS and volume forces fV given by

fS =
∫ ∫

A

S dA , fV =
∫ ∫ ∫

V

ρg dV . (1.74)

Here g is the specific volume–force vector and may account for inertial forces,
gravitational forces, electromagnetic forces and so on. S is the stress vector,
which is given in terms of a stress tensor S as S = n · S. The stress tensor S
can be split into a spherically symmetric part −pI due to pressure p, and a
viscous part Π given by (1.52)–(1.53). Application of Newton’s Law gives

DΨ

Dt
= fS + fV ,

which by virtue of (1.69) with Φ ≡ ρV gives
∫ ∫ ∫

V

∂

∂t
(ρV) dV = −

∫ ∫

A

V(n · ρV) dA + fS + fV .

Regarding V as a fixed volume in space, independent of time, we write

d
dt

∫ ∫ ∫

V

(ρV) dV = −
∫ ∫

A

V(n · ρV) dA + fS + fV , (1.75)

which may be interpreted as saying that the time rate of change of momentum
within the fixed control volume V is due to the net momentum inflow over
momentum outflow, given by the first term in (1.75), plus surface and volume
forces. Substituting S from (1.52) into (1.74) and writing all surface terms
into a single integral we have

d
dt

∫ ∫ ∫
V

(ρV) dV = −
∫ ∫

A
[V(n · ρV) + pn − n · Π] dA

+
∫ ∫ ∫

V
ρg dV .

⎫
⎬
⎭ (1.76)

This general statement is valid even for the case of discontinuous solutions.
The differential conservation law form can now be derived from (1.76) un-
der the assumption that the integrand in the surface integral is sufficiently
smooth so that Gauss’s theorem may be invoked. Consider the first term of
the integrand of the surface integral in (1.76)
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V(n · ρV) = n · ρV ⊗ V ,

where V ⊗ V is the tensor in (1.10). The three columns of the left hand side
are

u · (n · ρV) = n ·
[
ρu2, ρuv, ρuw

]T
,

v · (n · ρV) = n ·
[
ρuv, ρv2, ρvw

]T
,

w · (n · ρV) = n ·
[
ρuw, ρvw, ρw2

]T
.

Application of Gauss’s theorem to each of the surface terms gives
∫ ∫ ∫

V
∂
∂t (ρV) dV = −

∫ ∫ ∫
V

[div(ρV ⊗ V) + gradp − divΠ] dV

+
∫ ∫ ∫

V
ρg dV .

As this is valid for any arbitrary volume V the integrand must vanish, i.e.

∂

∂t
(ρV) + div [ρV ⊗ V + pI − Π] = ρg . (1.77)

This is the differential form of the momentum equation, including a source
term due to volume forces. When the viscous stresses are identically zero, Π ≡
0 and the volume forces are neglected, we obtain the Euler equations (1.10).
If the viscous stresses are given by (1.55) under the Newtonian assumption
we obtain the Navier–Stokes equations (1.57) in differential conservation law
form.

1.5.4 Conservation of Energy

As done for mass and momentum we now consider the total energy Ψ(t)
in a control volume V , that is

Ψ(t) =
∫ ∫ ∫

V

E dV . (1.78)

The time rate of change of total energy Ψ(t) is equal to the work done, per
unit time, by all the forces acting on the volume plus the influx of energy per
unit time into the volume. Recall that a force f acting on a point moving with
velocity V produces the work V · f per unit time. The surface and volume
forces in (1.74) respectively give rise to the following terms:

Esurf = −
∫ ∫

A

p(V · n) dA +
∫ ∫

A

V · (n · Π) dA , (1.79)

Evolu =
∫ ∫ ∫

V

ρ(V · g) dV . (1.80)
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The first term in (1.79) corresponds to the work done by the pressure while
the second term corresponds to the work done by the viscous stresses. Evolu

in (1.80) is the work done by the volume force g. To account for the influx of
energy into the volume we denote the energy flow vector by Q = (q1, q2, q3);
the flow of energy per unit time across a surface element dA is given by
−(n · Q) dA. This gives another term,

Einfl = −
∫ ∫

A

(n · Q) dA , (1.81)

to be included in the equation of balance of energy, which now reads

DΨ

Dt
= Esurf + Evolu + Einfl . (1.82)

The left hand side of (1.82) can be transformed via (1.67) with the definition
φ ≡ E and the result is

DΨ(t)
Dt

=
∫ ∫ ∫

V

∂

∂t
E dV +

∫ ∫

A

(n · EV) dA . (1.83)

As done for the laws of conservation of mass and momentum we now rein-
terpret the volume V as fixed in space and independent of time and rewrite
(1.82)–(1.83) as

d
dt

∫ ∫ ∫

V

E dV = −
∫ ∫

A

(n · EV) dA + Esurf + Evolu + Einfl ,

which in full becomes
d
dt

∫ ∫ ∫
V

E dV = −
∫ ∫

A
[n · (EV + pV + Q) − V · (n · Π)] dA

+
∫ ∫ ∫

V
ρ(V · g) dV .

⎫
⎬
⎭ (1.84)

Thus the time rate of change of total energy enclosed in the volume V
equals the net flow of energy through the boundary surface A plus the forces
Esurf , Evolu and Einfl as given by (1.79)–(1.81).

The differential form of the conservation of energy law (1.84) can now be
derived by assuming sufficient smoothness and applying Gauss’s theorem to
all surface integrals. Direct application of Gauss’s theorem to the first term
of (1.79) and to (1.81) gives

−
∫ ∫

A

n · (pV) dA = −
∫ ∫ ∫

V

div(pV) dV ,

−
∫ ∫

A

n · Q dA = −
∫ ∫ ∫

V

divQ dV .

The second term of (1.79) can be transformed via Gauss’s theorem by first
observing that V · (n · Π) = n · (V · Π). This follows from the symmetry of
the viscous stress tensor Π, see (1.53), (1.55). Hence
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∫ ∫

A

V · (n · Π) dA =
∫ ∫ ∫

V

div(V · Π) dV .

Substitution of these volume integrals into the integral form of the law of
conservation of energy (1.84) gives

∫ ∫ ∫

V

{Et + div [(E + p)V − V · Π + Q] − ρ(V · g)} dV = 0 .

Since V is arbitrary the integrand must vanish identically, that is

Et + div [(E + p)V − V · Π + Q] = ρ(V · g) . (1.85)

This is the differential form of the law of conservation of energy with a source
term accounting for the effect of body forces; if these are neglected we obtain
the homogeneous energy equation contained in (1.61). When viscous and heat
conduction effects are neglected we obtain the energy equation (1.5) or (1.11)
corresponding to the compressible Euler equations.

1.6 Submodels

In this section we consider simplified versions, or submodels, of the govern-
ing equations and their closure conditions. Compressible submodels will in-
clude flows with area variation; flows with axial symmetry; flows with cylindri-
cal and spherical symmetry; plane one–dimensional flow and further simplifi-
cations of this to include linearised and scalar submodels; the one–dimensional
version of the Navier–Stokes equations. Incompressible submodels will include
free–surface gravity flows and the derivation of the shallow water equations
as a special case; we also study various formulations of the incompressible
Navier–Stokes equations.

1.6.1 Summary of the Equations

Before proceeding with the study of particular situations we summarise
the general laws of conservation of mass, momentum and total energy. In
differential conservation law form these read

ρt + ∇ · (ρV) = 0 , (1.86)

∂

∂t
(ρV) + ∇ · [ρV ⊗ V + pI − Π] = ρg , (1.87)

Et + ∇ · [(E + p)V − V · Π + Q] = ρ(V · g) . (1.88)

where g = (g1, g2, g3) is a body force vector. The integral form of the conser-
vation laws is given by
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d
dt

∫ ∫ ∫

V

ρdV = −
∫ ∫

A

n · (ρV) dA , (1.89)

d
dt

∫ ∫ ∫
V

(ρV) dV = −
∫ ∫

A
[V(n · ρV) + pn − n · Π] dA

+
∫ ∫ ∫

V
ρg dV ,

⎫
⎬
⎭ (1.90)

d
dt

∫ ∫ ∫
V

E dV = −
∫ ∫

A
[n · (EV + pV + Q) − V · (n · Π)] dA

+
∫ ∫ ∫

V
ρ(V · g) dV ,

⎫
⎬
⎭ (1.91)

where V is the total volume of an element of fluid and A is its boundary.
Computationally, V will be a finite volume or computational cell. When body
forces are included via a source term vector but viscous and heat conduction
effects are neglected we have the Euler equations

Ut + F(U)x + G(U)y + H(U)z = S(U) , (1.92)

U =

⎡
⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
E

⎤
⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎣

ρu
ρu2 + p

ρuv
ρuw

u(E + p)

⎤
⎥⎥⎥⎥⎦

,

G =

⎡
⎢⎢⎢⎢⎣

ρv
ρuv

ρv2 + p
ρvw

v(E + p)

⎤
⎥⎥⎥⎥⎦

, H =

⎡
⎢⎢⎢⎢⎣

ρw
ρuw
ρvw

ρw2 + p
w(E + p)

⎤
⎥⎥⎥⎥⎦

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.93)

Here S = S(U) is a source or forcing term. Body forces such as gravity may
be represented in S. Injection of mass, momentum or energy may also be
included in S. Usually, S(U) is a prescribed algebraic function of the flow
variables and does not involve derivatives of these, but there are exceptions.
Equations (1.92) are said to be inhomogeneous . When S(U) ≡ 0 one speaks
of homogeneous equations. There are other situations in which source terms
S(U) arise as a consequence of approximating the homogeneous equations in
(1.92) to model situations with particular geometric features. In this case the
source term is of geometric character, but we shall still call it a source term.

Sometimes it is convenient to express the equations in terms of the primi-
tive or physical variables ρ, u, v, w and p. By expanding derivatives in (1.92),
using the mass equation into the momentum equations and in turn using
these into the energy equation one can re–write the three–dimensional Euler
equations for ideal gases with a body–force source term as
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ρt + uρx + vρy + wρz + ρ(ux + vy + wz) = 0 ,

ut + uux + vuy + wuz + 1
ρpx = g1 ,

vt + uvx + vvy + wvz + 1
ρpy = g2 ,

wt + uwx + vwy + wwz + 1
ρpz = g3 ,

pt + upx + vpy + wpz + γp(ux + vy + wz) = 0 .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.94)

Next we consider simplifications of the Euler and Navier–Stokes equations
augmented by source terms to account for additional flow physics.

1.6.2 Flow with Area Variation

Flows with area variation arise naturally in the study of fluid flow phenom-
ena in ducts, pipes, shock tubes and nozzles. One may start from the three
dimensional homogeneous version of (1.92) to produce, under the assumption
of smooth area variations, a one–dimensional system with geometric source
terms. Denote the cross–sectional area of the nozzle by A = A(x, t), where
x denotes distance along the nozzle and t denotes time. It is assumed that
the area varies smoothly with space and time and its variation is due to both
translation and deformation. Assume that the speed of translation is given by
c(x, t).

Most of the presentation that follows is motivated by some useful remarks
by Professor Tim Swafford (Swafford, 1998, private communication) on the
first edition of this book. He pointed out the correct derivation of the equations
for the case in which the area depends on time, and also provided the following
key references: Varner et. al. [567], Chessor [107] and Warsi [575].

The governing equations read

Ut + F(U)x = S(U) , (1.95)

where

U =

⎡
⎣

Aρ
Aρu
AE

⎤
⎦ , F =

⎡
⎣

Aρ(u − c)
A[ρu(u − c) + p]
A[(u − c)E + up]

⎤
⎦ , S =

⎡
⎣

0
pAx

−pAt

⎤
⎦ . (1.96)

In what follows we assume c = 0. Manipulation of equations (1.95)–(1.96)
lead to the following alternative form

Ut + F(U)x = S(U) , (1.97)

where now
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U =

⎡
⎣

ρ
ρu
E

⎤
⎦ , F =

⎡
⎣

ρu
ρu2 + p
u(E + p)

⎤
⎦ , S = − 1

A

dA

dt

⎡
⎣

ρ
ρu

(E + p)

⎤
⎦ . (1.98)

Here the source term vector contains the differential operator

dA

dt
= At + uAx , (1.99)

which expresses the time variation of the area A(x, t) along particle paths
dx/dt = u. The upwind nature of the coefficient dA

dt in the source term vector
suggests possible discretisation procedures.

Yet another form of equations (1.95)–(1.96), for the case in which the area
is independent of time and c = 0, is the following

(AU)t + [AF(U)]x = −AS(U)x , (1.100)

where

U =

⎡
⎣

ρ
ρu
E

⎤
⎦ , F =

⎡
⎣

ρu
ρu2

u(E + p)

⎤
⎦ , S =

⎡
⎣

0
p
0

⎤
⎦ . (1.101)

Note that the momentum flux does not include the pressure term p. For details
see Ben–Artzi and Falcovitz [38].

1.6.3 Axi–Symmetric Flows

Here we consider domains that are symmetric around a coordinate di-
rection. We choose this coordinate to be the z–axis and is called the axial
direction. The second coordinate is r, which measures distance from the axis
of symmetry z and is called the radial direction. There are two components of
velocity, namely u(r, z) and v(r, z). These are respectively the radial (r) and
axial (z) components of velocity. Then the three dimensional (inhomogeneous)
conservation laws (1.92) are approximated by a two dimensional problem with
geometric source terms S(U), namely

Ut + F(U)r + G(U)z = S(U) , (1.102)

where

U =

⎡
⎢⎢⎣

ρ
ρu
ρv
E

⎤
⎥⎥⎦ , F =

⎡
⎢⎢⎣

ρu
ρu2 + p

ρuv
u(E + p)

⎤
⎥⎥⎦ ,

G =

⎡
⎢⎢⎣

ρv
ρuv

ρv2 + p
v(E + p)

⎤
⎥⎥⎦ , S = − 1

r

⎡
⎢⎢⎣

ρu
ρu2

ρuv
u(E + p)

⎤
⎥⎥⎦ .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.103)
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An alternative form of (1.102)–(1.103) is

Ūt + F̄(Ū)r + Ḡ(Ū)z = S̄(Ū) , (1.104)

where
Ū = rU , F̄ = rF , Ḡ = rG ,

S̄ = (0, −p, 0, 0)T
.

⎫
⎬
⎭ (1.105)

From a numerical point of view this form of the equations has its attractions
(Pike and Roe, 1989, private communication).

1.6.4 Cylindrical and Spherical Symmetry

Cylindrical and spherically symmetric wave motion arises naturally in the
theory of explosion waves in water, air and other media. In these situations
the multidimensional equations may be reduced to essentially one–dimensional
equations with a geometric source term vector S(U) to account for the second
and third spatial dimensions. We write

Ut + F(U)r = S(U) , (1.106)

where

U =

⎡
⎣

ρ
ρu
E

⎤
⎦ , F =

⎡
⎣

ρu
ρu2 + p
u(E + p)

⎤
⎦ , S = −α

r

⎡
⎣

ρu
ρu2

u(E + p)

⎤
⎦ . (1.107)

Here r is the radial distance from the origin and u is the radial velocity.
When α = 0 we have plane one–dimensional flow; when α = 1 we have cylin-
drically symmetric flow, an approximation to two–dimensional flow. This is a
special case of equations (1.102)–(1.103) when no axial variations are present
(v = 0). For α = 2 we have spherically symmetric flow, an approximation to
three–dimensional flow. Approximations (1.106)–(1.107) can easily be solved
numerically to a high degree of accuracy by a good one–dimensional numerical
method. These accurate one–dimensional solutions can then be very useful in
partially validating two and three dimensional numerical solutions of the full
models, see Sect. 17.1 of Chap. 17.

1.6.5 Plain One–Dimensional Flow

We first consider the one–dimensional time dependent case

Ut + F(U)x = 0 , (1.108)

where
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U =

⎡
⎣

ρ
ρu
E

⎤
⎦ , F =

⎡
⎣

ρu
ρu2 + p
u(E + p)

⎤
⎦ . (1.109)

These equations also result from equations (1.106)–(1.107) with α ≡ 0 and r
replaced by x. Under suitable physical assumptions they produce even simpler
mathematical models. In all the submodels studied so far we have assumed
some thermodynamic closure condition given by an Equation of State (EOS).

The isentropic equations result under the assumption that the entropy
s is constant everywhere, which is a simplification of the thermodynamics.
Now the EOS is

p = p(ρ) ≡ Cργ , C=constant . (1.110)

This makes the energy equation redundant and we have the 2 × 2 system

Ut + F(U)x = 0 ,

U =
[

ρ
ρu

]
, F =

[
ρu

ρu2 + p

]
,

⎫
⎪⎪⎬
⎪⎪⎭

(1.111)

with the pressure p given by the simple EOS (1.110).
The isothermal equations are even a simpler model than the isentropic

equations, still non–linear. These may be viewed as resulting from the isen-
tropic equations (1.111) with the EOS (1.110) further simplified to

p = p(ρ) ≡ a2ρ , (1.112)

where a is a non–zero constant propagation speed of sound. The isothermal
equations are

Ut + F(U)x = 0 ,

U =
[

ρ
ρu

]
, F =

[
ρu

ρu2 + ρa2

]
.

⎫
⎪⎪⎬
⎪⎪⎭

(1.113)

More submodels may be obtained by writing the isentropic equations as

ρt + ρux + uρx = 0 , (1.114)

ut + uux = −1
ρ
px . (1.115)

These result from (1.94) with the appropriate simplifications.
The inviscid Burgers equation is a scalar (single equation) non–linear

equation given by
ut + uux = 0 , (1.116)

and can be obtained from the momentum equation (1.115) by neglecting den-
sity, and thus pressure, variations. In conservative form equation (1.116) reads

ut +
(

u2

2

)

x

= 0 . (1.117)
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The Linearised Equations of Gas Dynamics are obtained from
(1.114)–( 1.115) by considering small disturbances ū, ρ̄ to a motionless gas.
Set u = ū and ρ = ρ̄ + ρ0, where ρ0 is a constant density value. Recall that
p = p(ρ) and neglecting products of small quantities we have

p = p(ρ0) + ρ̄
∂p

∂ρ
(ρ0) ,

that is, p = p0 + a2ρ̄ with p0 = p(ρ0), and

a2 =
∂p

∂ρ
(ρ0) = constant . (1.118)

Substituting into (1.114)–(1.115) and neglecting squares of small quantities
we obtain the linear equations

ρ̄t + ρ0ūx = 0 , (1.119)

ūt +
a2

ρ0
ρ̄x = 0 . (1.120)

Elimination of ū gives
ρ̄tt = a2ρ̄xx , (1.121)

which is the linear second–order wave equation for ρ̄(x, t). In matrix form
system (1.119)–( 1.120) reads

Wt + AWx = 0 , (1.122)

W =
[

ρ
u

]
, A =

[
0 ρ0

a2/ρ0 0

]
, (1.123)

where bars have been dropped. The coefficient matrix A is now constant
and thus the system (1.122) is a linear system with constant coefficients, the
linearised equations of gas dynamics.

The linear advection, sometimes called linear convection, equation

ut + aux = 0 , (1.124)

where a is a constant speed of wave propagation, is a further simplification to
(1.121). This is also known as the one–way wave equation and plays a major
role in the designing, analysing and testing of numerical methods for wave
propagation problems.

1.6.6 Steady Compressible Flow

The steady, or time independent, homogeneous three dimensional Euler
equations (1.92) are
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F(U)x + G(U)y + H(U)z = 0 . (1.125)

In the steady regime it is important to identify subsonic and supersonic flow.
To this end we recall the definition of Mach number M

M =

[(
u2 + v2 + w2

)
a2

] 1
2

, (1.126)

where a is the speed of sound; for ideal gases a =
√

(γp/ρ). Supersonic flow
requires M > 1, while for subsonic flow we have M < 1. For sonic flow
M = 1. Computationally, the three–dimensional equations may be treated
via the method of dimensional splitting, which in essence reduces the three–
dimensional problem to a sequence of augmented two–dimensional problems,
see Chap. 16. The basic approach therefore relies on the two–dimensional case.
In differential conservation form we have

F(U)x + G(U)y = 0 , (1.127)

F =

⎡
⎢⎢⎣

ρu
ρu2 + p

ρuv
u(E + p)

⎤
⎥⎥⎦ , G =

⎡
⎢⎢⎣

ρv
ρuv

ρv2 + p
v(E + p)

⎤
⎥⎥⎦ . (1.128)

As discontinuous solutions such as shock waves and slip surfaces are to be
admitted, we replace the differential form (1.127)–(1.128) by the more general
integral conservation form

∮
(F dy − G dx) = 0 . (1.129)

The integral is to be evaluated over the boundary of the appropriate control
volume. In numerical methods this will be a computational cell.

Steady linearised models can be obtained from the steady Euler equa-
tions (1.127)–(1.128). An interesting submodel is the small perturbation, two–
dimensional steady supersonic equations

ux − a2vy = 0 , vx − uy = 0 , (1.130)

with
a2 =

1
M2

∞ − 1
. (1.131)

M∞ = constant denotes the free–stream Mach number and u(x, y), v(x, y)
are small perturbations of the x and y velocity components respectively. In
matrix form these equations read

Wx + AWy = 0 , (1.132)

with
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W =
[

u
v

]
, A =

[
0 −a2

−1 0

]
. (1.133)

See Sect. 18.2.2 of Chapter 18 for more information about steady supersonic
flow.

1.6.7 Viscous Compressible Flow

The one–dimensional version of the compressible Navier–Stokes equations
with heat conduction can be obtained from (1.61) by setting v = w = 0. The
result is

Ut + F(U)x = S , (1.134)

where

U =

⎡
⎣

ρ
ρu
E

⎤
⎦ , F =

⎡
⎣

ρu
ρu2 + p
u(E + p)

⎤
⎦ , S =

⎡
⎣

0
4
3 (ηux)x

4
3 (ηuux)x − (κTx)x

⎤
⎦ . (1.135)

Burgers’s equation is the viscous version of (1.117) corresponding to a
scalar non–linear simplification of (1.135), namely

ut +
(

u2

2

)

x

= αuxx , (1.136)

where α is a coefficient of viscosity. A linearised form of this is

ut + aux = αuxx , (1.137)

which is the viscous version of the linear advection equation (1.124).
Next we consider two examples of incompressible flow. The first concerns

inviscid incompressible flow with body forces, with special reference to free–
surface gravity flow, as in oceans and rivers for example. The second example
concerns the incompressible viscous equations with body forces and heat con-
duction neglected.

1.6.8 Free–Surface Gravity Flow

Consider the flow of water in a channel and assume the water to be in-
compressible, non–viscous, non–heat conducting and subject to gravitational
forces. We adopt the convention that the horizontal plane is given by the co-
ordinates x and z and that the vertical direction is given by y. Denote the
body force vector by g = (g1, g2, g3) ≡ (0,−g, 0) where g is the acceleration
due to gravity, assumed constant. Two important boundaries of the three di-
mensional domain are the bottom of the channel, denoted by y = −h(x, z)
and assumed fixed in time, and the free surface under gravity y = η(x, z, t),
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x

y

z

free  surface

(x,z,t)η

h(x,z)

channel  bed

Fig. 1.1. Flow in a channel with free surface under gravity

which depends on space and time. Fig. 1.1 illustrates the situation for a ver-
tical plane z = constant. The state y = 0, u = 0, w = 0 corresponds to the
rest position of equilibrium.

For an incompressible fluid the law of conservation of mass can be shown
[112] to produce

divV = ux + vy + wz = 0 . (1.138)

From the mass equation in (1.86) we write

Dρ

Dt
+ ρ(divV) = 0 ,

and from (1.138) it follows that

Dρ

Dt
= ρt + V · gradρ = 0 .

That is, the mass density following the fluid is constant. If in addition we
assume the water to be homogeneous, no variations in space, then it follows
that ρ does not change with time. Practical examples of incompressible non–
homogeneous fluids arise in Oceanography in the study of stratified flows.
From the momentum equations in (1.94) we write

Du
Dt ≡ ut + uux + vuy + wuz = − 1

ρpx ,

Dv
Dt ≡ vt + uvx + vvy + wvz = − 1

ρpy − g ,

Dw
Dt ≡ wt + uwx + vwy + wwz = − 1

ρpz .

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(1.139)

There are now four equations and four unknowns, namely u, v, w and p. In
principle, given initial and boundary conditions one should be able to solve
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(1.138)–(1.139) for u, v, w and p as functions of space x, y, z and time t.
Boundary conditions are required at the bottom y = −h(x, z) and on the free
surface under gravity y = η(x, z, t). Two boundary conditions are given for
the free surface

D
Dt (η − y) = 0

p = patm

⎫
⎬
⎭ y = η(x, z, t) . (1.140)

For the bottom boundary one takes

D

Dt
(h + y) = 0 , y = −h(x, z) . (1.141)

In equation (1.140), patm is the atmospheric pressure, which for convenience
is assumed to be zero. Equation (1.141) states that the normal component
of velocity vanishes, i.e. there is no flow through the bottom of the channel.
In spite of the strong physical assumptions made, the free–surface problem
as stated remains a very difficult problem to solve numerically. Analytical
solutions are impossible to obtain. Further approximations result in more
tractable mathematical models. For general background on the topic see the
book on water waves by Stoker [465].

1.6.9 The Shallow Water Equations

The shallow water equations are an approximation to the full free–surface
problem and result from the assumption that the vertical component of the
acceleration Dv/Dt can be neglected. Inserting Dv/Dt = 0 in the second of
equations (1.139) gives

p = ρg(η − y) . (1.142)

This is called the hydrostatic pressure relation. Differentiation of p with respect
to x and z gives

px = ρgηx , (1.143)

pz = ρgηz , (1.144)

i.e. both px and pz are independent of y and so the x and z components of the
acceleration Du/Dt and Dw/Dt in (1.139) are independent of y. Thus, the x
and z components of velocity are also independent of y for all t if they were
at a given time, t = 0, say. Hence, the first and third equations in (1.139),
making use of (1.143)–(1.144), become

ut + uux + wuz = −gηx , (1.145)

wt + uwx + wwz = −gηz . (1.146)

An important step in deriving the shallow water equations now follows; we
integrate the continuity equation (1.138) with respect to y (vertical direction)
to obtain
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∫ η

−h

ux dy +
∫ η

−h

wz dy + v|η−h = 0 . (1.147)

By expanding the boundary conditions (1.140) and (1.141) according to the
definition of total derivative D/Dt, see (1.64), we obtain

(ηt + uηx + wηz − v)|y=η = 0 , (1.148)

(uhx + whz + v)|y=−h = 0 , (1.149)

which, if used in (1.147), give
∫ η

−h
ux dy +

∫ η

−h
wz dy + ηt

+(u|y=η)ηx + (w|y=η)ηz + (u|y=−h)hx + (w|y=−h)hz = 0 .

⎫
⎬
⎭ (1.150)

Equation (1.150) can finally be expressed as

ηt +
∂

∂x

∫ η

−h

u dy +
∂

∂z

∫ η

−h

w dy = 0 . (1.151)

This follows by using the relations

∂

∂x

∫ η(x,z,t)

−h(x,z)

u dy =
∫ η

−h

ux dy + (u|y=η)ηx + (u|y=−h)hx ,

∂

∂z

∫ η(x,z,t)

−h(x,z)

w dy =
∫ η

−h

wz dy + (w|y=η)ηz + (w|y=−h)hz .

Equation (1.151) can be simplified further. This follows from the observation
that both u and w are independent of y and so equation (1.151) becomes

ηt + [u(η + h)]x + [w(η + h)]z = 0 . (1.152)

The governing two–dimensional shallow water equations are (1.145), (1.146)
and (1.152). We now express these equations in conservation law form. Since
h(x, z) is independent of time t we have ht = 0 and so equation (1.152) can
be re–written as

(η + h)t + [u(η + h)]x + [w(η + h)]z = 0 , (1.153)

which if multiplied by u and added to (1.145), premultiplied by η + h, gives

[u(η + h)]t +
[
u2(η + h)

]
x

+ [uw(η + h)]z = −g(η + h)ηx . (1.154)

In an analogous way equations (1.146) and (1.153) give

[w(η + h)]t + [uw(η + h)]x +
[
w2(η + h)

]
z

= −g(η + h)ηz . (1.155)

The right–hand side term of (1.154) can be re–written as
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− g(η + h)ηx = g(η + h)hx − 1
2
g[(η + h)2]x (1.156)

and so (1.154) becomes

(φu)t + (φu2 +
1
2
φ2)x + (φuw)z = gφhx . (1.157)

Similarly, equation (1.155) becomes

(φw)t + (φuw)x + (φw2 +
1
2
φ2)z = gφhz , (1.158)

where
φ = gH , H = η + h . (1.159)

H is the total depth of the fluid and φ is called the geopotential. The two–
dimensional shallow water equations are now written in compact conservation
form with source terms, i.e. equations (1.153), (1.157) and (1.158) can be
expressed as

Ut + F(U)x + G(U)z = S(U) , (1.160)

with

U =

⎡
⎣

φ
φu
φw

⎤
⎦ , F =

⎡
⎣

φu
φu2 + 1

2φ2

φuw

⎤
⎦ ,

G =

⎡
⎣

φw
φuw

φw2 + 1
2φ2

⎤
⎦ , S =

⎡
⎣

0
gφhx

gφhz

⎤
⎦ .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.161)

In equations (1.160) U is the vector of conserved variables, F(U) and G(U)
are flux vectors and S(U) is the source term vector. For many applications
there will be additional terms in the vector S(U) to account for Coriolis forces,
wind forces, bottom friction, etc. Numerical solution procedures will deal es-
sentially with the homogeneous part of (1.160). The numerical treatment of
the source terms is a relatively standard process as is the treatment of the
two–dimensional homogeneous problem. Both can be dealt with via splitting
schemes; for details see Chaps. 15 and 16. From a computational point of
view, most of the effort goes into devising schemes for the basic homogeneous
one–dimensional system

Ut + F(U)x = 0 , (1.162)

with U and F(U) given by

U =
[

φ
φu

]
, F =

[
φu

φu2 + 1
2φ2

]
. (1.163)

The conservation laws (1.162)–(1.163) can be written in integral form as
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∮
(U dx − F(U) dt) = 0 . (1.164)

Equations (1.164) admit discontinuous solutions while equations (1.162)–
(1.163) do not.

See Sect. 18.2.1 of Chapter 18 for more information about the shallow
water equations. Se also the textbook [528].

1.6.10 Incompressible Viscous Flow

We assume the fluid to be incompressible, homogeneous, non–heat con-
ducting and viscous, with constant coefficient of viscosity η. Body forces are
also neglected. We study three mathematical formulations of the governing
equations in Cartesian coordinates and restrict our attention to the two–
dimensional case.

The primitive variable formulation of the incompressible two dimen-
sional Navier–Stokes equations is given by

ux + vy = 0 , (1.165)

ut + uux + vuy +
1
ρ
px = ν [uxx + uyy] , (1.166)

vt + uvx + vvy +
1
ρ
py = ν [vxx + vyy] , (1.167)

where
ν =

η

ρ
(1.168)

is the kinematic viscosity and η is the coefficient of shear viscosity. We have a
set of three equations (1.165)–(1.167) for the three unknowns u, v, p, the prim-
itive variables. In principle, given a domain along with initial and boundary
conditions for the equations one should be able to solve this problem using
the primitive variable formulation.

The stream–function vorticity formulation is another way of express-
ing the incompressible Navier–Stokes equations. This formulation is attractive
for the two–dimensional case but not so much in three dimensions, in which
the role of a stream function is replaced by that of a vector potential. The
magnitude of the vorticity vector can be written as

ζ = vx − uy . (1.169)

Introducing a stream function ψ we have

u = ψy , v = −ψx . (1.170)

By combining equations (1.166) and (1.167), so as to eliminate pressure p,
and using (1.169) we obtain
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ζt + uζx + vζy = ν [ζxx + ζyy] , (1.171)

which is called the vorticity transport equation. This is an advection–diffusion
equation of parabolic type. In order to solve (1.171) one requires the solution
for the stream function ψ, which is in turn related to the vorticity ζ via

ψxx + ψyy = −ζ . (1.172)

This is called the Poisson equation and is of elliptic type. There are numer-
ical schemes to solve (1.171)–(1.172) using the apparent decoupling of the
parabolic–elliptic problem (1.165)–(1.167) to transform it into the parabolic
equation (1.171) and the elliptic equation (1.172). A relevant observation,
from the numerical point of view, is that the advection terms of the left hand
side of equation (1.171) can be written in conservative form and hence we
have

ζt + (uζ)x + (vζ)y = ν [ζxx + ζyy] . (1.173)

This follows from the fact that ux + vy = 0, which was also used to obtain
(1.171) from (1.166)–(1.167).

1.6.11 The Artificial Compressibility Equations

The artificial compressibility formulation is yet another approach to for-
mulate the incompressible Navier–Stokes equations and was originally put
forward by Chorin [109] for the steady case. Consider the two–dimensional
equations (1.165)–(1.167) in non–dimensional form

ux + vy = 0 , (1.174)

ut + uux + vuy + px = α [uxx + uyy] , (1.175)

vt + uvx + vvy + py = α [vxx + vyy] , (1.176)

where the following non–dimensionalisation has been used

u ← u/V∞ , v ← v/V∞ , p ← p

ρ∞V 2
∞

,

x ← x/L , y ← y/L , t ← tV∞/L ,

α = 1/ReL , ReL =
V∞L

ν∞
.

Multiplying (1.174) by the non–zero parameter c2 and adding an artificial
compressibility term pt the first equation reads

pt + (uc2)x + (vc2)y = 0 .

By using equation (1.174) the advective terms in (1.175)–(1.176) can be writ-
ten in conservative form, so that the modified system becomes
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pt + (uc2)x + (vc2)y = 0 , (1.177)

ut + (u2 + p)x + (uv)y = α [uxx + uyy] , (1.178)

vt + (uv)x + (v2 + p)y = α [vxx + vyy] . (1.179)

These equations can be written in compact form as

Ut + F(U)x + G(U)y = S(U) , (1.180)

where

U =

⎡
⎣

p
u
v

⎤
⎦ , F =

⎡
⎣

c2u
u2 + p

uv

⎤
⎦ ,

G =

⎡
⎣

c2v
uv

v2 + p

⎤
⎦ , S =

⎡
⎣

0
α (uxx + uyy)
α (vxx + vyy)

⎤
⎦ .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.181)

Equations (1.180)–(1.181) are called the artificial compressibility equations.
Here c2 is the artificial compressibility factor, a constant parameter. The
source term vector in this case is a function of second derivatives. Note that
the modified equations are equivalent to the original equations in the steady
state limit.

The left–hand side of the artificial compressibility equations form a non–
linear hyperbolic system. The Riemann problem can be defined and solved
exactly or approximately. See Chaps. 4, 8, 9, 10, 11 and 12 on approaches to
solve the Riemann problem. Once a Riemann solver is available one can deploy
Godunov–type numerical methods to solve the equations with general initial
data. See Chaps. 6, 7, 13, 14 and 16 for possible numerical methods. The
topic of numerical methods for the artificial compressibility equations is not
pursued in this textbook; the interested reader is referred to [514] for details
on exact and approximate Riemann solvers for the artificial compressibility
equations. Further information about the artificial compressibility equations
is found in Sect. 18.2.3 of Chapter 18.
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Notions on Hyperbolic Partial Differential
Equations

In this chapter we study some elementary properties of a class of hyperbolic
Partial Differential Equations (PDEs). The selected aspects of the equations
are those thought to be essential for the analysis of the equations of fluid
flow and the implementation of numerical methods. For general background
on PDEs we recommend the book by John [272] and particularly the one
by Zachmanoglou and Thoe [596]. The discretisation techniques studied in
this book are strongly based on the underlying Physics and mathematical
properties of PDEs. It is therefore justified to devote some effort to some
fundamentals on PDEs. Here we deal almost exclusively with hyperbolic PDEs
and hyperbolic conservation laws in particular. There are three main reasons
for this: (i) The equations of compressible fluid flow reduce to hyperbolic
systems, the Euler equations, when the effects of viscosity and heat conduction
are neglected. (ii) Numerically, it is generally accepted that the hyperbolic
terms of the PDEs of fluid flow are the terms that pose the most stringent
requirements on the discretisation techniques. (iii) The theory of hyperbolic
systems is much more advanced than that for more complete mathematical
models, such as the Navier–Stokes equations. In addition, there has in recent
years been a noticeable increase in research and development activities centred
on the theme of hyperbolic problems, as these cover a wide range of areas of
scientific and technological interest. A good source of up–to–date work in
this field is found in the proceedings of the series of meetings on Hyperbolic
Problems, see for instance [87], [184], [213]. See also [326]. Other relevant
publications are those of Godlewski and Raviart [215], Hörmander [258] and
Tveito and Winther [551].

We restrict ourselves to some of the basics on hyperbolic PDEs and choose
an informal way of presentation. The selected topics and approach are almost
exclusively motivated by the theme of the book, namely the Riemann problem
and high–resolution upwind and centred numerical methods.

E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 41
c© Springer-Verlag Berlin Heidelberg 2009DOI 10.1007/b7976-1 2,
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2.1 Quasi–Linear Equations: Basic Concepts

In this section we study systems of first–order partial differential equations
of the form

∂ui

∂t
+

m∑
j=1

aij(x, t, u1, . . . , um)
∂uj

∂x
+ bi(x, t, u1, . . . , um) = 0 , (2.1)

for i = 1, . . . ,m. This is a system of m equations in m unknowns ui that
depend on space x and a time–like variable t. Here ui are the dependent vari-
ables and x, t are the independent variables; this is expressed via the notation
ui = ui(x, t); ∂ui/∂t denotes the partial derivative of ui(x, t) with respect to
t; similarly ∂ui/∂x denotes the partial derivative of ui(x, t) with respect to
x. We also make use of subscripts to denote partial derivatives. System (2.1)
can also be written in matrix form as

Ut + AUx + B = 0 , (2.2)

with

U =

⎡
⎢⎢⎢⎣

u1

u2

...
um

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

b1

b2

...
bm

⎤
⎥⎥⎥⎦ , A =

⎡
⎢⎢⎢⎣

a11 . . . a1m

a21 . . . a2m

...
...

...
am1 . . . amm

⎤
⎥⎥⎥⎦ . (2.3)

If the entries aij of the matrix A are all constant and the components bj of the
vector B are also constant then system (2.2) is linear with constant coefficients.
If aij = aij(x, t) and bi = bi(x, t) the system is linear with variable coefficients.
The system is still linear if B depends linearly on U and is called quasi–linear
if the coefficient matrix A is a function of the vector U, that is A = A(U).
Note that quasi–linear systems are in general systems of non–linear equations.
System (2.2) is called homogeneous if B = 0. For a set of PDEs of the form
(2.2) one needs to specify the range of variation of the independent variables
x and t. Usually x lies in a subinterval of the real line, namely xl < x < xr;
this subinterval is called the spatial domain of the PDEs, or just domain. At
the values xl, xr one also needs to specify Boundary Conditions (BCs). In
this Chapter we assume the domain is the full real line, −∞ < x < ∞, and
thus no boundary conditions need to be specified. As to variations of time t
we assume t0 < t < ∞. An Initial Condition (IC) needs to be specified at the
initial time, which is usually chosen to be t0 = 0.

Two scalar (m = 1) examples of PDEs of the form (2.1) are the linear
advection equation

∂u

∂t
+ a

∂u

∂x
= 0 (2.4)

and the inviscid Burgers equation

∂u

∂t
+ u

∂u

∂x
= 0 , (2.5)
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both introduced in Sect. 1.6.2 of Chap. 1. In the linear advection equation (2.4)
the coefficient a (a constant) is the wave propagation speed. In the Burgers
equation a = a(u) = u.

Definition 2.1 (Conservation Laws). Conservation laws are systems
of partial differential equations that can be written in the form

Ut + F(U)x = 0 , (2.6)

where

U =

⎡
⎢⎢⎢⎣

u1

u2

...
um

⎤
⎥⎥⎥⎦ , F(U) =

⎡
⎢⎢⎢⎣

f1

f2

...
fm

⎤
⎥⎥⎥⎦ . (2.7)

U is called the vector of conserved variables, F = F(U) is the vector of fluxes
and each of its components fi is a function of the components uj of U.

Definition 2.2 (Jacobian Matrix). The Jacobian of the flux function
F(U) in (2.6) is the matrix

A(U) = ∂F/∂U =

⎡
⎢⎢⎢⎣

∂f1/∂u1 . . . ∂f1/∂um

∂f2/∂u1 . . . ∂f2/∂um

...
...

...
∂fm/∂u1 . . . ∂fm/∂um

⎤
⎥⎥⎥⎦ . (2.8)

The entries aij of A(U) are partial derivatives of the components fi of the
vector F with respect to the components uj of the vector of conserved variables
U, that is aij = ∂fi/∂uj.

Note that conservation laws of the form (2.6)–(2.7) can also be written in
quasi–linear form (2.2), with B ≡ 0, by applying the chain rule to the second
term in (2.6), namely

∂F(U)
∂x

=
∂F
∂U

∂U
∂x

.

Hence (2.6) becomes
Ut + A(U)Ux = 0 ,

which is a special case of (2.2). The scalar PDEs (2.4) and (2.5) can be ex-
pressed as conservation laws, namely

∂u

∂t
+

∂f(u)
∂x

= 0 , f(u) = au , (2.9)

∂u

∂t
+

∂f(u)
∂x

= 0 , f(u) =
1
2
u2 . (2.10)
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Definition 2.3 (Eigenvalues). The eigenvalues λi of a matrix A are the
solutions of the characteristic polynomial

|A − λI| = det(A − λI) = 0 , (2.11)

where I is the identity matrix. The eigenvalues of the coefficient matrix A of
a system of the form (2.2) are called the eigenvalues of the system.

Physically, eigenvalues represent speeds of propagation of information.
Speeds will be measured positive in the direction of increasing x and neg-
ative otherwise.

Definition 2.4 (Eigenvectors). A right eigenvector of a matrix A cor-
responding to an eigenvalue λi of A is a vector K(i) = [k(i)

1 , k
(i)
2 , . . . , k

(i)
m ]T

satisfying AK(i) = λiK(i). Similarly, a left eigenvector of a matrix A corre-
sponding to an eigenvalue λi of A is a vector L(i) = [l(i)1 , l

(i)
2 , . . . , l

(i)
m ] such

that L(i)A = λiL(i).

For the scalar examples (2.9)–(2.10) the eigenvalues are trivially found to
be λ = a and λ = u respectively. Next we find eigenvalues and eigenvectors
for a system of PDEs.

Example 2.5 (Linearised Gas Dynamics). The linearised equations of Gas
Dynamics, derived in Sect. 1.6.2 of Chap. 1, are the 2 × 2 linear system

∂ρ
∂t + ρ0

∂u
∂x = 0 ,

∂u
∂t + a2

ρ0

∂ρ
∂x = 0 ,

⎫
⎬
⎭ (2.12)

where the unknowns are the density u1 = ρ(x, t) and the speed u2 = u(x, t);
ρ0 is a constant reference density and a is the sound speed, a positive constant.
When written in the matrix form (2.2) this system reads

Ut + AUx = 0 , (2.13)

with

U =
[

u1

u2

]
≡
[

ρ
u

]
, A =

[
0 ρ0

a2/ρ0 0

]
. (2.14)

The eigenvalues of the system are the zeros of the characteristic polynomial

|A − λI| = det
[

0 − λ ρ0

a2/ρ0 0 − λ

]
= 0 .

That is, λ2 = a2, which has two real and distinct solutions, namely

λ1 = −a , λ2 = +a . (2.15)

We now find the right eigenvectors K(1), K(2) corresponding to the eigenvalues
λ1 and λ2.
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The eigenvector K(1) for eigenvalue λ = λ1 = −a is found as follows: we
look for a vector K(1) = [k1, k2]T such that K(1) is a right eigenvector of A,
that is AK(1) = λ1K(1). Writing this in full gives

[
0 ρ0

a2/ρ0 0

] [
k1

k2

]
=
[
−ak1

−ak2

]
,

which produces two linear algebraic equations for the unknowns k1 and k2

ρ0k2 = −ak1 ,
a2

ρ0
k1 = −ak2 . (2.16)

The reader will realise that in fact these two equations are equivalent and so
effectively we have a single linear algebraic equation in two unknowns. This
gives a one–parameter family of solutions. Thus we select an arbitrary non–
zero parameter α1, a scaling factor, and set k1 = α1 in any of the equations
to obtain k2 = −α1a/ρ0 for the second component and hence the first right
eigenvector becomes

K(1) = α1

[
1

−a/ρ0

]
. (2.17)

The eigenvector K(2) for eigenvalue λ = λ2 = +a is found in a similar manner.
The resulting algebraic equations for K(2) corresponding to the eigenvalue
λ2 = +a are

ρ0k2 = ak1 ,
a2

ρ0
k1 = ak2 . (2.18)

By denoting the second scaling factor by α2 and setting k1 = α2 we obtain

K(2) = α2

[
1

a/ρ0

]
. (2.19)

Taking the scaling factors to be α1 = ρ0 and α2 = ρ0 gives the right eigen-
vectors

K(1) =
[

ρ0

−a

]
, K(2) =

[
ρ0

a

]
. (2.20)

Definition 2.6 (Hyperbolic System). A system (2.2) is said to be hy-
perbolic at a point (x, t) if A has m real eigenvalues λ1, . . . , λm and a corre-
sponding set of m linearly independent right eigenvectors K(1), . . . ,K(m). The
system is said to be strictly hyperbolic if the eigenvalues λi are all distinct.

Note that strict hyperbolicity implies hyperbolicity, because real and dis-
tinct eigenvalues ensure the existence of a set of linearly independent eigen-
vectors. The system (2.2) is said to be elliptic at a point (x, t) if none of the
eigenvalues λi of A are real. Both scalar examples (2.9)–(2.10) are trivially
hyperbolic. The linearised gas dynamic equations (2.12) are also hyperbolic,
since λ1 and λ2 are both real at any point (x, t). Moreover, as the eigenvalues
are also distinct this system is strictly hyperbolic.
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Example 2.7 (The Cauchy–Riemann Equations). An example of a first–
order system of the form (2.2) with t replaced by x and x replaced by y is the
Cauchy–Riemann equations

∂u

∂x
− ∂v

∂y
= 0 ,

∂v

∂x
+

∂u

∂y
= 0 , (2.21)

where u1 = u(x, y) and u2 = v(x, y). These equations arise in the study of
analytic functions in Complex Analysis [379]. When written in matrix notation
(2.2) equations (2.21) become

Ux + AUy = 0 , (2.22)

with

U =
[

u
v

]
, A =

[
0 −1
1 0

]
. (2.23)

The characteristic polynomial |A − λI| = 0 gives λ2 + 1 = 0, which has no
real solutions for λ and thus the system is elliptic.

Example 2.8 (The Small Perturbation Equations). In Sect. 1.6.2 of Chap.
1, the small perturbation steady equations were introduced

ux − a2vy = 0 , vx − uy = 0 , (2.24)

with
a2 =

1
M2

∞ − 1
. (2.25)

M∞ = constant denotes the free–stream Mach number and u(x, y), v(x, y)
are small perturbations of the x and y velocity components respectively. In
matrix notation these equations read

Ux + AUy = 0 , (2.26)

with

U =
[

u
v

]
, A =

[
0 −a2

−1 0

]
. (2.27)

The character of these equations depends entirely on the value of the Mach
number M∞. For subsonic flow M∞ < 1 the characteristic polynomial has
complex solutions and thus the equations are of elliptic type. For supersonic
flow M∞ > 1 and the system is strictly hyperbolic, with eigenvalues

λ1 = −a , λ2 = +a . (2.28)

It is left to the reader to check that the corresponding right eigenvectors are

K(1) = α1

[
1

1/a

]
, K(2) = α2

[
1

−1/a

]
, (2.29)

where α1 and α2 are two non–zero scaling factors. By taking the values α1 =
α2 = a we obtain the following expressions for the right eigenvectors

K(1) =
[

a
1

]
, K(2) =

[
a
−1

]
,
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2.2 The Linear Advection Equation

A general, time–dependent linear advection equation in three space di-
mensions reads

ut + a(x, y, z, t)ux + b(x, y, z, t)uy + c(x, y, z, t)uz = 0 , (2.30)

where the unknown is u = u(x, y, z, t) and a, b, c are variable coefficients. If
the coefficients are sufficiently smooth one can express (2.30) as a conservation
law with source terms, namely

ut + (au)x + (bu)y + (cu)z = u(ax + by + cz) . (2.31)

In this section we study in detail the initial–value problem (IVP) for the
special case of the linear advection equation, namely

PDE: ut + aux = 0 , −∞ < x < ∞ , t > 0 .

IC: u(x, 0) = u0(x) ,

⎫
⎬
⎭ (2.32)

where a is a constant wave propagation speed. The initial data at time t = 0
is a function of x alone and is denoted by u0(x). We warn the reader that
for systems we shall use a different notation for the initial data. Generally,
we shall not be explicit about the conditions −∞ < x < ∞; t > 0 on the
independent variables when stating an initial–value problem. The PDE in
(2.32) is the simplest hyperbolic PDE and in view of (2.9) is also the simplest
hyperbolic conservation law. It is a very useful model equation for the purpose
of studying numerical methods for hyperbolic conservation laws, in the same
way as the linear, first–order ordinary differential equation

dx

dt
= β , x = x(t) , β = constant , (2.33)

is a popular model equation for analysing numerical methods for Ordinary
Differential Equation (ODEs). Two useful references on ordinary differential
equations are Brown [81] and Lambert [296]. In Sect. 15.4 of Chap. 15 we
study numerical methods for ODEs in connection with source terms in inho-
mogeneous PDEs.

2.2.1 Characteristics and the General Solution

We recall the definition of characteristics or characteristic curves in the
context of a scalar equation such as that in (2.32). Characteristics may be
defined as curves x = x(t) in the t–x plane along which the PDE becomes an
ODE. Consider x = x(t) and regard u as a function of t, that is u = u(x(t), t).
The rate of change of u along x = x(t) is
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du

dt
=

∂u

∂t
+

dx

dt

∂u

∂x
. (2.34)

If the characteristic curve x = x(t) satisfies the ODE

dx

dt
= a , (2.35)

then the PDE in (2.32), together with (2.34) and (2.35), gives

du

dt
=

∂u

∂t
+ a

∂u

∂x
= 0 . (2.36)

Therefore the rate of change of u along the characteristic curve x = x(t)
satisfying (2.35) is zero, that is, u is constant along the curve x = x(t). The
speed a in (2.35) is called the characteristic speed and according to (2.35) it is
the slope of the curve x = x(t) in the t–x plane. In practice it is more common
to use the x–t plane to sketch the characteristics, in which case the slope of the
curves in question is 1/a. The family of characteristic curves x = x(t) given by

x0

x0

t
0

Initial point

Characteristic curve x = x   + at

Fig. 2.1. Picture of characteristics for the linear advection equation for positive
characteristic speed a. Initial condition at time t = 0 fixes the initial position x0

the ODE (2.35) are illustrated in Fig. 2.1 for a > 0 and are a one–parameter
family of curves. A particular member of this family is determined when an
initial condition (IC) at time t = 0 for the ODE (2.35) is added. Suppose we
set

x(0) = x0 , (2.37)

then the single characteristic curve that passes through the point (x0, 0), ac-
cording to (2.35) is

x = x0 + at . (2.38)

This is also illustrated in Fig. 2.1. Now we may regard the initial position x0

as a parameter and in this way we reproduce the full one–parameter family
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of characteristics. The fact that the curves are parallel is typical of linear
hyperbolic PDEs with constant coefficients.

Recall the conclusion from (2.36) that u remains constant along charac-
teristics. Thus, if u is given the initial value u(x, 0) = u0(x) at time t = 0,
then along the whole characteristic curve x(t) = x0 + at that passes through
the initial point x0 on the x–axis, the solution is

u(x, t) = u0(x0) = u0(x − at) . (2.39)

The second equality follows from (2.38). The interpretation of the solution
(2.39) of the PDE in (2.32) is this: given an initial profile u0(x), the PDE will
simply translate this profile with velocity a to the right if a > 0 and to the
left if a < 0. The shape of the initial profile remains unchanged. The model
equation in (2.32) under study contains some of the basic features of wave
propagation phenomena, where a wave is understood as some recognisable
feature of a disturbance that travels at a finite speed.

2.2.2 The Riemann Problem

By using geometric arguments we have constructed the analytical solution
of the general IVP (2.32) for the linear advection equation. This is given by
(2.39) in terms of the initial data u0(x). Now we study a special IVP called
the Riemann problem

PDE: ut + aux = 0 .

IC: u(x, 0) = u0(x) =
{

uL if x < 0 ,
uR if x > 0 ,

⎫
⎪⎪⎬
⎪⎪⎭

(2.40)

where uL (left) and uR (right) are two constant values, as shown in Fig. 2.2.
Note that the initial data has a discontinuity at x = 0. IVP (2.40) is the
simplest initial–value problem one can pose. The trivial case would result
when uL = uR. From the previous discussion on the solution of the general
IVP (2.32) we expect any point on the initial profile to propagate a distance
d = at in time t. In particular, we expect the initial discontinuity at x = 0
to propagate a distance d = at in time t. This particular characteristic curve
x = at will then separate those characteristic curves to the left, on which the
solution takes on the value uL, from those curves to the right, on which the
solution takes on the value uR; see Fig. 2.3. So the solution of the Riemann
problem (2.40) is simply

u(x, t) = u0(x − at) =
{

uL if x − at < 0 ,
uR if x − at > 0 .

(2.41)

Solution (2.41) also follows directly from the general solution (2.39), namely
u(x, t) = u0(x−at). From (2.40), u0(x−at) = uL if x−at < 0 and u0(x−at) =
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u

u

L

R

u  (x)0

x=0

x

Fig. 2.2. Illustration of the initial data for the Riemann problem. At the initial
time the data consists of two constant states separated by a discontinuity at x = 0

uR if x − at > 0. The solution of the Riemann problem can be represented
in the x–t plane, as shown in Fig. 2.3. Through any point x0 on the x–axis
one can draw a characteristic. As a is constant these are all parallel to each
other. For the solution of the Riemann problem the characteristic that passes
through x = 0 is significant. This is the only one across which the solution
changes.

u

u
L

R

x - at < 0

Characteristic  x-at = 0

x - at > 0

x

t

0

Fig. 2.3. Illustration of the solution of the Riemann problem in the x–t plane for
the linear advection equation with positive characteristic speed a

2.3 Linear Hyperbolic Systems

In the previous section we studied in detail the behaviour and the general
solution of the simplest PDE of hyperbolic type, namely the linear advection
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equation with constant wave propagation speed. Here we extend the analysis
to sets of m hyperbolic PDEs of the form

Ut + AUx = 0 , (2.42)

where the coefficient matrix A is constant. From the assumption of hyper-
bolicity A has m real eigenvalues λi and m linearly independent eigenvectors
K(i), i = 1, . . . ,m.

2.3.1 Diagonalisation and Characteristic Variables

In order to analyse and solve the general IVP for (2.42) it is found useful to
transform the dependent variables U(x, t) to a new set of dependent variables
W(x, t). To this end we recall the following definition

Definition 2.9 (Diagonalisable System). A matrix A is said to be di-
agonalisable if A can be expressed as

A = KΛK−1 or Λ = K−1AK , (2.43)

in terms of a diagonal matrix Λ and a matrix K. The diagonal elements
of Λ are the eigenvalues λi of A and the columns K(i) of K are the right
eigenvectors of A corresponding to the eigenvalues λi, that is

Λ =

⎡
⎢⎢⎢⎣

λ1 . . . 0
0 . . . 0
...

...
...

0 . . . λm

⎤
⎥⎥⎥⎦ , K = [K(1), . . . ,K(m)] , AK(i) = λiK(i) . (2.44)

A system (2.42) is said to be diagonalisable if the coefficient matrix A is
diagonalisable. Based on the concept of diagonalisation one often defines a
hyperbolic system (2.42) as a system with real eigenvalues and diagonalisable
coefficient matrix.

Characteristic variables

The existence of the inverse matrix K−1 makes it possible to define a new
set of dependent variables W = (w1, w2, . . . , wm)T via the transformation

W = K−1U or U = KW , (2.45)

so that the linear system (2.42), when expressed in terms of W, becomes
completely decoupled, in a sense to be defined. The new variables W are called
characteristic variables. Next we derive the governing PDEs in terms of the
characteristic variables, for which we need the partial derivatives Ut and Ux

in equations (2.42). Since A is constant, K is also constant and therefore these
derivatives are
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Ut = KWt , Ux = KWx .

Direct substitution of these expressions into equation (2.42) gives

KWt + AKWx = 0 .

Multiplication of this equation from the left by K−1 and use of (2.43) gives

Wt + ΛWx = 0 . (2.46)

This is is called the canonical form or characteristic form of system (2.42).
When written in full this system becomes

⎡
⎢⎢⎢⎣

w1

w2

...
wm

⎤
⎥⎥⎥⎦

t

+

⎡
⎢⎢⎢⎣

λ1 . . . 0
0 . . . 0
...

...
...

0 . . . λm

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

w1

w2

...
wm

⎤
⎥⎥⎥⎦

x

= 0 . (2.47)

Clearly the i–th PDE of this system is

∂wi

∂t
+ λi

∂wi

∂x
= 0 , i = 1, . . . ,m (2.48)

and involves the single unknown wi(x, t); the system is therefore decoupled and
is identical to the linear advection equation in (2.32); now the characteristic
speed is λi and there are m characteristic curves satisfying m ODEs

dx

dt
= λi , for i = 1, . . . , m . (2.49)

2.3.2 The General Initial–Value Problem

We now study the IVP for the PDEs (2.42). The initial condition is now
denoted by superscript (0), namely

U(0) = (u(0)
1 , . . . , u(0)

m )T ,

rather than by subscript 0, as done for the scalar case. We find the general
solution of the IVP by first solving the corresponding IVP for the canonical
system (2.46) or (2.47) in terms of the characteristic variables W and initial
condition W(0) = (w(0)

1 , . . . , w
(0)
m )T such that

W(0) = K−1U(0) or U(0) = KW(0) .

The solution of the IVP for (2.46) is direct. By considering each unknown
wi(x, t) satisfying (2.48) and its corresponding initial data w

(0)
i we write its

solution immediately as

wi(x, t) = w
(0)
i (x − λit) , for i = 1, . . . ,m . (2.50)

Compare with solution (2.39) for the scalar case. The solution of the general
IVP in terms of the original variables U is now obtained by transforming back
according to (2.45), namely U = KW.
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Example 2.10 (Linearised Gas Dynamics Revisited). As a simple example
we now study the general IVP for the linearised equations of Gas Dynamics
(2.12), namely

[
u1

u2

]

t

+
[

0 ρ0

a2/ρ0 0

] [
u1

u2

]

x

= 0 , u1 ≡ ρ , u2 ≡ u ,

with initial condition
[

u1(x, 0)
u2(x, 0)

]
=

[
u

(0)
1 (x)

u
(0)
2 (x)

]
.

We define characteristic variables

W = (w1, w2)T = K−1U ,

where K is the matrix of right eigenvectors and K−1 is its inverse, both given
by

K =
[

ρ0 ρ0

−a a

]
, K−1 =

1
2aρ0

[
a −ρ0

a ρ0

]
.

Since λ1 = −a and λ2 = a, in terms of the characteristic variables we may
write [

w1

w2

]

t

+
[
−a 0
0 a

] [
w1

w2

]

x

= 0 ,

or in full
∂w1

∂t
− a

∂w1

∂x
= 0 ,

∂w2

∂t
+ a

∂w2

∂x
= 0 .

The initial condition satisfies
[

w
(0)
1

w
(0)
2

]
= K−1

[
u

(0)
1

u
(0)
2

]
,

or in full
w

(0)
1 (x) = 1

2aρ0

[
au

(0)
1 (x) − ρ0u

(0)
2 (x)

]
,

w
(0)
2 (x) = 1

2aρ0

[
au

(0)
1 (x) + ρ0u

(0)
2 (x)

]
.

Each equation involves a single independent variable and is a linear advection
equation of the form (2.48). The solution for w1 and w2 in terms of their
initial data w

(0)
1 , w

(0)
2 , according to (2.50) is

w1(x, t) = w
(0)
1 (x + at) , w2(x, t) = w

(0)
2 (x − at) ,

or in full
w1(x, t) =

1
2aρ0

[
au

(0)
1 (x + at) − ρ0u

(0)
2 (x + at)

]
,
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w2(x, t) =
1

2aρ0

[
au

(0)
1 (x − at) + ρ0u

(0)
2 (x − at)

]
.

This is the solution in terms of the characteristic variables . In order to obtain
the solution to the original problem we transform back using U = KW. This
gives the final solution as

u1(x, t) = 1
2a

[
au

(0)
1 (x + at) − ρ0u

(0)
2 (x + at)

]

+ 1
2a

[
au

(0)
1 (x − at) + ρ0u

(0)
2 (x − at)

]
,

⎫
⎪⎪⎬
⎪⎪⎭

u2(x, t) = − 1
2ρ0

[
au

(0)
1 (x + at) − ρ0u

(0)
2 (x + at)

]

+ 1
2ρ0

[
au

(0)
1 (x − at) + ρ0u

(0)
2 (x − at)

]
.

⎫
⎪⎪⎬
⎪⎪⎭

Exercise 2.11. Find the solution of the general IVP for the Small Per-
turbation Equations (2.24) using the above methodology.

Solution 2.12. (Left to the reader).

We return to the expression U = KW in (2.45) used to recover the solution
to the original problem. When written in full this expression becomes

u1 = w1k
(1)
1 + w2k

(2)
1 + . . . + wmk

(m)
1 ,

ui = w1k
(1)
i + w2k

(2)
i + . . . + wmk

(m)
i ,

um = w1k
(1)
m + w2k

(2)
m + . . . + wmk(m)

m ,

or ⎡
⎢⎢⎢⎣

u1

u2

...
um

⎤
⎥⎥⎥⎦ = w1

⎡
⎢⎢⎢⎢⎣

k
(1)
1

k
(1)
2
...

k
(1)
m

⎤
⎥⎥⎥⎥⎦

+ w2

⎡
⎢⎢⎢⎢⎣

k
(2)
1

k
(2)
2
...

k
(2)
m

⎤
⎥⎥⎥⎥⎦

+ . . . + wm

⎡
⎢⎢⎢⎢⎣

k
(m)
1

k
(m)
2
...

k
(m)
m

⎤
⎥⎥⎥⎥⎦

, (2.51)

or more succinctly

U(x, t) =
m∑

i=1

wi(x, t)K(i) . (2.52)

This means that the function wi(x, t) is the coefficient of K(i) in an eigenvector
expansion of the vector U. But according to (2.50), wi(x, t) = w

(0)
i (x − λit)

and hence

U(x, t) =
m∑

i=1

w
(0)
i (x − λit)K(i) . (2.53)

Thus, given a point (x, t) in the x–t plane, the solution U(x, t) at this point
depends only on the initial data at the m points x

(i)
0 = x− λit. These are the
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intersections of the characteristics of speed λi with the x–axis. The solution
(2.53) for U can be seen as the superposition of m waves, each of which is
advected independently without change in shape. The i–th wave has shape
w

(0)
i (x)K(i) and propagates with speed λi.

2.3.3 The Riemann Problem

We study the Riemann problem for the hyperbolic, constant coefficient
system (2.42). This is the special IVP

PDEs: Ut + AUx = 0 , −∞ < x < ∞ , t > 0 ,

IC: U(x, 0) = U(0)(x) =
{

UL x < 0 ,
UR x > 0

⎫
⎪⎪⎬
⎪⎪⎭

(2.54)

and is a generalisation of the IVP (2.32). We assume that the system is strictly
hyperbolic and we order the real and distinct eigenvalues as

λ1 < λ2 < . . . < λm . (2.55)

The General Solution

The structure of the solution of the Riemann problem (2.54) in the x–
t plane is depicted in Fig. 2.4. It consists of m waves emanating from the
origin, one for each eigenvalue λi. Each wave i carries a jump discontinuity
in U propagating with speed λi. Naturally, the solution to the left of the λ1–
wave is simply the initial data UL and to the right of the λm–wave is UR.
The task at hand is to find the solution in the wedge between the λ1 and
λm waves. As the eigenvectors K(1), . . . ,K(m) are linearly independent, we

λλλ

RL
Right data  U

λ
m

m-1
i

2
1 λ

Left data  U

t

0

x

Fig. 2.4. Structure of the solution of the Riemann problem for a general m × m
linear hyperbolic system with constant coefficients
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can expand the data UL, constant left state, and UR, constant right state, as
linear combinations of the set K(1), . . . ,K(m), that is

UL =
m∑

i=1

αiK(i) , UR =
m∑

i=1

βiK(i) , (2.56)

with constant coefficients αi, βi, for i = 1, . . . ,m. Formally, the solution of
the IVP (2.54) is given by (2.53) in terms of the initial data w

(0)
i (x) for the

characteristic variables and the right eigenvectors K(i). Note that each of the
expansions in (2.56) is a special case of (2.53). In terms of the characteristic
variables we have m scalar Riemann problems for the PDEs

∂wi

∂t
+ λi

∂wi

∂x
= 0 , (2.57)

with initial data obtained by comparing (2.56) with (2.53), that is

w
(0)
i (x) =

{
αi if x < 0 ,
βi if x > 0 ,

(2.58)

for i = 1, . . . ,m. From the previous results, see equation (2.50), we know that
the solutions of these scalar Riemann problems are given by

wi(x, t) = w
(0)
i (x − λit) =

{
αi if x − λit < 0 ,
βi if x − λit > 0 .

(2.59)

For a given point (x, t) there is an eigenvalue λI such that λI < x
t < λI+1,

that is x− λit > 0 ∀i such that i ≤ I. We can thus write the final solution to
the Riemann problem (2.54) in terms of the original variables as

U(x, t) =
m∑

i=I+1

αiK(i) +
I∑

i=1

βiK(i) , (2.60)

where the integer I = I(x, t) is the maximum value of the sub–index i for
which x − λit > 0.

The Solution for a 2 × 2 System

As an example consider the Riemann problem for a general 2 × 2 linear
system. From the origin (0, 0) in the (x, t) plane there will be two waves
travelling with speeds that are equal to the characteristic speeds λ1 and λ2

(λ1 < λ2); see Fig. 2.5. The solution to the left of dx/dt = λ1 is simply the
data state UL = α1K(1) +α2K(2) and to the right of dx/dt = λ2 the solution
is the constant data state UR = β1K(1) + β2K(2). The wedge between the
λ1 and λ2 waves is usually called the Star Region and the solution there is
denoted by U∗; its value is due to the passage of two waves emerging from
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x
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λ
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solution in star region:*U

(2) (1)
0 0

U

(x,t)*P

0
x

t

Fig. 2.5. Structure of the solution of the Riemann problem for a 2×2 linear system
with constant coefficients

the origin of the initial discontinuity. From the point P ∗(x, t) we trace back
the characteristics with speeds λ1 and λ2. These are parallel to those passing
through the origin. The characteristics through P ∗ pass through the initial
points x

(2)
0 = x − λ2t and x

(1)
0 = x − λ1t. The coefficients in the expansion

(2.60) for U(x, t) are thus determined. The solution at a point P ∗ has the
form (2.60). It is a question of choosing the correct coefficients αi or βi. Select
a time t∗ and a point xL to the left of the slowest wave so U(xL, t∗) = UL,
see Fig. 2.6. The solution at the starting point (xL, t∗) is obviously

λλ

L

*

1

Right dataLeft data

Star region

0

2

t

x

t

x

Fig. 2.6. The Riemann problem solution found by travelling along dashed horizontal
line t = t∗

UL =
2∑

i=1

αiKi = α1K(1) + α2K(2) ,
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i.e. all coefficients are α’s, that is, the point (xL, t∗) lies to the left of every
wave. As we move to the right of (xL, t∗) on the horizontal line t = t∗ we cross
the wave dx/dt = λ1, hence x − λ1t changes from negative to positive, see
(2.59), and therefore the coefficient α1 above changes to β1. Thus the solution
in the entire Star Region, between the λ1 and λ2 waves, is

U∗(x, t) = β1K(1) + α2K(2) . (2.61)

As we continue moving right and cross the λ2 wave the value x− λ2t changes
from negative to positive and hence the coefficient α2 in (2.60) and (2.61)
changes to β2, i.e the solution to the right of the fastest wave of speed λ2 is,
trivially,

UR = β1K(1) + β2K(2) .

Remark 2.13. From equation (2.56) it is easy to see that the jump in U
across the whole wave structure in the solution of the Riemann problem is

ΔU = UR − UL = (β1 − α1)K(1) + . . . + (βm − αm)K(m) . (2.62)

It is an eigenvector expansion with coefficients that are the strengths of the
waves present in the Riemann problem. The wave strength of wave i is βi−αi

and the jump in U across wave i, denoted by (ΔU)i, is

(ΔU)i = (βi − αi)K(i) . (2.63)

When solving the Riemann problem, sometimes it is more useful to expand
the total jump ΔU = UR − UL in terms of the eigenvectors and unknown
wave strengths δi = βi − αi.

2.3.4 The Riemann Problem for Linearised Gas Dynamics

As an illustrative example we apply the methodology described in the
previous section to solve the Riemann problem for the linearised equations of
Gas Dynamics (2.12)

Ut + AUx = 0 ,

with

U =
[

u1

u2

]
≡
[

ρ
u

]
, A =

[
0 ρ0

a2/ρ0 0

]
.

The eigenvalues of the system are

λ1 = −a , λ2 = +a ,

and the corresponding right eigenvectors are

K(1) =
[

ρ0

−a

]
, K(2) =

[
ρ0

a

]
.
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First we decompose the left data state UL = [ρL, uL]T in terms of the right
eigenvectors according to equation (2.56), namely

UL =
[

ρL

uL

]
= α1

[
ρ0

−a

]
+ α2

[
ρ0

a

]
.

Solving for the unknown coefficients α1 and α2 we obtain

α1 =
aρL − ρ0uL

2aρ0
, α2 =

aρL + ρ0uL

2aρ0
.

Similarly, by expanding the right–hand data UR = [ρR, uR]T in terms of the
eigenvectors and solving for the coefficients β1 and β2 we obtain

β1 =
aρR − ρ0uR

2aρ0
, β2 =

aρR + ρ0uR

2aρ0
.

Now by using equation (2.61) we find the solution in the star region as

U∗ =
[

ρ∗

u∗

]
= β1

[
ρ0

−a

]
+ α2

[
ρ0

a

]
.

After some algebraic manipulations we obtain the solution explicitly as

ρ∗ = 1
2 (ρL + ρR) − 1

2 (uR − uL)ρ0/a ,

u∗ = 1
2 (uL + uR) − 1

2 (ρR − ρL)a/ρ0 .

⎫
⎬
⎭ (2.64)

Fig. 2.7 illustrates the solution for ρ(x, t) and u(x, t) at time t = 1 for the
parameter values ρ0 = 1, a = 1 and initial data ρL = 1, uL = 0, ρR = 1

2 and
uR = 0. The two symmetric waves that emerge from the initial position of the
discontinuity carry a discontinuous jump in both density ρ and velocity u.

-1 0

x

1

Position of initial discontinuity

Position of left wave Position of right wave

Velocity profile at t= 1

Density profile at t = 1

1

Fig. 2.7. Density and velocity solution profiles at time t=1

Remark 2.14. The exact solution (2.64) can be very useful in testing nu-
merical methods for systems with discontinuous solutions.
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2.3.5 Some Useful Definitions

Next we recall some standard definitions associated with hyperbolic sys-
tems.

Definition 2.15 (Domain of Dependence). Recall that for the linear
advection equation the solution at a given point P = (x∗, t∗) depends solely
on the initial data at a single point x0 on the x–axis. This point is obtained
by tracing back the characteristic passing through the point P = (x∗, t∗). As
a matter of fact, the solution at P = (x∗, t∗) is identical to the value of the
initial data u0(x) at the point x0. One says that the domain of dependence
of the point P = (x∗, t∗) is the point x0. For a 2 × 2 system the domain
of dependence is an interval [xL, xR] on the x–axis that is subtended by the
characteristics passing through the point P = (x∗, t∗).

x

21 λλ

RL

t

Domain of dependence

determinacy

Domain  of

P

x

t

*

*

xx

Fig. 2.8. Domain of dependence of point P and corresponding domain of determi-
nacy, for a 2 by 2 system

Fig. 2.8 illustrates the domain of dependence for a 2×2 system with char-
acteristic speeds λ1 and λ2, with λ1 < λ2. In general, the characteristics of a
hyperbolic system are curved. For a larger system the domain of dependence is
determined by the slowest and fastest characteristics and is always a bounded
interval, as the characteristic speeds for hyperbolic systems are always finite.

Definition 2.16 (Domain of Determinacy). For a given domain of
dependence [xL, xR], the domain of determinacy is the set of points (x, t),
within the domain of existence of the solution U(x, t), in which U(x, t) is
solely determined by initial data on [xL, xR].

In Fig. 2.8 we illustrate the domain of determinacy of an interval [xL, xR]
for the case of a 2 × 2 system with characteristic speeds λ1 and λ2, with
λ1 < λ2.
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Definition 2.17 (Range of Influence). Another useful concept is that
of the range of influence of a point Q = (x0, 0) on the x–axis. It is defined
as the set of points (x, t) in the x–t plane in which the solution U(x, t) is
influenced by initial data at the point Q = (x0, 0).

Fig. 2.9 illustrates the range of influence of a point Q = (x0, 0) for the case
of a 2 × 2 system with characteristic speeds λ1 and λ2, with λ1 < λ2.

1 2

Range of influence

of point  Q

x
0

Q

t

x

λ λ

Fig. 2.9. Range of influence of point Q for a 2 by 2 system

2.4 Conservation Laws

The purpose of this section is to provide the reader with a succinct presen-
tation of some mathematical properties of hyperbolic conservation laws. We
restrict our attention to those properties thought to be essential to the devel-
opment and application of numerical methods for conservation laws. In Chap.
1 we applied the physical principles of conservation of mass, momentum and
energy to derive time–dependent, multidimensional non–linear systems of con-
servations laws. In this section we restrict ourselves to simple model problems.
In Sect. 2.1 we advanced the formal definition of a system of m conservation
laws

Ut + F(U)x = 0 , (2.65)

where U is the vector of conserved variables and F(U) is the vector of fluxes.
This system is hyperbolic if the Jacobian matrix

A(U) =
∂F
∂U

has real eigenvalues λi(U) and a complete set of linearly independent eigen-
vectors K(i)(U), i = 1, . . . ,m, which we assume to be ordered as

λ1(U) < λ2(U) <, . . . , < λm(U) ,

K(1)(U) , K(2)(U) , . . . , K(m)(U) .
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It is important to note that now eigenvalues and eigenvectors depend on U,
although sometimes we shall omit the argument U.

2.4.1 Integral Forms of Conservation Laws

As discussed in Sect. 1.5 of Chap. 1, conservation laws may be expressed
in differential and integral form. There are two good reasons for consider-
ing the integral form (s) of the conservation laws: (i) the derivation of the
governing equations is based on physical conservation principles expressed as
integral relations on control volumes, (ii) the integral formulation requires
less smoothness of the solution, which paves the way to extending the class of
admissible solutions to include discontinuous solutions.

The integral form has variants that are worth studying in detail. Consider
a one–dimensional time dependent system, such as the Euler equations intro-
duced in Sect. 1.1 of Chap. 1. Choose a control volume V = [xL, xR]× [t1, t2]
on the x–t plane as shown in Fig. 2.10. The integral form, see Sect. 1.5, of the

1

2t

t

t

x
RL

volume

Control

x

x

Fig. 2.10. A control volume V = [xL, xR] × [t1, t2] on x–t plane

equation for conservation of mass in one space dimension is

d
dt

∫ xR

xL

ρ(x, t) dx = f(xL, t) − f(xR, t) ,

where f = ρu is the flux. For the complete system we have

d
dt

∫ xR

xL

U(x, t) dx = F(U(xL, t)) − F(U(xR, t)) , (2.66)

where F(U) is the flux vector. This is one version of the integral form of the
conservation laws: Integral Form I. The corresponding differential form reads
as (2.65). Another version of the integral form of the conservation laws is
obtained by integrating (2.66) in time between t1 and t2, with t1 ≤ t2. See
Fig. 2.10. Clearly,
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∫ t2

t1

[
d
dt

∫ xR

xL

U(x, t) dx

]
dt =

∫ xR

xL

U(x, t2) dx −
∫ xR

xL

U(x, t1) dx

and thus (2.66) becomes

∫ xR

xL
U(x, t2) dx =

∫ xR

xL
U(x, t1) dx +

∫ t2
t1

F(U(xL, t)) dt

−
∫ t2

t1
F(U(xR, t)) dt ,

⎫
⎪⎬
⎪⎭

(2.67)

which we call: Integral Form II of the conservation laws.
Another version of the integral form of the conservation laws is obtained

by integrating (2.65) in any domain V in x–t space and using Green’s theorem.
The result is ∮

[U dx − F(U) dt] = 0 , (2.68)

where the line integration is performed along the boundary of the domain,
in an anticlock–wise manner. We call this version Integral Form III of the
conservation laws. Note that Integral Form II of the conservation laws is a
special case of Integral Form III, in which the control volume V is the rectangle
[xL, xR] × [t1, t2].

A fourth integral form results from adopting a more mathematical ap-
proach for extending the concept of solution of (2.65) to include disconti-
nuities. See Chorin and Marsden [112]. A weak or generalized solution U is
required to satisfy the integral relation

∫ +∞

0

∫ +∞

−∞
[φtU + φxF(U)] dxdt = −

∫ +∞

−∞
φ(x, 0)U(x, 0) dx , (2.69)

for all test functions φ(x, t) that are continuously differentiable and have com-
pact support. A function φ(x, t) has compact support if it vanishes outside
some bounded set. Note that in (2.69) the derivatives of U(x, t) and F(U)
have been passed on to the test function φ(x, t), which is sufficiently smooth
to admit these derivatives.

Remark 2.18. The integral forms (2.66)–(2.69) corresponding to (2.65) are
valid for any system (2.65), not just for the Euler equations.

Examples of Conservation Laws

Scalar conservation laws (m = 1) in differential form read

ut + f(u)x = 0 , f(u) : flux function. (2.70)

To be able to solve for the conserved variable u(x, t) the flux function f(u)
must be a completely determined algebraic function of u(x, t), and possibly
some extra parameters of the problem. As seen in Sect. 2.2 the linear advection
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equation is the simplest example, in which the flux function is f(u) = au, a
linear function of u.

The inviscid Burgers’s equation has flux f(u) = 1
2u2, a quadratic

function of u. Another example of a conservation law is the traffic flow
equation

ρt + f(ρ)x = 0 , f(ρ) = um(1 − ρ

ρm
)ρ . (2.71)

Here the conserved variable ρ(x, t) is a density function (density of motor
vehicles), um and ρm are parameters of the problem, namely the maximum
speed of vehicles and the maximum density, both positive constants. For de-
tails on the traffic flow equation see Whitham [582], Zachmanoglou and Thoe
[596], Toro [528] and Haberman [232]. An example of practical interest in
oil–reservoir simulation is the Buckley-Leverett equation

ut + f(u)x = 0 , f(u) =
u2

u2 + b(1 − u)2
, (2.72)

where b is a parameter of the problem. More details of this equation are found
in LeVeque [308].

Systems of conservation laws are constructed, as obvious examples,
from linear systems

Ut + AUx = 0 ,

with constant coefficient matrix A. The required conservation–law form is
obtained by defining the flux function as the product of the coefficient matrix
A and the vector U, namely

Ut + F(U)x = 0 , F(U) = AU . (2.73)

Trivially, the Jacobian matrix is A.

Example 2.19 (Isothermal Gas Dynamics). The isothermal equations of
Gas Dynamics, see Sect. 1.6.2 of Chap. 1, are one example of a non–linear
system of conservation laws. These are

Ut + F(U)x = 0 ,

U =
[

u1

u2

]
≡
[

ρ
ρu

]
, F =

[
f1

f2

]
≡
[

ρu
ρu2 + a2ρ

]
,

⎫
⎪⎪⎬
⎪⎪⎭

(2.74)

where a is positive, constant speed of sound. The Jacobian matrix is found
by first expressing F in terms of the components u1 ≡ ρ and u2 ≡ ρu of the
vector U of conserved variables, namely

F(U) =
[

f1

f2

]
≡
[

u2

u2
2/u1 + a2u1

]
.

According to (2.8) the Jacobian matrix is
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A(U) =
∂F
∂U

=
[

0 1
−(u2/u1)2 + a2 2u2/u1

]
=
[

0 1
a2 − u2 2u

]
.

It is left to the reader to verify that the eigenvalues of A are

λ1 = u − a , λ2 = u + a (2.75)

and that the right eigenvectors are

K(1) =
[

1
u − a

]
, K(2) =

[
1

u + a

]
, (2.76)

where the scaling factors for K(1) and K(2) have been taken to be unity. The
isothermal equations of Gas Dynamics are thus hyperbolic.

Example 2.20 (Isentropic Gas Dynamics). Another non–linear example of
a system of conservation laws are the isentropic equations of Gas Dynamics

Ut + F(U)x = 0 ,

U =
[

u1

u2

]
≡
[

ρ
ρu

]
, F =

[
f1

f2

]
≡
[

ρu
ρu2 + p

]
,

⎫
⎪⎪⎬
⎪⎪⎭

(2.77)

together with the closure condition, or equation of state (EOS),

p = Cργ , C = constant . (2.78)

See Sect. 1.6.2 of Chap. 1.

Exercise 2.21. (i) Find the Jacobian matrix, the eigenvalues and the right
eigenvectors for the isentropic equations (2.77)–(2.78). (ii) Show that for a
generalized isentropic EOS, p = p(ρ), the system is hyperbolic if and only if
p′(ρ) > 0, that is, the pressure must be a monotone increasing function of ρ.
(iii) Show that the sound speed has the general form

a =
√

p′(ρ) .

Solution 2.22. The eigenvalues are

λ1 = u − a , λ2 = u + a , (2.79)

and the right eigenvectors are

K(1) =
[

1
u − a

]
, K(2) =

[
1

u + a

]
, (2.80)

with the sound speed a as claimed.



66 2 Notions on Hyperbolic Partial Differential Equations

2.4.2 Non–Linearities and Shock Formation

Here we study some distinguishing features of non–linear hyperbolic con-
servation laws, such as wave steepening and shock formation. We restrict our
attention to the initial–value problem for scalar non–linear conservation laws,
namely

ut + f(u)x = 0 , u(x, 0) = u0(x) . (2.81)

A corresponding integral form of the conservation law is

d
dt

∫ xR

xL

u(x, t) dx = f(u(xL, t)) − f(u(xR, t)) . (2.82)

The flux function f is assumed to be a function of u only, which under certain
circumstances is an inadequate representation of the physical problem being
modelled. Relevant physical phenomena of our interest are shock waves in
compressible media. These have viscous dissipation and heat conduction, in
addition to pure advection. A more appropriate flux function for a model
conservation law would also include a dependence on ux, so that the modified
conservation law would read

ut + f(u)x = αuxx , (2.83)

with α a positive coefficient of viscosity. The conservation law in (2.81) may
be rewritten as

ut + λ(u)ux = 0 , (2.84)

where
λ(u) =

df

du
= f ′(u) (2.85)

is the characteristic speed. In the system case this corresponds to the eigen-
values of the Jacobian matrix. For the linear advection equation λ(u) = a,
constant. For the inviscid Burgers equation λ(u) = u, that is, the character-
istic speed depends on the solution and is in fact identical to the conserved
variable. For the traffic flow equation λ(u) = um(1 − 2u

ρm
).

The behaviour of the flux function f(u) has profound consequences on
the behaviour of the solution u(x, t) of the conservation law itself. A crucial
property is monotonicity of the characteristic speed λ(u). There are essentially
three possibilities:

• λ(u) is a monotone increasing function of u, i.e.

dλ(u)
du

= λ′(u) = f ′′(u) > 0 (convex flux)

• λ(u) is a monotone decreasing function of u, i.e.

dλ(u)
du

= λ′(u) = f ′′(u) < 0 (concave flux)
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• λ(u) has extrema, for some u, i.e.

dλ(u)
du

= λ′(u) = f ′′(u) = 0 (non–convex, non–concave flux) .

In the case of non–linear systems of conservation laws the character of the
flux function is determined by the Equation of State. One speaks of convex,
or otherwise, equations of state. See the review paper by Menikoff and Plohr
[349]. For the inviscid Burgers equation λ′(u) = f ′′(u) = 1 > 0, the flux is
convex. For the traffic flow equation λ′(u) = f ′′(u) = −2um/ρm < 0, the flux
is concave.

Exercise 2.23. Analyse the character of the flux function for the Buckley–
Leverett equation and show that it is non–convex, non–concave.

Solution 2.24. (Left to the reader).

We study the inviscid IVP (2.81) and for the moment we assume that the
initial data u(x, 0) = u0(x) is smooth. For some finite time the solution u(x, t)
will remain smooth. We rewrite the IVP as

ut + λ(u)ux = 0 , λ(u) = f ′(u) ,

u(x, 0) = u0(x) .

⎫
⎬
⎭ (2.86)

Note that the PDE in (2.86) is a non–linear extension of the linear advection
equation in (2.32) in which the characteristic speed is λ(u) = a = constant.
We construct solutions to IVP (2.86) following characteristic curves, in much
the same way as performed for the linear advection equation.

Construction of Solutions on Characteristics

Consider characteristic curves x = x(t) satisfying the IVP

dx

dt
= λ(u) , x(0) = x0 . (2.87)

Then, by regarding both u and x to be functions of t we find the total deriva-
tive of u along the curve x(t), namely

du

dt
= ut + λ(u)ux = 0 . (2.88)

That is, u is constant along the characteristic curve satisfying the IVP (2.87)
and therefore the slope λ(u) is constant along the characteristic. Hence the
characteristic curves are straight lines. The value of u along each curve is the
value of u at the initial point x(0) = x0 and we write

u(x, t) = u0(x0) . (2.89)
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Fig. 2.11 shows a typical characteristic curve emanating from the initial point
x0 on the x–axis. The slope λ(u) of the characteristic may then be evaluated
at x0 so that the solution characteristics curves of IVP (2.87) are

x = x0 + λ(u0(x0))t . (2.90)

Relations (2.89) and (2.90) may be regarded as the analytical solution of IVP
(2.86). Note that the point x0 depends on the given point (x, t), see Fig. 2.
11, and thus x0 = x0(x, t). The solution given by (2.89) and (2.90) is implicit,
which is more apparent if we substitute x0 from (2.90) into (2.89) to obtain

u(x, t) = u0(x − λ(u0(x0))t) . (2.91)

Note that this solution is identical in form to the solution (2.39) of the linear
advection equation in (2.32).

x

t

x0 x

t

Fig. 2.11. Typical characteristic curves for a non–linear hyperbolic conservation
law

Next we verify that relations (2.89) and (2.90) actually define the solution.
From (2.89) we obtain the t and x derivatives

ut = u′
0(x0)

∂x0

∂t
, ux = u′

0(x0)
∂x0

∂x
. (2.92)

From (2.90) the t and x derivatives are found to be

λ(u0(x0)) + [1 + λ′(u0(x0))u′
0(x0)t] ∂x0

∂t = 0 ,

[1 + λ′(u0(x0))u′
0(x0)t] ∂x0

∂x = 1 .

⎫
⎬
⎭ (2.93)

From (2.93) we obtain

∂x0

∂t
= − λ(u0(x0))

1 + λ′(u0(x0))u′
0(x0)t

(2.94)

and
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∂x0

∂x
=

1
1 + λ′(u0(x0))u′

0(x0)t
. (2.95)

Substitution of (2.94)–(2.95) into (2.92) verifies that ut and ux satisfy the
PDE in (2.86).

Wave Steepening

Recall that in the case of the linear advection equation, in which the
characteristic speed is λ(u) = a = constant, the solution consists of the initial
data u0(x) translated with speed a without distortion. In the non–linear case
the characteristic speed λ(u) is a function of the solution itself. Distortions
are therefore produced; this is a distinguishing feature of non–linear problems.
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Fig. 2.12. Wave steepening in a convex, non–linear hyperbolic conservation law:
(a) initial condition and (b) corresponding picture of characteristics

To explain the wave distortion phenomenon we consider initial data
u0(x) as shown in Fig. 2.12. A smooth initial profile is shown in Fig. 2.12a
along with five initial points x

(i)
0 and their corresponding initial data values

u
(i)
0 = u0(x

(i)
0 ). For the moment let us assume that the flux function f(u) is

convex, that is λ′(u) = f ′′(u) > 0. In this case the characteristic speed is an
increasing function of u. Fig. 2.12b shows the characteristics x(i)(t) emanat-
ing from the initial points x

(i)
0 and carrying the constant initial values u

(i)
0

along them. Given the assumed convex character of the flux, higher values
of u0(x) will travel faster than lower values of u0(x). There are two inter-
vals on the x–axis where distortions are most evident. These are the intervals
IE = [x(1)

0 , x
(3)
0 ] and IC = [x(3)

0 , x
(5)
0 ]. In IE the value u

(3)
0 will propagate faster

than u
(2)
0 and this in turn will propagate faster that u

(1)
0 . The orientation of

the respective characteristics in Fig. 2.12b makes this situation clear. At a
later time the initial data in IE will have been transformed into a broader
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and flatter profile. We say that IE is an expansive region. In the expansive
region the characteristic speed increases as x increases, that is λx > 0. By
contrast the interval IC is compressive and λx < 0; the value u

(3)
0 will propa-

gate faster than u
(4)
0 and this in turn will propagate faster that u

(5)
0 , as shown

by the orientation of the respective characteristics in Fig. 2.12b. The com-
pressive region will tend to get steeper and narrower as time evolves. The
wave steepening mechanism will eventually produce folding over of the solu-
tion profile, with corresponding crossing of characteristics, and triple–valued
solutions. Note that the compressive and expansive character of the data just
described reverses for the case of a concave flux, λ′(u) = f ′′(u) < 0. Before
crossing of characteristics the single–valued solution may be found following
characteristics, as described previously. When characteristics first intersect we
say that the wave breaks; the derivative ux becomes infinite and this happens
at a precise breaking time tb given by

tb =
−1

λx(x0)
. (2.96)

This is confirmed by equations (2.94)–(2.95). Breaking first occurs on the
characteristic emanating from x = x0 for which λx(x0) is negative and |λx(x0)|
is a maximum. For details see Whitham [582].

This is an anomalous situation that may be rescued by going back to the
physical origins of the equations and questioning the adequacy of the model
furnished by (2.81). The improved model equation (2.83) says that the time
rate of change of u is not just due to the advection term f(u)x but is a
competing balance between advection and the diffusion term αuxx. As shown
in Fig. 2.12a in the interval [x(3)

0 , x
(4)
0 ] the wave steepening effect of f(u)x

is opposed by the wave-easing effect of αuxx, which is negative there. In the
interval [x(4)

0 , x
(5)
0 ] the role of these contradictory effects is reversed. The more

complete description of the physics does not allow folding over of the solution.
But rather than working with the more complete, and therefore more complex,
viscous description of the problem, it is actually possible to insist on using
the inviscid model (2.81) by allowing discontinuities to be formed as a process
of increasing compression, namely shock waves. Further details are found in
Lax [301], Whitham [582] and Smoller [451].

Shock Waves

Shock waves in air are small transition layers of very rapid changes of
physical quantities such as pressure, density and temperature. The transition
layer for a strong shock is of the same order of magnitude as the mean–free
path of the molecules, that is about 10−7 m. Therefore replacing these waves as
mathematical discontinuities is a reasonable approximation. Very weak shock
waves such as sonic booms, are an exception; the discontinuous approximation
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here can be very inaccurate indeed, see Whitham [582]. For a discussion on
shock thickness see Landau and Lifshitz [297], pp. 337–341.

We therefore insist on using the simplified model (2.81) but in its integral
form, e.g. (2.82). Consider a solution u(x, t) such that u(x, t), f(u) and their
derivatives are continuous everywhere except on a line s = s(t) on the x–t
plane across which u(x, t) has a jump discontinuity. Select two fixed points xL

and xR on the x–axis such that xL < s(t) < xR. Enforcing the conservation
law in integral form (2.82) on the control volume [xL, xR] leads to

f(u(xL, t)) − f(u(xR, t)) =
d
dt

∫ s(t)

xL

u(x, t) dx +
d
dt

∫ xR

s(t)

u(x, t) dx .

Direct use of formula (1.68) of Chap. 1 yields

f(u(xL, t)) − f(u(xR, t)) = [u(sL, t) − u(sR, t)] S

+
∫ s(t)

xL
ut(x, t) dx +

∫ xR

s(t)
ut(x, t) dx ,

⎫
⎪⎬
⎪⎭

where u(sL, t) is the limit of u(s(t), t) as x tends to s(t) from the left, u(sR, t)
is the limit of u(s(t), t) as x tends to s(t) from the right and S = ds/dt
is the speed of the discontinuity. As ut(x, t) is bounded the integrals vanish
identically as s(t) is approached from left and right and we obtain

f(u(xL, t)) − f(u(xR, t)) = [u(sL, t) − u(sR, t)] S . (2.97)

This algebraic expression relating the jumps Δf = f(u(xR, t)) − f(u(xL, t)),
Δu = u(xR, t) − u(xL, t) and the speed S of the discontinuity is called the
Rankine–Hugoniot condition and is usually expressed as

Δf = SΔu . (2.98)

For the scalar case considered here one can solve for the speed S as

S =
Δf

Δu
. (2.99)

Therefore, in order to admit discontinuous solutions we may formulate the
problem in terms of PDEs, which are valid in smooth parts of the solution,
and the Rankine–Hugoniot conditions across discontinuities.

Two Examples of Discontinuous Solutions

Consider the following initial–value problem for the inviscid Burgers equa-
tion

ut + f(u)x = 0 , f(u) = 1
2u2 ,

u(x, 0) = u0(x) =
{

uL if x < 0 ,
uR if x > 0 .

⎫
⎪⎪⎬
⎪⎪⎭

(2.100)
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First assume that uL > uR. As the flux is convex λ′(u) = f ′′(u) > 0 the
characteristic speeds on the left are greater than those on the right, that is
λL ≡ λ(uL) > λR ≡ λ(uR). Based on the discussion about Fig. 2.12 the
initial data in IVP (2.100) is the extreme case of compressive data. Crossing
of characteristics takes place immediately, as illustrated in Fig. 2.13b. The
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Shock of speed S

0
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x

t

x

Fig. 2.13. (a) Compressive discontinuous initial data (b) picture of characteristics
and (c) solution on x–t plane

discontinuous solution of the IVP is

u(x, t) =
{

uL if x − St < 0 ,
uR if x − St > 0 ,

(2.101)

where the speed of the discontinuity is found from (2.99) as

S =
1
2
(uL + uR) . (2.102)

This discontinuous solution is a shock wave and is compressive in nature as
discussed previously and as observed in Fig. 2.13a; it satisfies the following
condition

λ(uL) > S > λ(uR) , (2.103)

which is called the entropy condition. More details are found in Chorin and
Marsden [112], LeVeque [308], Smoller [451], Whitham [582].

Now we assume that uL < uR in the IVP (2.100). This data is the extreme
case of expansive data, for convex f(u). A possible mathematical solution has
identical form as solution (2.101)–(2.102) for the compressive data case. See
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Fig. 2.14. However, this solution is physically incorrect. The discontinuity
has not arisen as the result of compression, λL < λR; the characteristics
diverge from the discontinuity. This solution is called a rarefaction shock, or
entropy–violating shock, and does not satisfy the entropy condition (2.103);
it is therefore rejected as a physical solution. Compare Figs. 2.13 and 2.14;
in the compressive case characteristics run into the discontinuity. Given the
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Rarefaction shock
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0
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u

Fig. 2.14. (a) Expansive discontinuous initial data (b) picture of characteristics
and (c) rarefaction shock solution on x-t plane

expansive character of the data and based on the discussion on Fig. 2.12, it
would be more reasonable to expect the initial data to break up immediately
and to broaden with time. This actually gives another solution to be discussed
next.

Rarefaction Waves

Reconsider the IVP (2.100) with general convex flux function f(u)

ut + f(u)x = 0 ,

u(x, 0) = u0(x) =
{

uL if x < 0 ,
uR if x > 0 ,

⎫
⎬
⎭ (2.104)

and expansive initial data, uL < uR. As discussed previously, the entropy–
violating solution to this problem is
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u(x, t) =
{

uL if x − St < 0 ,
uR if x − St > 0 ,

S = Δf
Δu .

⎫
⎪⎪⎬
⎪⎪⎭

(2.105)

Amongst the various other reasons for rejecting this solution as a physical
solution, instability stands out as a prominent argument. By instability it is
meant that small perturbations of the initial data lead to large changes in the
solution. As a matter of fact, under small perturbations, the whole character
of the solution changes completely, as we shall see.
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Fig. 2.15. Non–centred rarefaction wave: (a) expansive smooth initial data, (b)
picture of characteristics on x–t plane

Let us modify the initial data in (2.104) by replacing the discontinuous
change from uL to uR by a linear variation of u0(x) between two fixed points
xL < 0 and xR > 0. Now the initial data reads

u0(x) =

⎧
⎨
⎩

uL if x ≤ xL ,
uL + uR−uL

xR−xL
(x − xL) if xL < x < xR ,

uR if x ≥ xR ,
(2.106)

and is illustrated in Fig. 2.15a. The corresponding picture of characteristics
emanating from the initial time t = 0 is shown in Fig. 2.15b. The solution
u(x, t) to this problem is found by following characteristics, as discussed previ-
ously, and consists of two constant states, uL and uR, separated by a region of
smooth transition between the data values uL and uR. This is called a rarefac-
tion wave. The right edge of the wave is given by the characteristic emanating



2.4 Conservation Laws 75

u
L

R
x

t

u

x

R

Tail
Head

(a)

(b)

(c)

L

t

x

0

t

u

u

Fig. 2.16. Centred rarefaction wave: (a) expansive discontinuous initial data (b)
picture of characteristics (c) entropy satisfying (rarefaction) solution on x–t plane

from xR

x = xR + λ(uR)t (2.107)

and is called the Head of the rarefaction. It carries the value u0(xR) = uR .
The left edge of the wave is given by the characteristic emanating from xL

x = xL + λ(uL)t (2.108)

and is called the Tail of the rarefaction. It carries the value u0(xL) = uL.
As we assume convexity, λ′(u) = f ′′(u) > 0, larger values of u0(x) propa-

gate faster than lower values and thus the wave spreads and flattens as time
evolves. The spreading of waves is a typical non–linear phenomenon not seen
in the study of linear hyperbolic systems with constant coefficients. The entire
solution is

u(x, t) = uL if x−xL
t ≤ λL ,

λ(u) = x−xL
t if λL < x−xL

t < λR ,
u(x, t) = uR if x−xR

t ≥ λR .

⎫
⎬
⎭ (2.109)

No matter how small the size Δx = xR − xL of the interval over which the
discontinuous data in IVP (2.104) has been spread over, the structure of the
above rarefaction solution remains unaltered and is entirely different from the
rarefaction shock solution (2.105), for which small changes to the data lead to
large changes in the solution. Thus the rarefaction shock solution is unstable.
From the above construction the rarefaction solution is stable and as xL and
xR approach zero from below and above respectively, the discontinuous data
at x = 0 in IVP (2.104) is reproduced. Therefore, the limiting case is to be
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interpreted as follows: u0(x) takes on all the values between uL and uR at
x = 0 and consequently λ(u0(x)) takes on all the values between λL and λR

at x = 0. As higher values propagate faster than lower values the initial data
disintegrates immediately giving rise to a rarefaction solution. This limiting
rarefaction in which all characteristics of the wave emanate from a single point
is called a centred rarefaction wave. The solution is

u(x, t) = uL if x
t ≤ λL ,

λ(u) = x
t if λL < x

t < λR ,
u(x, t) = uR if x

t ≥ λR ,

⎫
⎬
⎭ (2.110)

and is illustrated in Fig. 2.16.
Now we have at least two solutions to the IVP (2.104). Thus, having

extended the concept of solution to include discontinuities, extra spurious so-
lutions are now part of this extended class. The question is how to distinguish
between a physically correct solution and a spurious solution. The anticipated
answer is that a physical discontinuity, in addition to the Rankine–Hugoniot
condition (2.98), also satisfies the entropy condition (2.103).

The Riemann Problem for the Inviscid Burgers Equation

We finalise this section by giving the solution of the Riemann problem for
the inviscid Burgers equation, namely

PDE : ut + (u2

2 )x = 0 ,

IC : u(x, 0) =
{

uL, x < 0 ,
uR, x > 0 .

⎫
⎬
⎭ (2.111)

From the previous discussion the exact solution is a single wave emanating
from the origin as shown in Fig. 2.17a. In view of the entropy condition this
wave is either a shock wave, when uL > uR, or a rarefaction wave, when
uL ≤ uR. The complete solution is

u(x, t) =
{

uL if x − St < 0
uR if x − St > 0

S = 1
2 (uL + uR)

⎫
⎬
⎭ if uL > uR ,

u(x, t) =

⎧
⎨
⎩

uL if x
t ≤ uL

x
t if uL < x/t < uR

uR if x/t ≥ uR

⎫
⎬
⎭ if uL ≤ uR .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.112)

Fig. 2.17 shows the solution of the Riemann problem for the inviscid Burgers
equation. Fig. 2.17a depicts the structure of the general solution and consists
of a single wave, Fig. 2.17b shows the case in which the solution is a shock
wave and Fig. 2.17c shows the case in which it is a rarefaction wave.

Some of the studied notions for scalar conservations laws extend quite
directly to systems of hyperbolic conservations laws, as we see in the next
section.
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Fig. 2.17. Solution of the Riemann problem for the inviscid Burgers equation: (a)
structure of general solution (single wave, shock or rarefaction), (b) solution is a
shock wave and (c) solution is a rarefaction wave

2.4.3 Characteristic Fields

Consider a hyperbolic system of conservation laws of the form (2.65) with
real eigenvalues λi(U) and corresponding right eigenvectors K(i)(U). The
characteristic speed λi(U) defines a characteristic field, the λi–field. Some-
times one also speaks of the K(i)–field, that is the characteristic field defined
by the eigenvector K(i).

Definition 2.25 (Linearly degenerate fields). A λi–characteristic field
is said to be linearly degenerate if

∇λi(U) · K(i)(U) = 0 , ∀U ∈ 
m , (2.113)

where 
m is the set of real–valued vectors of m components.

Definition 2.26 (Genuinely nonlinear fields). A λi–characteristic field
is said to be genuinely nonlinear if

∇λi(U) · K(i)(U) �= 0 , ∀U ∈ 
m . (2.114)

The symbol ‘·’ denotes the dot product in phase space. ∇λi(U) is the
gradient of the eigenvalue λi(U), namely

∇λi(U) =
(

∂

∂u1
λi,

∂

∂u2
λi, . . . ,

∂

∂um
λi

)T

.

The phase space is the space of vectors U = (u1, . . . , um); for a 2 × 2 system
we speak of the phase plane u1–u2. Note that for a linear system (2.42) the
eigenvalues λi are constant and therefore ∇λi(U) = 0. Hence all characteris-
tic fields of a linear hyperbolic system with constant coefficients are linearly
degenerate.

Exercise 2.27. Show that both characteristic fields of the isothermal
equations of Gas Dynamics (2.74) are genuinely non–linear.
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Solution 2.28. First we write the eigenvalues (2.75) in terms of the con-
served variables, namely

λ1 =
u2

u1
− a , λ2 =

u2

u1
+ a ,

∇λ1(U) =
(
−u

ρ
,
1
ρ

)T

, ∇λ2(U) =
(
−u

ρ
,
1
ρ

)T

.

Therefore
∇λ1(U) · K(1)(U) = −a

ρ
�= 0 ,

∇λ2(U) · K(2)(U) =
a

ρ
�= 0

and thus both characteristic fields are genuinely non–linear, as claimed.

Example 2.29 (Detonation Analogue). In the study of detonation waves in
high energy solids it is found useful to devise mathematical objects that pre-
serve some of the basic physical features of detonation phenomena but are
simpler to analyse than more comprehensive models. Fickett [191] proposed a
system that is essentially the inviscid Burgers equation plus a reaction model.
He called the system detonation analogue. Clarke and colleagues [118] pointed
out that this analogue is also exceedingly useful for numerical purposes. Writ-
ing the system in conservation–law form one has the inhomogeneous system
with a source term, namely

Ut + F(U)x = S(U) , (2.115)

U =
[

u1

u2

]
≡
[

ρ
α

]
, F =

[
1
2 (ρ2 + αQ)

0

]
, S =

[
0

2
√

1 − α

]
. (2.116)

The parameter Q plays the role of heats of reaction and α is a reaction progress
variable. The mathematical character of the system is determined solely by
the homogeneous part, S = 0. The Jacobian matrix is

A(U) =
∂F
∂U

=
[

u1
1
2Q

0 0

]
=
[

ρ 1
2Q

0 0

]
.

Simple calculations show that the eigenvalues are

λ1 = 0 , λ2 = ρ (2.117)

and the right eigenvectors are

K(1) =
[

1
−2ρ/Q

]
, K(2) =

[
1
0

]
. (2.118)

The detonation analogue is therefore hyperbolic.

Exercise 2.30. Check that the λ1–field is linearly degenerate and that
the λ2–field is genuinely non–linear.

Solution 2.31. (Left to the reader).



2.4 Conservation Laws 79

Rankine-Hugoniot Conditions

Given a system of hyperbolic conservation laws

Ut + F(U)x = 0 (2.119)

and a discontinuous wave solution of speed Si associated with the λi–
characteristic field, the Rankine–Hugoniot conditions state

ΔF = SiΔU , (2.120)

with

ΔU ≡ UR − UL , ΔF ≡ FR − FL , FL = F(UL) , FR = F(UR) ,

where UL and UR are the respective states immediately to the left and right
of the discontinuity. Fig. 2.18 illustrates the Rankine–Hugoniot conditions.
Note that unlike the scalar case, see (2.99), it is generally not possible to

S

L R

L R

i

F

U U

F

Fig. 2.18. Illustration of the Rankine–Hugoniot conditions for a single discontinuity
of speed Si connecting two constant states UL and UR via a system of conservation
laws

solve for the speed Si. For a linear system with constant coefficients

Ut + AUx = 0 ,

with eigenvalues λi, for i = 1, . . . , m, the Rankine–Hugoniot conditions across
the wave of speed Si ≡ λi read

ΔF = AΔU = λi(ΔU)i . (2.121)

See (2.63). Actually, these conditions provide a technique for finding the so-
lution of the Riemann problem for linear hyperbolic system with constant
coefficients.

Exercise 2.32. Solve the Riemann problem for the linearised equations
of Gas Dynamics using the Rankine–Hugoniot conditions across each wave.
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Solution 2.33. The structure of the solution is depicted in Fig. 2.5. The
unknowns are ρ∗ and u∗ in the Star Region. Recall that the vector U and the
coefficient matrix A are given by

U =
[

u1

u2

]
≡
[

ρ
u

]
, A =

[
0 ρ0

a2/ρ0 0

]

and the eigenvalues are

λ1 = −a , λ2 = +a .

Application of the Rankine–Hugoniot conditions across the λ1–wave of speed
S1 = λ1 gives [

0 ρ0
a2

ρ0
0

] [
ρ∗ − ρL

u∗ − uL

]
= −a

[
ρ∗ − ρL

u∗ − uL

]
.

Expanding and solving for u∗ gives

u∗ = uL − (ρ∗ − ρL)
a

ρ0
.

For the λ2–wave of speed S2 = λ2 we obtain

u∗ = uR + (ρ∗ − ρR)
a

ρ0
.

The simultaneous solution of these two linear algebraic equations for the un-
knowns ρ∗ and u∗ is

ρ∗ = 1
2 (ρL + ρR) − 1

2 (uR − uL)ρ0/a ,

u∗ = 1
2 (uL + uR) − 1

2 (ρR − ρL)a/ρ0 ,

which is the solution (2.64) obtained using a different technique based on
eigenvector expansion of the initial data. The technique that makes use of the
Rankine–Hugoniot conditions is more direct.

Generalised Riemann Invariants

For a general quasi–linear hyperbolic system

Wt + A(W)Wx = 0 , (2.122)

with
W = [w1, w2, · · ·wm]T ,

we consider the wave associated with the i–characteristic field with eigenvalue
λi and corresponding right eigenvector
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K(i) =
[
k

(i)
1 , k

(i)
2 , · · · k(i)

m

]T

.

The vector of dependent variables W here is some suitable set, which may
be the set conserved variables, for instance. Recall that any system of con-
servation laws may always be expressed in quasi–linear form via the Jacobian
matrix, see (2.6) and (2.8).

The Generalised Riemann Invariants are relations that hold true, for cer-
tain waves, across the wave structure and lead the following (m− 1) ordinary
differential equations

dw1

k
(i)
1

=
dw2

k
(i)
2

=
dw3

k
(i)
3

= · · · =
dwm

k
(i)
m

. (2.123)

They relate ratios of changes dws of a quantity ws to the respective component
k

(i)
s of the right eigenvector K(i) corresponding to a λi–wave family . For a

detailed discusssion see the book by Jeffrey [269].

Example 2.34 (Linearised Gas Dynamics revisited). Here we find the Gen-
eralised Riemann Invariants for the linearised equations of Gas Dynamics.
The dependent variables are

W =
[

w1

w2

]
≡
[

ρ
u

]

and the right eigenvectors are

K(1) =
[

ρ0

−a

]
, K(2) =

[
ρ0

a

]
.

Across the λ1–wave we have

dρ

ρ0
=

du

−a
,

which leads to
du +

a

ρ0
dρ = 0 .

After integration this produces

IL(ρ, u) = u +
a

ρ0
ρ = constant . (2.124)

The constant of integration is obtained by evaluating IL(ρ, u) at a reference
state. Across the λ2–wave we have

dρ

ρ0
=

du

a
,

which leads to
IR(ρ, u) = u − a

ρ0
ρ = constant . (2.125)

Again the constant of integration is obtained by evaluating IR(ρ, u) at a ref-
erence state.
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Exercise 2.35. Solve the Riemann problem for the linearised equations
of Gas Dynamics using the Generalised Riemann Invariants.

Solution 2.36. Application of IL(ρ, u) across the left wave connecting the
states WL and W∗ gives

u∗ +
a

ρ0
ρ∗ = uL +

a

ρ0
ρL .

Similarly, application of IR(ρ, u) across the right wave connecting the states
WR and W∗ gives

u∗ −
a

ρ0
ρ∗ = uR − a

ρ0
ρR

and the simultaneous solution for the unknowns ρ∗ and u∗ gives

ρ∗ = 1
2 (ρL + ρR) − 1

2 (uR − uL)ρ0/a ,

u∗ = 1
2 (uL + uR) − 1

2 (ρR − ρL)a/ρ0 ,

⎫
⎬
⎭

which is the same solution (2.64) obtained from applying other techniques.

Exercise 2.37. Solve the Riemann problem for the Small Perturbation
Equations (2.24) using the following techniques:

• by expanding the initial data UL and UR in terms of the eigenvectors, see
(2.56).

• by expanding the total jump ΔU in terms of the eigenvectors, see (2.62).
• by using the Rankine-Hugoniot Conditions across each wave, see (2.121).
• by applying the Generalised Riemann Invariants, see (2.123).

Solution 2.38. Use of any of the suggested techniques will give the general
solution

u∗ = 1
2 (uL + uR) + 1

2a(vR − vL) ,

v∗ = 1
2 (vL + vR) + 1

2a (uR − uL) .

⎫
⎬
⎭

Example 2.39 (Isentropic Gas Dynamics Revisited). For this example the
eigenvalues are λ1 = u − a and λ2 = u + a, with a =

√
p′(ρ) =

√
γp
ρ defining

the sound speed. The corresponding right eigenvectors are given by

K(1) =
[

1
u − a

]
, K(2) =

[
1

u + a

]
.

Across the left λ1 = u − a wave we have

dρ

1
=

d(ρu)
u − a

,

which after expanding differentials yields
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du +
a

ρ
dρ = 0 .

On exact integration we obtain

IL(ρ, ρu) = u +
∫

a

ρ
dρ = constant . (2.126)

Across the right λ2 = u + a wave we obtain

IR(ρ, ρu) = u −
∫

a

ρ
dρ = constant . (2.127)

As as the sound speed a is a function of ρ alone we can evaluate the integral
term above exactly as ∫

a

ρ
dρ =

2a

γ − 1

by first noting that

a =
√

p′(ρ) =
√

Cγργ−1 =
√

Cγρ
γ−1

2 .

Then the left and right Riemann Invariants become

IL(ρ, ρu) = u + 2a
γ−1 = constant across the λ1–wave,

IR(ρ, ρu) = u − 2a
γ−1 = constant across the λ2–wave.

⎫
⎬
⎭ (2.128)

Generalised Riemann Invariants provide a powerful tool of analysis of hyper-
bolic conservation laws.

2.4.4 Elementary–Wave Solutions of the Riemann Problem

The Riemann problem for a general m × m non–linear hyperbolic system
with data UL, UR is the IVP

Ut + F(U)x = 0 ,

U(x, 0) = U(0)(x) =
{

UL if x < 0 ,
UR if x > 0 .

⎫
⎬
⎭ (2.129)

The similarity solution U(x/t) of (2.129) consists of m + 1 constant states
separated by m waves, as depicted by the x–t picture of Fig. 2.19. For each
eigenvalue λi there is a wave family. For linear systems with constant coef-
ficients each wave is a discontinuity of speed Si = λi and defines a linearly
degenerate field.

For non–linear systems the waves may be discontinuities such as shock
waves and contact waves, or smooth transition waves such as rarefactions.
The possible types of waves present in the solution of the Riemann prob-
lem depends crucially on closure conditions. For the Euler equations we shall
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Fig. 2.19. Structure of the solution of the Riemann problem for a system of non–
linear conservation laws
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Fig. 2.20. Elementary wave solutions of the Riemann problem: (a) shock wave of
speed Si, (b) contact discontinuity of speed Si and (c) rarefaction wave

only consider Equations of State such that the only waves present are shocks,
contacts and rarefactions. Suppose that the initial data states UL, UR are
connected by a single wave, that is, the solution of the Riemann problem
consists of a single non–trivial wave; all other waves have zero strength. This
assumption is entirely justified as we can always solve the Riemann problem
with general data and then select the constant states on either side of a par-
ticular wave as the initial data for the Riemann problem. If the wave is a
discontinuity then the wave is a shock wave or a contact wave.

Shock Wave

For a shock wave the two constant states UL and UR are connected
through a single jump discontinuity in a genuinely non–linear field i and the
following conditions apply

• the Rankine–Hugoniot conditions

F(UR) − F(UL) = Si(UR − UL) . (2.130)

• the entropy condition

λi(UL) > Si > λi(UR) . (2.131)
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Fig. 2.20a depicts a shock wave of speed Si. The characteristic dx/dt = λi on
both sides of the wave run into the shock wave, which illustrates the compres-
sive character of a shock.

Contact Wave

For a contact wave the two data states UL and UR are connected through
a single jump discontinuity of speed Si in a linearly degenerate field i and the
following conditions apply

• the Rankine–Hugoniot conditions

F(UR) − F(UL) = Si(UR − UL) . (2.132)

• constancy of the Generalised Riemann Invariants across the wave

dw1

k
(i)
1

=
dw2

k
(i)
2

=
dw3

k
(i)
3

= · · · =
dwm

k
(i)
m

. (2.133)

• the parallel characteristic condition

λi(UL) = λi(UR) = Si . (2.134)

Fig. 2.20b depicts a contact discontinuity. Characteristics on both sides of the
wave run parallel to it.

Rarefaction Wave

For a rarefaction wave the two data states UL and UR are connected
through a smooth transition in a genuinely non–linear field i and the following
conditions are met

• constancy of the Generalised Riemann Invariants across the wave

dw1

k
(i)
1

=
dw2

k
(i)
2

=
dw3

k
(i)
3

= · · · =
dwm

k
(i)
m

. (2.135)

• divergence of characteristics

λi(UL) < λi(UR) . (2.136)

Fig. 2.20c depicts a rarefaction wave. Characteristics on the left and right of
the wave diverge as do characteristics inside the wave.

Remark 2.40. The solution of the general Riemann problem contains m
waves of any of the above type, namely: shock waves, contact discontinuities
and rarefaction waves. In solving the general Riemann problem we shall en-
force these conditions by discriminating the particular type of wave present.
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For further study we recommend the following references: Lax [301],
Whitham [582], Chorin and Marsden [112], Courant and Friedrichs [143],
Smoller [451] and LeVeque [308]. See also the papers by Lax [302] and [300].

The introductory concepts of this chapter will we used to analyse some of
the properties of the Euler equations in Chap. 3. For the time–dependent one
dimensional Euler equations we solve the Riemann problem exactly in Chap.
4, while in Chaps. 9 to 12 we present approximate Riemann solvers.



3

Some Properties of the Euler Equations

In this chapter we apply the mathematical tools presented in Chap. 2 to
analyse some of the basic properties of the time–dependent Euler equations.
As seen in Chap. 1, the Euler equations result from neglecting the effects of
viscosity, heat conduction and body forces on a compressible medium. Here we
show that these equations are a system of hyperbolic conservations laws and
study some of their mathematical properties. In particular, we study those
properties that are essential for finding the solution of the Riemann problem
in Chap. 4. We analyse the eigenstructure of the equations, that is, we find
eigenvalues and eigenvectors; we study properties of the characteristic fields
and establish basic relations across rarefactions, contacts and shock waves. It
is worth remarking that the process of finding eigenvalues and eigenvectors
usually involves a fair amount of algebra as well as some familiarity with
basic physical quantities and their relations. For very complex systems of
equations finding eigenvalues and eigenvectors may require the use of symbolic
manipulators. Useful background reading for this chapter is found in Chaps.
1 and 2.

3.1 The One–Dimensional Euler Equations

Here we study the one–dimensional time–dependent Euler equations with
an ideal Equation of State, using conservative and non–conservative formula-
tions. The basic structure of the solution of the Riemann problem is outlined
along with a detailed study of the elementary waves present in the solution.
We provide the foundations for finding the exact solution of the Riemann
problem in Chap. 4.

3.1.1 Conservative Formulation

The conservative formulation of the Euler equations, in differential form,
is

E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 87
c© Springer-Verlag Berlin Heidelberg 2009DOI 10.1007/b7976-1 3,
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Ut + F(U)x = 0 , (3.1)

where U and F(U) are the vectors of conserved variables and fluxes, given
respectively by

U =

⎡
⎣

u1

u2

u3

⎤
⎦ ≡

⎡
⎣

ρ
ρu
E

⎤
⎦ , F =

⎡
⎣

f1

f2

f3

⎤
⎦ ≡

⎡
⎣

ρu
ρu2 + p
u(E + p)

⎤
⎦ . (3.2)

Here ρ is density, p is pressure, u is particle velocity and E is total energy per
unit volume

E = ρ(
1
2
u2 + e) , (3.3)

where e is the specific internal energy given by a caloric Equation of State
(EOS)

e = e(ρ, p) . (3.4)

For ideal gases one has the simple expression

e = e(ρ, p) =
p

(γ − 1)ρ
, (3.5)

with γ = cp/cv denoting the ratio of specific heats. From the EOS (3.5) and
using equation (1.36) of Chap. 1 we write the sound speed a as

a =
√

(p/ρ2 − eρ)/ep =
√

γp

ρ
. (3.6)

The conservation laws (3.1)–(3.2) may also be written in quasi–linear form

Ut + A(U)Ux = 0 , (3.7)

where the coefficient matrix A(U) is the Jacobian matrix

A(U) =
∂F
∂U

=

⎡
⎣

∂f1/∂u1 ∂f1/∂u2 ∂f1/∂u3

∂f2/∂u1 ∂f2/∂u2 ∂f2/∂u3

∂f3/∂u1 ∂f3/∂u2 ∂f3/∂u3

⎤
⎦ .

Proposition 3.1 (Jacobian Matrix). The Jacobian matrix A is

A(U) =

⎡
⎢⎢⎢⎢⎣

0 1 0

− 1
2 (γ − 3)(u2

u1
)2 (3 − γ)(u2

u1
) γ − 1

−γu2u3
u2

1
+ (γ − 1)(u2

u1
)3 γu3

u1
− 3

2 (γ − 1)(u2
u1

)2 γ(u2
u1

)

⎤
⎥⎥⎥⎥⎦

.

Proof. First we express all components fi of the flux vector F in terms
of the components ui of the vector U of conserved variables, namely u1 ≡ ρ,
u2 ≡ ρu, u3 ≡ E. Obviously f1 = u2 ≡ ρu. To find f2 and f3 we first need
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to express the pressure p in terms of the conserved variables. From (3.3) and
(3.5) we find

p = (γ − 1)[u3 −
1
2
(u2

2/u1)] .

Thus the flux vector can be written as

F(U) =

⎡
⎣

f1

f2

f3

⎤
⎦ ≡

⎡
⎢⎣

u2

1
2 (3 − γ)u2

2
u1

+ (γ − 1)u3

γ u2
u1

u3 − 1
2 (γ − 1)u3

2
u2

1

⎤
⎥⎦ .

By direct evaluation of all partial derivatives we arrive at the sought result.

Exercise 3.2. Write the Jacobian matrix A(U) in terms of the the sound
speed a and the particle velocity u.

Solution 3.3.

A(U) =

⎡
⎢⎢⎢⎢⎣

0 1 0

1
2 (γ − 3)u2 (3 − γ)u γ − 1

1
2 (γ − 2)u3 − a2u

γ−1
3−2γ

2 u2 + a2

γ−1 γu

⎤
⎥⎥⎥⎥⎦

. (3.8)

Often, the Jacobian matrix is also expressed in terms of the total specific
enthalpy H, which is related to the specific enthalpy h and other variables,
namely

H = (E + p)/ρ ≡ 1
2
u2 + h , h = e + p/ρ . (3.9)

The Jacobian matrix may also be written as

A(U) =

⎡
⎢⎢⎢⎢⎣

0 1 0

1
2 (γ − 3)u2 (3 − γ)u γ − 1

(γ − 1)u3 − γuE/ρ γE/ρ − 3
2 (γ − 1)u2 γu

⎤
⎥⎥⎥⎥⎦

. (3.10)

Proposition 3.4 (The Homogeneity Property). The Euler equations
(3.1)–(3.2) with the ideal–gas EOS (3.5) satisfy the homogeneity property

F(U) = A(U)U . (3.11)

Proof. The proof of this property is immediate. By multiplying the Jaco-
bian matrix (3.8) by the vector U in (3.2) we identically reproduce the vector
F(U) of fluxes in (3.2).
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This remarkable property of the Euler equations forms the basis for nu-
merical schemes of the Flux Vector Splitting type studied in Chap. 8. Note
that the relationship between the flux F, the coefficient matrix A and the
conserved variables U for the Euler equations is identical to that for linear
systems with constant coefficients, see Sect. 2.4 of Chap. 2. This property is
also satisfied by the Euler equations with an Equation of State that is slightly
more general than (3.5). See Steger and Warming [463] for details.

Proposition 3.5. The eigenvalues of the Jacobian matrix A are

λ1 = u − a , λ2 = u , λ3 = u + a (3.12)

and the corresponding right eigenvectors are

K(1) =

⎡
⎣

1
u − a

H − ua

⎤
⎦ , K(2) =

⎡
⎣

1
u

1
2u2

⎤
⎦ , K(3) =

⎡
⎣

1
u + a

H + ua

⎤
⎦ . (3.13)

Proof. Use of the expression (3.8) for A and the characteristic polynomial

|A − λI| = 0 ,

lead to
(λ − u)(γu − λ) [(2u − γu − λ] +
(λ − u)

[
−a2 − (γ − 1)u2 + (γ − 1)γu2

]
+ Δ = 0 ,

where

Δ =
1
2
(γu − λ)(1 − γ)u2 − 1

2
(γ − 1)u2 [(1 − 2γ)λ + γu] .

Manipulations show that Δ also contains the common factor (λ − u), which
implies that λ2 = u is a root of the characteristic polynomial and thus an
eigenvalue of A. After cancelling (λ − u) the remaining terms give

λ2 − 2uλ + u2 − a2 = 0 ,

with real roots
λ1 = u − a , λ3 = u + a .

Therefore the eigenvalues are: λ1 = u − a, λ2 = u, λ3 = u + a as claimed.
To find the right eigenvectors we look, see Sect. 2.1 of Chap. 2, for a vector
K = [k1, k2, k3]T such that

AK = λK .

By substituting λ = λi in turn, solving for the components of the vector K
and selecting appropriate values for the scaling factors we find the desired
result.
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The eigenvalues are all real and the eigenvectors K(1), K(2), K(3) form a
complete set of linearly independent eigenvectors. We have thus proved that
the time–dependent, one–dimensional Euler equations for ideal gases are hy-
perbolic. In fact these equations are strictly hyperbolic, because the eigenvalues
are all real and distinct, as long as the sound speed a remains positive. Hyper-
bolicity remains a property of the Euler equations for more general equations
of state, as we shall see in Chap. 4 for covolume gases.

3.1.2 Non–Conservative Formulations

The Euler equations (3.1)–(3.2) may be formulated in terms of variables
other than the conserved variables. For smooth solutions all formulations are
equivalent. For solutions containing shock waves however, non–conservative
formulations give incorrect shock solutions. This point is addressed via the
shallow water equations and the isothermal equations in Sect. 3.3 of this chap-
ter. In spite of this, non–conservative formulations have some advantages over
their conservative counterpart, when analysing the equations, for instance.
Also, from the numerical point of view, there has been a recent revival of the
idea of using schemes for non–conservative formulations of the equations. See
e.g. Karni [278] and Toro [508], [517].

Primitive–Variable Formulations

For smooth solutions the equations may be formulated, and solved, using
variables other than the conserved variables. For the one–dimensional case
one possibility is to choose a vector W = (ρ, u, p)T of primitive or physical
variables, with p given by the equation of state. Expanding derivatives in the
first of equations (3.1)–(3.2), the mass equation, we obtain

ρt + uρx + ρux = 0 . (3.14)

By expanding derivatives in the second of equations (3.1)–(3.2), the momen-
tum equation, we obtain

u [ρt + uρx + ρux] + ρ

[
ut + uux +

1
ρ
px

]
= 0 .

Use of (3.14) followed by division through by ρ gives

ut + uux +
1
ρ
px = 0 . (3.15)

In a similar manner, the energy equation in (3.1)–(3.2) can be rearranged so
as to use (3.14) and (3.15). The result is

pt + ρa2ux + upx = 0 . (3.16)
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Thus, in quasi–linear form we have

Wt + A(W)Wx = 0 , (3.17)

where

W =

⎡
⎣

ρ
u
p

⎤
⎦ , A(W) =

⎡
⎣

u ρ 0
0 u 1/ρ
0 ρa2 u

⎤
⎦ . (3.18)

Proposition 3.6. The system (3.17)–(3.18) has real eigenvalues

λ1 = u − a , λ2 = u , λ3 = u + a , (3.19)

with corresponding right eigenvectors

K(1) = α1

⎡
⎣

1
−a/ρ

a2

⎤
⎦ , K(2) = α2

⎡
⎣

1
0
0

⎤
⎦ , K(3) = α3

⎡
⎣

1
a/ρ
a2

⎤
⎦ . (3.20)

where α1, α2, α3 are scaling factors, or normalisation parameters, see Sect.
2.1 of Chap. 2. The left eigenvectors are

L(1) = β1(0, 1,− 1
ρa ) ,

L(2) = β2(1, 0,− 1
a2 ) ,

L(3) = β3(0, 1, 1
ρa ) ,

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.21)

where β1, β2, β3 are scaling factors.

Proof. (Left to the reader).

Exercise 3.7. Verify that by choosing appropriate normalisation param-
eters α1, α2, α3 and β1, β2, β3 in (3.20) and (3.21) respectively, the left and
right eigenvectors L(j) and K(j) of A(W) are bi–orthonormal, that is

L(j) · K(i) =

⎧
⎨
⎩

1 if i = j ,

0 otherwise .
(3.22)

Characteristic Equations

Recall that the eigenvalues λ1 = u − a, λ2 = u, λ3 = u + a define char-
acteristic directions dx/dt = λi for i = 1, 2, 3. For a set of partial differential
equations (3.17) a characteristic equation says that in a direction dx/dt = λi,
L(i) · dW = 0, or in full
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L(i) ·

⎡
⎣

dρ
du
dp

⎤
⎦ = 0 . (3.23)

By expanding (3.23) for L(1),L(2),L(3) we obtain the characteristic equations

dp − ρadu = 0 along dx/dt = λ1 = u − a ,

dp − a2 dρ = 0 along dx/dt = λ2 = u ,

dp + ρadu = 0 along dx/dt = λ3 = u + a .

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.24)

These differential relations hold true along characteristic directions. For nu-
merical purposes, linearisation of these equations provides ways of solving
the Riemann problem for the Euler equations, approximately; see Sect. 9.3 of
Chap. 9.

Entropy Formulation

The entropy s can be written as

s = cv ln(
p

ργ
) + C0 , (3.25)

where C0 is a constant. From this equation we obtain

p = C1ρ
γes/cv , (3.26)

where C1 is a constant. Now, if in the primitive–variable formulation (3.17)
we use entropy s instead of pressure p we have the new vector of unknowns

W = (ρ, u, s)T , (3.27)

and a corresponding new way of expressing the governing equations.

Proposition 3.8. The entropy s satisfies the following PDE

st + usx = 0 . (3.28)

Proof. From (3.25) and the expression (3.6) for the sound speed a we have

st =
cv

p

[
pt − a2ρt

]
, sx =

cv

p

[
px − a2ρx

]
.

But from (3.16) pt = −ρa2ux − upx, and hence st + usx = 0, as claimed.

The significance of the result is that

st + usx =
ds

dt
= 0 , (3.29)
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and so in regions of smooth flow, the entropy s is constant along particle paths
dx/dt = u. Hence, along a particle path one has the isentropic law given by

p = Cργ , (3.30)

where C = C(s0) is a function of the initial entropy s0 and is constant along
the path so long as the flow remains smooth; see Sect. 1.6.2 of Chap. 1. In
general of course, C changes from path to path. When solving the Riemann
problem the initial entropy can be computed on the initial data of the Riemann
problem, which is piece–wise constant. If C is the same constant throughout
the flow domain we speak of isentropic flow, or sometimes, homentropic flow.
This leads to the special set of governing equations (1.109)–(1.110) presented
in Chap. 1. The governing equations for the entropy formulation, written in
quasi–linear form, are

Wt + A(W)Wx = 0 , (3.31)

with

A(W) =

⎡
⎣

u ρ 0
a2/ρ u 1

ρ
∂p
∂s

0 0 u

⎤
⎦ . (3.32)

Proposition 3.9. The eigenvalues of system (3.31)–(3.32) are

λ1 = u − a , λ2 = u , λ3 = u + a (3.33)

and the corresponding right eigenvectors are

K(1) =

⎡
⎣

1
−a/ρ

0

⎤
⎦ , K(2) =

⎡
⎣
−∂p

∂s
0
a2

⎤
⎦ , K(3) =

⎡
⎣

1
a/ρ
0

⎤
⎦ . (3.34)

Proof. (Left to the reader).

3.1.3 Elementary Wave Solutions of the Riemann Problem

Here we describe the structure of the solution of the Riemann problem as
a set of elementary waves such as rarefactions, contacts and shock waves, see
Sect. 2.4.4 of Chapt. 4. Each of these elementary waves are studied in detail.
Basic relations across these waves are established. Such relations will be used
in Chap. 4 to connect all unknown states to the data states and thus find the
complete solution of the Riemann problem.

The Riemann problem for the one–dimensional, time dependent Euler
equations (3.1)–(3.2) with data (UL,UR) is the IVP

Ut + F(U)x = 0 ,

U(x, 0) = U(0)(x) =
{

UL if x < 0 ,
UR if x > 0 .

⎫
⎬
⎭ (3.35)
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The physical analogue of the Riemann problem is the shock–tube problem
in Gas Dynamics, in which the velocities uL and uR on either side of the
diaphragm, here idealised by an initial discontinuity, are zero. Shock tubes
and shock–tube problems have played, over a period of more than 100 years,
a fundamental role in fluid dynamics research.

The structure of the similarity solution U(x/t) of (3.35) is as depicted in
Fig. 3.1. There are three waves associated with the three characteristic fields

UU

*R*L

R

U

(u+a)(u-a)

regionStar
(u)

U

L

0

t

x

Fig. 3.1. Structure of the solution of the Riemann problem in the x–t plane for the
time–dependent, one dimensional Euler equations. There are three wave families
associated with the eigenvalues u − a, u and u + a

corresponding to the eigenvectors K(i), i = 1, 2, 3. We choose the convention
of representing the outer waves, when their character is unknown, by a pair of
rays emanating from the origin and the middle wave by a dashed line. Each
wave family is shown along with the corresponding eigenvalue. The three
waves separate four constant states. From left to right these are UL (left data
state); U∗L between the 1–wave and the 2–wave; U∗R between the 2–wave
and the 3–wave and UR (right data state). As we shall see the waves present
in the solution are of three types: rarefaction waves, contact discontinuities
and shock waves. In order to identify the types we analyse the characteristic
fields for K(i), i = 1, 2, 3; see Sects. 2.4.3 and 2.4.4 of Chap. 2.

Proposition 3.10. The K(2)–characteristic field is linearly degenerate
and the K(1), K(3) characteristic fields are genuinely non–linear.

Proof. For the K(2)–characteristic field we have

∇λ2(U) = [∂λ2/∂u1, ∂λ2/∂u2, ∂λ2/∂u3] = [−u/ρ, 1/ρ, 0] .

Hence

∇λ2 · K(2) = [−u/ρ, 1/ρ, 0] ·

⎡
⎣

1
u

1
2u2

⎤
⎦ = 0
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and therefore the K(2) characteristic field is linearly degenerate as claimed.
The proof that the K(1) and K(3) characteristic fields are genuinely nonlinear
is left to the reader.

The wave associated with the K(2) characteristic field is a contact disconti-
nuity and those associated with the K(1), K(3) characteristic fields will either
be rarefaction waves (smooth) or shock waves (discontinuities), see Sect. 2.4.4
of Chapt. 4. Of course one does not know in advance what types of waves
will be present in the solution of the Riemann problem. The only exception
is the middle wave, which is always a contact discontinuity. Fig. 3.2 shows a

S
S

UU

0

t

U U
L

Shock
Contact

Rarefaction

3

R

*L *R

2

x

Fig. 3.2. Structure of the solution of the Riemann problem in the x–t plane for
the time–dependent, one dimensional Euler equations, in which the left wave is a
rarefaction, the middle wave is a contact discontinuity and the right wave is a shock
wave

particular case in which the left wave is a rarefaction, the middle wave is a
contact and the right wave is a shock wave. For each wave we have drawn a
pair of arrows, one on each side, to indicate the characteristic directions of
the corresponding eigenvalue. For the rarefaction wave we have

λ1(UL) ≤ λ1(U∗L) .

The eigenvalue λ1(U) increases monotonically as we cross the rarefaction wave
from left to right and the characteristics on either side diverge from the wave;
compare with Fig. 2.20 of Chap. 2. For the shock wave, characteristics run
into the wave and we have

λ3(U∗R) > S3 > λ3(UR) ,

which is the entropy condition. See Sect. 2.4.4 of Chap. 2. S3 is the speed of
the 3–shock. For the contact wave we have

λ2(U∗L) = λ2(U∗R) = S2 ,

where S2 is the speed of the contact wave; the characteristics are parallel to
the contact wave. Recall that this is what happens for all characteristic fields
in linear hyperbolic systems with constant coefficients. Next we study each
type of waves separately.
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Contact Discontinuities

The contact discontinuity in the solution of the Riemann problem for
the Euler equations can be analysed by utilising the eigenstructure of the
equations. In particular the Generalised Riemann Invariants will reveal which
quantities change across the wave. Recall that for a general m×m hyperbolic
system, such as (3.1)–(3.2) or (3.7), with

W = [w1, w2, · · · , wm]T ,

and right eigenvectors

K(i) =
[
k

(i)
1 , k

(i)
2 , · · · , k(i)

m

]
,

the i−th Generalised Riemann Invariants are the (m − 1) ODEs

dw1

k
(i)
1

=
dw2

k
(i)
2

=
dw3

k
(i)
3

= · · · =
dwm

k
(i)
m

.

Using the eigenstructure (3.12)–(3.13) of the conservative formulation (3.1)–
(3.2), for the K(2)–wave we have

dρ

1
=

d(ρu)
u

=
dE
1
2u2

. (3.36)

Manipulation of these equalities gives

p = constant, u = constant

across the contact wave. The same result follows directly by inspection of the
eigenvector K(2) in (3.20) for the primitive–variable formulation (3.17)–(3.18):
the wave jumps in ρ, u and p are proportional to the corresponding compo-
nents of the eigenvector. These are zero for the velocity and pressure. The
jump in ρ is in general non–trivial. To conclude: a contact wave is a discon-
tinuous wave across which both pressure and particle velocity are constant but
density jumps discontinuously as do variables that depend on density, such as
specific internal energy, temperature, sound speed, entropy, etc.

Rarefaction Waves

Rarefaction waves in the Euler equations are associated with the K(1)

and K(3) characteristic fields. Inspection of the eigenvectors (3.20) for the
primitive–variable formulation reveals that ρ, u and p change across a rar-
efaction wave. We now utilise the Generalised Riemann Invariants for the
eigenstructure (3.33)–(3.34) of the entropy formulation (3.31)–(3.32).
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Proposition 3.11. For the Euler equations the Generalised Riemann In-
variants across 1 and 3 rarefactions are

IL(u, a) = u + 2a
γ−1 = constant

s = constant

}
across λ1 = u − a , (3.37)

IR(u, a) = u − 2a
γ−1 = constant

s = constant

}
across λ3 = u + a . (3.38)

Proof. Across a wave associated with λ1 = u − a wave we have

dρ

1
=

du

−a/ρ
=

ds

0
.

Two meaningful relations are

u +
∫

a

ρ
dρ = constant and s = constant. (3.39)

Similarly, across the λ3 = u + a wave we have

u −
∫

a

ρ
dρ = constant and s = constant. (3.40)

In order to reproduce (3.37) and (3.38) we need to evaluate the integrals in
(3.39) and (3.40). First we note that by inspection of the eigenvectors K(1)

and K(3) the condition of constant entropy across the respective waves is
immediate. We may therefore use the isentropic law (3.30) with the constant
C evaluated at the appropriate data state (constant). Thus the integral is as
found for the isentropic equations in Sect. 2.4.3 of Chap. 2, that is

∫
a

ρ
dρ =

2a

γ − 1
,

and thus equations (3.37)–(3.38) are reproduced.

To summarise: a rarefaction wave is a smooth wave associated with the 1
and 3 fields across which ρ, u and p change. The wave has a fan–type shape and
is enclosed by two bounding characteristics corresponding to the Head and the
Tail of the wave. Across the wave the Generalised Riemann Invariants apply.
The solution within the rarefaction will be given in Chap. 4, where the full
solution of the Riemann problem is presented.

Shock Waves

Details on the Physics of shock waves are found in any book on Gas Dy-
namics. We particularly recommend Becker [35], Anderson [10], Landau and
Lifshitz [297]. The specialised book by Zeldovich and Raizer [599] is highly
recommended.
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In the context of the one–dimensional Euler equations, shock waves are
discontinuous waves associated with the genuinely non–linear fields 1 and 3.
All three quantities ρ, u and p change across a shock wave. Consider the K(3)

characteristic field and assume the corresponding wave is a right–facing shock
wave travelling at the constant speed S3; see Fig. 3.3. In terms of the primitive
variables we denote the state ahead of the shock by WR = (ρR, uR, pR)T

and the state behind the shock by W∗ = (ρ∗, u∗, p∗)T . We are interested
in deriving relations, across the shock wave, between the various quantities
involved. Central to the analysis is the application of the Rankine–Hugoniot
conditions. It is found convenient to transform the problem to a new frame

*

R

R

R

R

R

(b)

*

R*

3

u

*

*

*

u

(a)

u

0S

u

ρρρρ

p p p p

Fig. 3.3. Right–facing shock wave: (a) stationary frame of reference, shock has
speed S3; (b) frame of reference moves with speed S3, so that the shock has zero
speed

of reference moving with the shock so that in the new frame the shock speed
is zero. Fig. 3.3 depicts both frames of reference. In the transformed frame
(b) the states ahead and behind the shock have changed by virtue of the
transformation. Densities and pressures remain unaltered while velocities have
changed to the relative velocities ûR and û∗ given by

û∗ = u∗ − S3 , ûR = uR − S3 . (3.41)

Application of the Rankine–Hugoniot conditions in the frame in which the
shock speed is zero gives

ρ∗û∗ = ρRûR , (3.42)

ρ∗û
2
∗ + p∗ = ρRû2

R + pR , (3.43)

û∗(Ê∗ + p∗) = ûR(ÊR + pR) . (3.44)

By using the definition of total energy E and introducing the specific internal
energy e the left–hand side of (3.44) may we written as

û∗ρ∗

[
1
2
û2
∗ + (e∗ + p∗/ρ∗)

]
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and the right–hand side of (3.44) as

ûRρR

[
1
2
û2

R + (eR + pR/ρR)
]

.

Now we use the specific enthalpy h and write

h∗ = e∗ + p∗/ρ∗ , hR = eR + pR/ρR . (3.45)

Use of equations (3.42) and (3.44) leads to

1
2
û2
∗ + h∗ =

1
2
û2

R + hR . (3.46)

By using (3.42) into (3.43) we write

ρ∗û
2
∗ = (ρRûR)ûR + pR − p∗ = (ρ∗û∗)

ρ∗û∗
ρR

+ pR − p∗ .

After some manipulations we obtain

û2
∗ =

(
ρR

ρ∗

)[
pR − p∗
ρR − ρ∗

]
. (3.47)

In a similar way we obtain

û2
R =

(
ρ∗
ρR

)[
pR − p∗
ρR − ρ∗

]
. (3.48)

Substitution of (3.47)–(3.48) into (3.46) gives

h∗ − hR =
1
2
(p∗ − pR)

[
ρ∗ + ρR

ρ∗ρR

]
. (3.49)

Assuming the specific internal energy e is given by the the caloric equation of
state (3.4), it is then more convenient to rewrite the energy equation (3.49)
using (3.45). We obtain

e∗ − eR =
1
2
(p∗ + pR)

[
ρ∗ − ρR

ρ∗ρR

]
. (3.50)

Note that up to this point no assumption on the general caloric EOS (3.4)
has been made. In what follows, we derive shock relations that apply to ideal
gases in which the ideal caloric EOS (3.5) is assumed. By using (3.5) into
(3.50) and performing some algebraic manipulations one obtains

ρ∗
ρR

=
( p∗

pR
) + (γ−1

γ+1 )

(γ−1
γ+1 )( p∗

pR
) + 1

. (3.51)
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This establishes a useful relation between the density ratio ρ∗/ρR and the
pressure ratio p∗/pR across the shock wave.

We now introduce Mach numbers

MR = uR/aR , MS = S3/aR , (3.52)

where MR is the Mach number of the flow ahead of the shock, in the original
frame; MS is the shock Mach number. Manipulation of equations (3.48), (3.51)
and (3.52) leads to expressions for the density and pressure ratios across the
shock as functions of the relative Mach number MR − MS, namely

ρ∗
ρR

=
(γ + 1)(MR − MS)2

(γ − 1)(MR − MS)2 + 2
, (3.53)

p∗
pR

=
2γ(MR − MS)2 − (γ − 1)

(γ + 1)
. (3.54)

The shock speed S3 can be related to the density and pressure ratios across
the shock wave. In terms of the pressure ratio (3.54) we first note the following
relationship

MR − MS = −
√(

γ + 1
2γ

)(
p∗
pR

)
+
(

γ − 1
2γ

)
.

This leads to an expression for the shock speed as a function of the pressure
ratio across the shock, namely

S3 = uR + aR

√(
γ + 1
2γ

)(
p∗
pR

)
+
(

γ − 1
2γ

)
. (3.55)

Note that as the shock strength tends to zero, the ratio p∗/pR tends to unity
and the shock speed S3 approaches the characteristic speed λ3 = uR + aR, as
expected. We can also obtain an expression for the particle velocity u∗ behind
the shock wave. From (3.42) we relate u∗ to the density ratio across the shock,
namely

u∗ = (1 − ρR/ρ∗)S3 + uRρR/ρ∗ . (3.56)

Example 3.12 (Shock Wave). Consider a shock wave of shock Mach number
MS = 3 propagating into the atmosphere with conditions (ahead of the shock)
ρR = 1.225 kg/m3, uR = 0 m/s, pR = 101 325 Pa. Assume the process is
suitably modelled by the ideal gas EOS (3.5) with γ = 1.4. From the definition
of sound speed (3.6) we obtain aR = 340.294 m/s. As the shock Mach number
MS = 3 is assumed (a parameter) then equation (3.52) gives the shock speed
as S = 1020.882 m/s. From equation (3.53) we obtain ρ∗ = 4.725 kg/m3.
From equation (3.54) we obtain p∗ = 1047 025 Pa and from equation (3.56)
we obtain u∗ = 756.2089 m/s.
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Remark 3.13. Shock relations (3.53), (3.54) and (3.56) define a state

(ρ∗, u∗, p∗)T

behind a shock for given initial conditions (ρR, uR, pR)T ahead of the shock
and a chosen shock Mach number MS , or equivalently a shock speed S3. The
shock is associated with the 3–wave family. These relations can be useful
in setting up test problems involving a single shock wave to test numerical
methods.

The analysis for a 1–shock wave (left facing) travelling with velocity S1

is entirely analogous. The state ahead of the shock (left side now) is denoted
by WL = (ρL, uL, pL)T and the state behind the shock (right side) by W∗ =
(ρ∗, u∗, p∗)T . As done for the 3–shock we transform to a stationary frame of
reference. The relative velocities are

ûL = uL − S1 , û∗ = u∗ − S1 . (3.57)

Mach numbers are
ML = uL/aL , MS = S1/aL . (3.58)

The density and pressure ratio relationship is

ρ∗
ρL

=
( p∗

pL
) + (γ−1

γ+1 )

(γ−1
γ+1 )( p∗

pL
) + 1

. (3.59)

In terms of the relative Mach number ML−MS the density and pressure ratios
across the left shock can be expressed as follows

ρ∗
ρL

=
(γ + 1)(ML − MS)2

(γ − 1)(ML − MS)2 + 2
, (3.60)

p∗
pL

=
2γ(ML − MS)2 − (γ − 1)

(γ + 1)
. (3.61)

The shock speed S1 can be obtained from either (3.60) or (3.61). In terms of
the pressure ratio (3.61) we have

ML − MS =

√(
γ + 1
2γ

)(
p∗
pL

)
+
(

γ − 1
2γ

)
,

which leads to

S1 = uL − aL

√(
γ + 1
2γ

)(
p∗
pL

)
+
(

γ − 1
2γ

)
. (3.62)

Note that as the shock strength tends to zero, the ratio p∗/pL tends to unity
and the shock speed S1 approaches the characteristic speed λ1 = uL − aL, as
expected. The particle velocity behind the left shock is
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u∗ = (1 − ρL/ρ∗)S1 + uLρL/ρ∗ . (3.63)

Shock relations (3.60), (3.61) and (3.63) define a state (ρ∗, u∗, p∗)T behind
a shock for given initial conditions (ρL, uL, pL)T ahead of the shock and a
chosen shock Mach number MS , or equivalently a shock speed S1. The shock
is associated with the 1–wave family.

3.2 Multi–Dimensional Euler Equations

In the previous section we analysed the one–dimensional, time–dependent
Euler equations. Here we study a few basic properties of the two and three
dimensional cases. In differential conservation–law form the three–dimensional
equations are

Ut + F(U)x + G(U)y + H(U)z = 0 , (3.64)

with

U =

⎡
⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
E

⎤
⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎣

ρu
ρu2 + p

ρuv
ρuw

u(E + p)

⎤
⎥⎥⎥⎥⎦

,

G =

⎡
⎢⎢⎢⎢⎣

ρv
ρuv

ρv2 + p
ρvw

v(E + p)

⎤
⎥⎥⎥⎥⎦

, H =

⎡
⎢⎢⎢⎢⎣

ρw
ρuw
ρvw

ρw2 + p
w(E + p)

⎤
⎥⎥⎥⎥⎦

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.65)

Here E is the total energy per unit volume

E = ρ (
1
2
V2 + e) , (3.66)

where 1
2V

2 = 1
2V ·V = 1

2 (u2 + v2 + w2) is the specific kinetic energy and e is
specific internal energy given by a caloric equation of state (3.4).

The corresponding integral form of the conservation laws (3.64) is given
by

d
dt

∫ ∫ ∫

V

U dV +
∫ ∫

A

H · ndA = 0 , (3.67)

where V is a control volume, A is the boundary of V , H = (F,G,H) is the
tensor of fluxes, n is the outward unit vector normal to the surface A, dA is
an area element and H · ndA is the flux component normal to the boundary
A. The conservation laws (3.67) state that the time–rate of change of U inside
volume V depends only on the total flux through the surface A, the boundary
of the control volume V . Numerical methods of the finite volume type, see
Sect. 16.7.3 of Chap. 16, are based on this formulation of the equations. For
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details of the derivation of integral form of the conservation laws see Sects.
1.5 and 1.6.1 of Chap. 1.

In the next section we study some properties of the two–dimensional Euler
equation in conservation form

3.2.1 Two–Dimensional Equations in Conservative Form

The two–dimensional version of the Euler equations in differential conser-
vative form is

Ut + F(U)x + G(U)y = 0 , (3.68)

with

U =

⎡
⎢⎢⎣

ρ
ρu
ρv
E

⎤
⎥⎥⎦ , F =

⎡
⎢⎢⎣

ρu
ρu2 + p

ρuv
u(E + p)

⎤
⎥⎥⎦ , G =

⎡
⎢⎢⎣

ρv
ρuv

ρv2 + p
v(E + p)

⎤
⎥⎥⎦ . (3.69)

Eigenstructure

Here we find the Jacobian matrix of the x–split equations, its eigenvalues
and corresponding right eigenvectors. We also study the types of characteristic
fields present.

Proposition 3.14. The Jacobian matrix A(U) corresponding to the flux
F(U) is given by

A(U) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

−u2 + 1
2 (γ − 1)V2 (3 − γ)u −(γ − 1)v γ − 1

−uv v u 0

u
[
1
2 (γ − 1)V2 − H

]
H − (γ − 1)u2 −(γ − 1)uv γu

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.70)

The eigenvalues of A are

λ1 = u − a , λ2 = λ3 = u , λ4 = u + a , (3.71)

with corresponding right eigenvectors

K(1) =

⎡
⎢⎢⎣

1
u − a

v
H − au

⎤
⎥⎥⎦ , K(2) =

⎡
⎢⎢⎣

1
u
v

1
2V

2

⎤
⎥⎥⎦ ,

K(3) =

⎡
⎢⎢⎣

0
0
1
v

⎤
⎥⎥⎦ , K(4) =

⎡
⎢⎢⎣

1
u + a

v
H + ua

⎤
⎥⎥⎦ .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.72)
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Proof. Exercise.

Rotational Invariance

We next prove an important property, called the rotational invariance
of the Euler equations. The property allows the proof of hyperbolicity in
time for the two–dimensional equations (3.68)–(3.69) and can also be used for
computational purposes to deal with domains that are not aligned with the
Cartesian directions, see Sect. 16.7.3 of Chap. 16. We first note that outward
unit vector n normal to the surface A in the two–dimensional case is given by

n ≡ (n1, n2) ≡ (cos θ, sin θ) , (3.73)

where θ is the angle formed by x–axis and the normal vector n; θ is measured
in an anticlockwise manner and lies in the range 0 ≤ θ ≤ 2π. Fig. 3.4 depicts
the situation. The integrand of the surface integral in (3.67) becomes

(F,G) · n = cos θF(U) + sin θG(U) . (3.74)

x

y

Tangent to surface A
Normal n

Boundary  A  of control volume  V

θ
x-direction

Fig. 3.4. Control volume V on x–y plane; boundary of V is A, outward unit normal
vector is n and θ is angle between the x–direction and n

Proposition 3.15 (Rotational Invariance). The two–dimensional Eu-
ler equations (3.68)–(3.69) satisfy the rotational invariance property

cos θF(U) + sin θG(U) = T−1F (TU) , (3.75)

for all angles θ and vectors U. Here T = T(θ) is the rotation matrix and
T−1(θ) is its inverse, namely

T =

⎡
⎢⎢⎣

1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

⎤
⎥⎥⎦ , T−1 =

⎡
⎢⎢⎣

1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

⎤
⎥⎥⎦ . (3.76)
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Proof. First we calculate Û = TU. The result is

Û = TU = [ρ, ρû, ρv̂, E]T ,

with û = u cos θ + v sin θ, v̂ = −u sin θ + v cos θ. Next we compute F̂ = F(Û)
and obtain

F̂ = F(Û) =
[
ρû, ρû2 + p, ρûv̂, û(E + p)

]T
.

Now we apply T−1 to F(Û). The result is easily verified to be

T−1F̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρû

cos θ
(
ρû2 + p

)
− sin θ (ρûv̂)

sin θ
(
ρû2 + p

)
+ cos θ (ρûv̂)

û(E + p)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= cos θF + sin θG .

This is clearly satisfied for the first and fourth components. Further manipu-
lation show that it is also satisfied for the second and third flux components
and the proposition is thus proved.

Hyperbolicity in Time

Here we use the rotational invariance property of the two–dimensional
time dependent Euler equations to show that the equations are hyperbolic in
time.

Definition 3.16 (Hyperbolicity in time). System (3.68)–(3.69) is hy-
perbolic in time if for all admissible states U and real angles θ, the matrix

A(U, θ) = cos θA(U) + sin θB(U) (3.77)

is diagonalisable. Here A(U) and B(U) are respectively the Jacobian matrices
of the fluxes F(U) and G(U) in (3.68).

Proposition 3.17. The two–dimensional Euler equations (3.68)–(3.69)
are hyperbolic in time.

Proof. We want to prove that the matrix A(U, θ) in (3.77) is diagonalis-
able, see Sect. 2.3.2 of Chap. 2. That is we want to prove that there exist a
diagonal matrix Λ(U, θ) and a non–singular matrix K(U, θ) such that

A(U, θ) = K(U, θ)Λ(U, θ)K−1(U, θ) . (3.78)

By differentiating (3.75) with respect to U we have

A(U, θ) = cos θA(U) + sin θB(U) = T(θ)−1A (T(θ)U)T(θ) .



3.2 Multi–Dimensional Euler Equations 107

But the matrix A(U) is diagonalisable, it has four linearly independent eigen-
vectors K(i)(U) given by (3.72). Therefore we can write

A(U) = K(U)Λ(U)K−1(U) ,

where K(U) is the non–singular matrix the columns of which are the right
eigenvectors K(i)(U), K−1(U) is its inverse and Λ(U) is the diagonal matrix
with the eigenvalues λi(U) given by (3.71) as the diagonal entries. Then we
have

A(U, θ) = T(θ)−1
{
K (T(θ)U)Λ (T(θ)U)K−1 (T(θ)U)

}
T(θ)

=
{
T(θ)−1K (T(θ)U)

}
Λ (T(θ)U)

{
T(θ)−1K (T(θ)U)

}−1
.

Hence the condition for hyperbolicity holds by taking

K(U, θ) = T−1(θ)K (T(θ)U) , Λ(U, θ) = Λ (T(θ)U) .

We have thus proved that the time–dependent, two dimensional Euler
equations are hyperbolic in time, as claimed.

Characteristic Fields

Next we analyse the characteristic fields associated with the four eigenvec-
tors given by (3.72).

Proposition 3.18 (Types of Characteristic Fields). For i = 1 and
i = 4 the K(i)(U) characteristic fields are genuinely non–linear, while for
i = 2 and i = 3 they are linearly degenerate.

Proof. The proof that the fields i = 2 and i = 3 are linearly degenerate is
trivial. Clearly

∇λ2 = ∇λ3 = (−u/ρ, 1/ρ, 0, 0) .

By inspecting K(2)(U) and K(3)(U) it is obvious that

∇λ2 · K(2)(U) = ∇λ3 · K(3)(U) = 0

and therefore the 2 and 3 characteristic fields are linearly degenerate as
claimed. The proof for i = 1, 4 involves some algebra. The result is

∇λ1 · K(1)(U) = − (γ + 1)a
2ρ

�= 0 , ∇λ4 · K(4)(U) =
(γ + 1)a

2ρ
�= 0

and thus the 1 and 4 characteristic fields are genuinely non–linear as claimed.

In the context of the Riemann problem we shall see that across the 2
and 3 waves both pressure p and normal velocity component u are constant.
The 2 field is associated with a contact discontinuity, across which density
jumps discontinuously. The 3 field is associated with a shear wave across
which the tangential velocity component jumps discontinuously. The 1 and 4
characteristic fields are associated with shock waves and rarefaction waves.
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3.2.2 Three–Dimensional Equations in Conservative Form

Here we extend previous results proved for the two–dimensional equations,
to the time–dependent three dimensional Euler equations. Proofs are omitted,
they involve elementary but tedious algebra.

Eigenstructure

The Jacobian matrix A corresponding to the flux F(U) in (3.64) is given
by

A =
∂F
∂U

=

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
γ̂H − u2 − a2 (3 − γ)u −γ̂v −γ̂w γ̂

−uv v u 0 0
−uw w 0 u 0

1
2u[(γ − 3)H − a2] H − γ̂u2 −γ̂uv −γ̂uw γu

⎤
⎥⎥⎥⎥⎦

, (3.79)

where

H = (E + p)/ρ =
1
2
V2 +

a2

(γ − 1)
,V2 = u2 + v2 + w2 , γ̂ = γ − 1 . (3.80)

The x–split one–dimensional system is hyperbolic with real eigenvalues

λ1 = u − a , λ2 = λ3 = λ4 = u , λ5 = u + a . (3.81)

The matrix of corresponding right eigenvectors is

K =

⎡
⎢⎢⎢⎢⎣

1 1 0 0 1
u − a u 0 0 u + a

v v 1 0 v
w w 0 1 w

H − ua 1
2V

2 v w H + ua

⎤
⎥⎥⎥⎥⎦

. (3.82)

We also give the expression for the inverse matrix of K, namely

K−1 =
(γ − 1)

2a2

⎡
⎢⎢⎢⎢⎢⎣

H + a
γ̂ (u − a) −(u + a

γ̂ ) −v −w 1
−2H + 4

γ̂ a2 2u 2v 2w −2
− 2va2

γ̂ 0 2a2

γ̂ 0 0
− 2wa2

γ̂ 0 0 2a2

γ̂ 0
H − a

γ̂ (u + a) −u + a
γ̂ −v −w 1

⎤
⎥⎥⎥⎥⎥⎦

. (3.83)

Rotational Invariance

We now state the rotational invariance property for the three–dimensional
case.
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Proposition 3.19. The time–dependent three dimensional Euler equa-
tions are rotationally invariant, that is they satisfy

cos θ(y) cos θ(z)F(U) + cos θ(y) sin θ(z)G(U) + sin θ(y)H(U) = T−1F (TU) ,
(3.84)

for all angles θ(y), θ(z) and vectors U. Here T = T(θ(y), θ(z)) is the rotation
matrix

T =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 cos θ(y) cos θ(z) cos θ(y) sin θ(z) sin θ(y) 0
0 − sin θ(z) cos θ(z) 0 0
0 − sin θ(y) cos θ(z) − sin θ(y) sin θ(z) cos θ(y) 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

, (3.85)

and is the product of two rotation matrices, namely

T = T(θ(y), θ(z)) = T(y)T(z) , (3.86)

with

T(y) ≡ T(y)(θ(y)) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 cos θ(y) 0 sin θ(y) 0
0 0 1 0 0
0 − sin θ(y) 0 cos θ(y) 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

,

T(z) ≡ T(z)(θ(z)) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 cos θ(z) sin θ(z) 0 0
0 − sin θ(z) cos θ(z) 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.87)

More details of the rotational invariance and related properties of the
three–dimensional Euler equations are found in Billett and Toro [64].

3.2.3 Three–Dimensional Primitive Variable Formulation

As done for the one–dimensional Euler equations, we can express the two
and three dimensional equations in terms of primitive variables.

Proposition 3.20. The three–dimensional, time–dependent Euler equa-
tions can be written in terms of the primitive variables W = (ρ, u, v, w, p)T

as
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ρt + uρx + vρy + wρz + ρ(ux + vy + wz) = 0 ,

ut + uux + vuy + wuz + 1
ρpx = 0 ,

vt + uvx + vvy + wvz + 1
ρpy = 0 ,

wt + uwx + vwy + wwz + 1
ρpz = 0 ,

pt + upx + vpy + wpz + ρa2(ux + vy + wz) = 0 .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.88)

Proof. To prove this result one follows the same steps as for the one–
dimensional case leading to equations (3.14)–(3.16).

Equations (3.88) can be written in quasi–linear form as

Wt + A(W)Wx + B(W)Wy + C(W)Wz = 0 , (3.89)

where the coefficient matrices A(W), B(W) and C(W) are given by

A(W) =

⎡
⎢⎢⎢⎢⎣

u ρ 0 0 0
0 u 0 0 1/ρ
0 0 u 0 0
0 0 0 u 0
0 ρa2 0 0 u

⎤
⎥⎥⎥⎥⎦

, (3.90)

B(W) =

⎡
⎢⎢⎢⎢⎣

v ρ 0 0 0
0 v 0 0 0
0 0 v 0 1/ρ
0 0 0 v 0
0 0 ρa2 0 v

⎤
⎥⎥⎥⎥⎦

, (3.91)

C(W) =

⎡
⎢⎢⎢⎢⎣

w ρ 0 0 0
0 w 0 0 0
0 0 w 0 0
0 0 0 w 1/ρ
0 0 0 ρa2 w

⎤
⎥⎥⎥⎥⎦

. (3.92)

Proposition 3.21. The eigenvalues of the coefficient matrix A(W) in
(3.90) are given by

λ1 = u − a , λ2 = λ3 = λ4 = u , λ5 = u + a . (3.93)

with corresponding right eigenvectors
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K(1) =

⎡
⎢⎢⎢⎢⎣

ρ
−a
0
0

ρa2

⎤
⎥⎥⎥⎥⎦

, K(2) =

⎡
⎢⎢⎢⎢⎣

1
0
v
w
0

⎤
⎥⎥⎥⎥⎦

, K(3) =

⎡
⎢⎢⎢⎢⎣

ρ
0
1
w
0

⎤
⎥⎥⎥⎥⎦

,

K(4) =

⎡
⎢⎢⎢⎢⎣

ρ
0
v
1
0

⎤
⎥⎥⎥⎥⎦

, K(5) =

⎡
⎢⎢⎢⎢⎣

ρ
a
0
0

ρa2

⎤
⎥⎥⎥⎥⎦

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.94)

Proof. The proof involves the usual algebraic steps for finding eigenvalues
and eigenvectors. See Sect. 2.1 of Chap. 2.

3.2.4 The Split Three–Dimensional Riemann Problem

When solving numerically the two or three dimensional Euler equations
by most methods of the upwind type in current use, one requires the solution
of split Riemann problems. The x–split, three–dimensional Riemann problem
is the IVP

Ut + F(U)x = 0 ,

U(x, 0) = U(0)(x) =
{

UL if x < 0 ,
UR if x > 0 ,

⎫
⎬
⎭ (3.95)

where

U =

⎡
⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
E

⎤
⎥⎥⎥⎥⎦

, F(U) =

⎡
⎢⎢⎢⎢⎣

ρu
ρu2 + p

ρuv
ρuw

u(E + p)

⎤
⎥⎥⎥⎥⎦

. (3.96)

The structure of the similarity solution is shown in Fig. 3.5 and is almost
identical to that for the one–dimensional case shown in Fig. 3.1. Both pres-
sure and normal particle velocity u are constant in the Star Region, across the
middle wave. There are two new characteristic fields associated with λ3 = u
and λ4 = u, arising from the multiplicity 3 of the eigenvalue u; these cor-
respond to two shear waves across which the respective tangential velocity
components v and w change discontinuously. For the two–dimensional case
we proved in Sect. 3.2.1 that the λ3–field is linearly degenerate. This result
is also true for the λ4–field in three dimensions. The 1 and 5 characteristic
fields are genuinely non–linear and are associated with rarefactions or shock
waves, just as in the one–dimensional case. By inspecting the eigenvectors
K(1) and K(5) in (3.94) we see immediately that the Generalised Riemann
Invariants across 1 and 5 rarefaction waves give no change in the tangential
velocity components v and w across these waves, see Fig. 3.5. In fact this is
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Fig. 3.5. Structure of the solution of the three–dimensional split Riemann problem

also true when these waves are shock waves. Consider a right shock wave of
speed S associated with the 5 field. By transforming to a frame of reference in
which the shock speed is zero and applying the Rankine–Hugoniot conditions
we obtain the same relations (3.42)–(3.44) as in the one–dimensional case plus
two extra relations involving v and w. The three relevant relations are

ρ∗(u∗ − S) = ρR(uR − S) , (3.97)

ρ∗(u∗ − S)(v∗ − S) = ρR(uR − S)(vR − S) , (3.98)

ρ∗(u∗ − S)(w∗ − S) = ρR(uR − S)(wR − S) . (3.99)

Application of the shock condition (3.97) into equations (3.98) and (3.99)
gives directly v∗ = vR and w∗ = wR. A similar analysis for a left shock wave
gives an equivalent result. Hence the tangential velocity components v and
w remain constant across the non–linear waves 1 and 5, irrespective of their
type.

Therefore finding the solution of the Riemann problem for the split three–
dimensional equations is fundamentally the same as finding the solution for the
corresponding one–dimensional Riemann problem. The solution for the extra
variables v and w could not be simpler: it consists of single jump discontinuities
across the shear waves from the values vL, wL on the left data state to the
values vR, wR on the right data state. This simple behaviour of the tangential
velocity components in the solution of split Riemann problems is sometimes
incorrectly modelled by some approximate Riemann solvers.

3.3 Conservative Versus Non–Conservative Formulations

The specific purpose of this section is first to make the point that under
the assumption of smooth solutions, conservative and non–conservative for-
mulations are not unique. It is vitally important to scrutinise the conservative
formulations carefully, as these may be conservative purely in a mathematical
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sense. The key question is to see what the conserved quantities are in the for-
mulation and whether the conservation statements they imply make physical
sense. The second point of interest here is to make the reader aware of the fact
that in the presence of shock waves, formulations that are conservative purely
in a mathematical sense will produce wrong shock speeds and thus wrong so-
lutions. We illustrate these points through the one–dimensional shallow water
equations, see Sect. 1.6.3 of Chap. 1,

[
φ
φu

]

t

+
[

φu
φu2 + 1

2φ2

]

x

= 0 . (3.100)

They express the physical laws of conservation of mass and momentum. Under
the assumption of smooth solutions we can expand derivatives so as to write
the equations in primitive–variable form

φt + uφx + φux = 0 , (3.101)

ut + uux + φx = 0 . (3.102)

It is tempting to derive new conservation–law forms of the shallow water
equations starting from equations (3.101)–(3.102). One possibility is to keep
the mass equation as in (3.101) and re–write the momentum equation (3.102)
as

ut + (
1
2
u2 + φ)x = 0 . (3.103)

Now we have an alternative conservative form of the shallow water equations,
namely [

φ
u

]

t

+
[

φu
1
2u2 + φ

]

x

= 0 . (3.104)

Mathematically, see Chap. 2, this is a system of conservation laws. It expresses
conservation of mass, as in (3.101), and conservation of particle speed u. Phys-
ically, this second conservation law does not make sense. A critical question
is this : can we use the conservation–law form (3.104) for the shallow water
equations. The anticipated answer is : yes we can, if and only if solutions are
smooth. In the presence of shock waves formulations (3.100) and (3.104) lead
to different solutions, as we now demonstrate.

Without loss of generality we consider a right facing shock wave in which
the state ahead of the shock is given by the variables φR, uR.

Proposition 3.22. A right–facing shock wave solution of (3.100) has
shock speed

S = uR + Q/φR ,

Q =
[
1
2 (φ∗ + φR) φ∗φR

] 1
2 ,

}
(3.105)

while a right–facing shock wave solution of (3.104) has speed

Ŝ = uR + Q̂/φR ,

Q̂ =
[

2
φ∗+φR

] 1
2

φ∗φR .

⎫
⎬
⎭ (3.106)
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Proof. This is left to the reader as an exercise. Use contents of Chap. 2
and those of Sect. 3.1.3 of Chap. 3.

Remark 3.23. Clearly the shock speeds S and Ŝ are equivalent only when
φ∗ ≡ φR, that is when the shock wave is trivial. In general

Ŝ ≤ S (3.107)

and thus shock solutions of the new (incorrect) conservation laws (3.104) are
slower than shock solutions of the conventional (correct) conservation laws
(3.100). Note also that the conservative form (3.104) is non–unique.

Consider now the isothermal equations of Gas Dynamics, see Sect. 1.6.2
of Chap. 1. In conservation–law form these equations read

[
ρ
ρu

]

t

+
[

ρu
ρu2 + a2ρ

]

x

= 0 , (3.108)

where the sound speed a is constant. These conservation laws state that mass
and momentum are conserved, which is in accord with the laws of conservation
of mass and momentum studied in Chap. 1. Let us now assume that solutions
are sufficiently smooth so that partial derivatives exist; we expand derivatives
and after some algebraic manipulations obtain the primitive–variable formu-
lation

ρt + uρx + ρux = 0 , (3.109)

ut + uux +
a2

ρ
ρx = 0 . (3.110)

This is a perfectly acceptable formulation, valid for smooth flows.
New conservation laws can be constructed, starting from the primitive

formulation (3.109)–(3.110) above. One such possible system of conservation
laws is [

ρ
u

]

t

+
[

ρu
1
2u2 + a2lnρ

]

x

= 0 . (3.111)

Mathematically, these equations are a set of conservation laws, see Sects. 2.1
and 2.4 of Chap. 2. Physically however, they are useless, they state that mass
and velocity are conserved !

Exercise 3.24. Using the contents of Sect. 3.1.3 for isolated shock waves,
compare the shock solutions of the two conservative formulations (3.108) and
(3.111). Which gives the fastest shock ? Find other conservative formulations
corresponding to (3.109)–(3.110).
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The Riemann Problem for the Euler Equations

In his classical paper of 1959, Godunov [216] presented a conservative ex-
tension of the first–order upwind scheme of Courant, Isaacson and Rees [144]
to non–linear systems of hyperbolic conservation laws. The key ingredient of
the scheme is the solution of the Riemann problem. The purpose of this chap-
ter is to provide a detailed presentation of the complete, exact solution to the
Riemann problem for the one–dimensional, time–dependent Euler equations
for ideal and covolume gases, including vacuum conditions. The methodology
can then be applied to other hyperbolic systems.

The exact solution of the Riemann problem is useful in a number of ways.
First, it represents the solution to a system of hyperbolic conservation laws
subject to the simplest, non–trivial, initial conditions; in spite of the sim-
plicity of the initial data the solution of the Riemann problem contains the
fundamental physical and mathematical character of the relevant set of con-
servation laws. The solution of the general IVP may be seen as resulting
from non–linear superposition of solutions of local Riemann problems [212].
In the case of the Euler equations the Riemann problem includes the so called
shock–tube problem, a basic physical problem in Gas Dynamics. For a detailed
discussion on the shock–tube problem the reader is referred to the book by
Courant and Friedrichs [143]. The exact Riemann problem solution is also an
invaluable reference solution that is useful in assessing the performance of nu-
merical methods and to check the correctness of programs in the early stages
of development. The Riemann problem solution, exact or approximate, can
also be used locally in the method of Godunov and high–order extensions of
it; this is the main role we assign to the Riemann problem here. A detailed
knowledge of the exact solution is also fundamental when utilising, assessing
and developing approximate Riemann solvers.

There is no exact closed–form solution to the Riemann problem for the
Euler equations, not even for ideal gases; in fact not even for much simpler
models such as the isentropic and isothermal equations. However, it is possible
to devise iterative schemes whereby the solution can be computed numerically
to any desired, practical, degree of accuracy. Key issues in designing an exact

E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 115
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Riemann solver are: the variables selected, the equations used, the number
of equations and the technique for the iterative procedure, the initial guess
and the handling of unphysical iterates, such as negative pressure. Godunov is
credited with the first exact Riemann solver for the Euler equations [216]. By
today’s standards Godunov’s first Riemann solver is cumbersome and compu-
tationally inefficient. Later, Godunov [218] proposed a second exact Riemann
solver. Distinct features of this solver are: the equations used are simpler, the
variables selected are more convenient from the computational point of view
and the iterative procedure is rather sophisticated. Much of the work that fol-
lowed contains the fundamental features of Godunov’s second Riemann solver.
Chorin [110], independently, produced improvements to Godunov’s first Rie-
mann solver. In 1979, van Leer [559] produced another improvement to Go-
dunov’s first Riemann solver resulting in a scheme that is similar to Godunov’s
second solver. Smoller [451] proposed a rather different approach; later, Dutt
[179] produced a practical implementation of the scheme. Gottlieb and Groth
[222] presented another Riemann solver for ideal gases; of the schemes they
tested, theirs is shown to be the most efficient. Toro [498] presented an exact
Riemann solver for ideal and covolume gases of comparable efficiency to that
of Gottlieb and Groth. More recently, Schleicher [430] and Pike [384] have
also presented new exact Riemann solvers which appear to be the fastest to
date. For gases obeying a general equation of state the reader is referred to
the pioneering work of Colella and Glaz [135]. Other relevant publications are
that of Menikoff and Plohr [349] and that of Saurel, Larini and Loraud [429].

In this chapter we present a solution procedure of the Riemann problem
for the Euler equations for both ideal and covolume gases. The methodology
is presented in great detail for the ideal gas case. We then address the issue
of vacuum and provide an exact solution for the three cases that can occur.
Particular emphasis is given to the sampling of the solution; this will be useful
to provide the complete solution and to utilise it in numerical methods such as
the Godunov method [216] and Glimm’s method or Random Choice Method
[212], [110]. The necessary background for this chapter is found in Chaps. 1,
2 and 3.

4.1 Solution Strategy

The Riemann problem for the one–dimensional time–dependent Euler
equations is the Initial Value Problem (IVP) for the conservation laws

Ut + F(U)x = 0 ,

U =

⎡
⎣

ρ
ρu
E

⎤
⎦ , F =

⎡
⎣

ρu
ρu2 + p
u(E + p)

⎤
⎦ ,

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.1)

with initial conditions (IC)
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U(x, 0) = U(0)(x) =
{

UL if x < 0 ,
UR if x > 0 .

(4.2)

The domain of interest in the x–t plane are points (x, t) with −∞ <
x < ∞ and t > 0. In practice one lets x vary in a finite interval [xL, xR]
around the point x = 0. In solving the Riemann problem we shall frequently
make use of the vector W = (ρ, u, p)T of primitive variables, rather than
the vector U of conserved variables, where ρ is density, u is particle velocity
and p is pressure. The Riemann problem (4.1)–(4.2) is the simplest, non–
trivial, IVP for (4.1). Data consists of just two constant states, which in
terms of primitive variables are WL = (ρL, uL, pL)T to the left of x = 0
and WR = (ρR, uR, pR)T to the right of x = 0, separated by a discontinuity
at x = 0. Physically, in the context of the Euler equations, the Riemann
problem is a slight generalisation of the so called shock–tube problem: two
stationary gases (uL = uR = 0) in a tube are separated by a diaphragm.
The rupture of the diaphragm generates a nearly centred wave system that
typically consists of a rarefaction wave, a contact discontinuity and a shock
wave. This physical problem is reasonably well approximated by solving the
shock–tube problem for the Euler equations. In the Riemann problem the
particle speeds uL and uR are allowed to be non–zero, but the structure of
the solution is the same as that of the shock–tube problem. In general, given

RL WW

W*L

(u+a)

(u)

(u-a)
regionStar

*RW

0

t

x

Fig. 4.1. Structure of the solution of the Riemann problem on the x-t plane for the
one–dimensional time–dependent Euler equations

the conservation equations (4.1) for the dynamics, it is left to the statements
about the material, the equation of state, to determine not only the structure
of the solution of the Riemann problem but also the mathematical character of
the equations. In this chapter we restrict our attention to ideal gases obeying
the caloric Equation of State (EOS)

e =
p

(γ − 1)ρ
, (4.3)

and covolume gases obeying
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e =
p(1 − bρ)
(γ − 1)ρ

, (4.4)

where γ is the ratio of specific heats, a constant, and b is the covolume, also
a constant. See Sects. 1.2.4 and 1.2.5 of Chap. 1. For the case in which no

x x

x x

t

0

Case (a) Case (b)

Case (c) Case (d)

0

t t

t

0 0

Fig. 4.2. Possible wave patterns in the solution of the Riemann problem: (a) left
rarefaction, contact, right shock (b) left shock, contact, right rarefaction (c) left
rarefaction, contact, right rarefaction (d) left shock, contact, right shock

vacuum is present the exact solution of the Riemann problem (4.1), (4.2) has
three waves, which are associated with the eigenvalues λ1 = u − a, λ2 = u
and λ3 = u + a; see Fig. 4.1. Note that the speeds of these waves are not, in
general, the characteristics speeds given by the eigenvalues. The three waves
separate four constant states, which from left to right are: WL (data on the
left hand side), W∗L, W∗R and WR (data on the right hand side).

The unknown region between the left and right waves, the Star Region,
is divided by the middle wave into the two subregions Star Left (W∗L) and
Star Right (W∗R). As seen in Sect. 3.1.3 of Chap. 3, the middle wave is
always a contact discontinuity while the left and right (non–linear) waves are
either shock or rarefaction waves. Therefore, according to the type of non–
linear waves there can be four possible wave patterns, which are shown in
Fig. 4.2. There are two possible variations of these, namely when the left or
right non–linear wave is a sonic rarefaction wave; these two cases are only of
interest when utilising the solution of the Riemann problem in Godunov–type
methods. For the purpose of constructing a solution scheme for the Riemann
problem it is sufficient to consider the four patterns of Fig. 4.2.

An analysis based on the eigenstructure of the Euler equations, Sect. 3.1.3
Chap. 3, reveals that both pressure p∗ and particle velocity u∗ between the
left and right waves are constant, while the density takes on the two constant
values ρ∗L and ρ∗R. Here we present a solution procedure which makes use of
the constancy of pressure and particle velocity in the Star Region to derive a
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single, algebraic non–linear equation for pressure p∗. In summary, the main
physical quantities sought are p∗, u∗, ρ∗L and ρ∗R.

4.2 Equations for Pressure and Particle Velocity

Here we establish equations and solution strategies for computing the pres-
sure p∗ and the particle velocity u∗ in the Star Region.

Proposition 4.1 (solution for p∗ and u∗). The solution for pressure p∗
of the Riemann problem (4.1), (4.2) with the ideal gas Equation of State (4.3)
is given by the root of the algebraic equation

f(p,WL,WR) ≡ fL(p,WL) + fR(p,WR) + Δu = 0 , Δu ≡ uR − uL , (4.5)

where the function fL is given by

fL(p,WL) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(p − pL)
[

AL
p+BL

] 1
2

if p > pL (shock) ,

2aL
(γ−1)

[(
p

pL

) γ−1
2γ − 1

]
if p ≤ pL (rarefaction) ,

(4.6)

the function fR is given by

fR(p,WR) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(p − pR)
[

AR
p+BR

] 1
2

if p > pR (shock) ,

2aR
(γ−1)

[(
p

pR

) γ−1
2γ − 1

]
if p ≤ pR (rarefaction) ,

(4.7)

and the data–dependent constants AL, BL, AR, BR are given by

AL = 2
(γ+1)ρL

, BL = (γ−1)
(γ+1)pL ,

AR = 2
(γ+1)ρR

, BR = (γ−1)
(γ+1)pR .

⎫
⎪⎬
⎪⎭

(4.8)

The solution for the particle velocity u∗ in the Star Region is

u∗ =
1
2
(uL + uR) +

1
2

[fR(p∗) − fL(p∗)] . (4.9)

Remark 4.2. Before proceeding to prove the above statements we make
some useful remarks. Once (4.5) is solved for p∗ the solution for u∗ follows as in
(4.9) and the remaining unknowns are found by using standard gas dynamics
relations studied in Chap. 3. The function fL governs relations across the left
non–linear wave and serves to connect the unknown particle speed u∗ to the
known state WL on the left side, see Fig. 4.3; the relations depend on the type
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of wave (shock or rarefaction). The arguments of fL are the pressure p and the
data state WL. Similarly, the function fR governs relations across the right
wave and connects the unknown u∗ to the right data state WR; its arguments
are p and WR. For convenience we shall often omit the data arguments of the
functions f , fL and fR. The sought pressure p∗ in the Star Region is the root
of the algebraic equation (4.5), f(p) = 0. A detailed analysis of the pressure
function f(p) reveals a particularly simple behaviour and that for physically
relevant data there exists a unique solution to the equation f(p) = 0.

f f

*R*L

W WL R

L

* *

**

u

R

p u

u

W

x

t

0

W

(u+a)(u-a)

(u)

Fig. 4.3. Strategy for solving the Riemann problem via a pressure function. The
particle velocity is connected to data on the left and right via functions fL and fR

Proof. Here we derive expressions for fL and fR in equation (4.5). We do
this by considering each non–linear wave separately.

4.2.1 Function fL for a Left Shock

We assume the left wave is a shock moving with speed SL as shown in Fig.
4.4a; pre–shock values are ρL, uL and pL and post–shock values are ρ∗L, u∗
and p∗.

As done in Sect. 3.1.3 of Chap. 3, we transform the equations to a frame
of reference moving with the shock, as depicted in Fig. 4.4b. In the new frame
the shock speed is zero and the relative velocities are

ûL = uL − SL , û∗ = u∗ − SL . (4.10)

The Rankine–Hugoniot Conditions, see Sect. 3.1.3 of Chap. 3, give

ρLûL = ρ∗Lû∗ , (4.11)

ρLû2
L + pL = ρ∗Lû2

∗ + p∗ , (4.12)

ûL(ÊL + pL) = û∗(Ê∗L + p∗) . (4.13)
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Fig. 4.4. Left wave is a shock wave of speed SL: (a) stationary frame, shock speed
is SL (b) frame of reference moving with speed SL, shock speed is zero

We introduce the mass flux QL, which in view of (4.11) may be written as

QL ≡ ρLûL = ρ∗Lû∗ . (4.14)

From equation (4.12)

(ρLûL)ûL + pL = (ρ∗Lû∗)û∗ + p∗ .

Use of (4.14) and solving for QL gives

QL = − p∗ − pL

û∗ − ûL
. (4.15)

But from equation (4.10) ûL − û∗ = uL − u∗ and so QL becomes

QL = − p∗ − pL

u∗ − uL
, (4.16)

from which we obtain

u∗ = uL − (p∗ − pL)
QL

. (4.17)

We are now close to having related u∗ to data on the left hand side. We seek
to express the right hand side of (4.17) purely in terms of p∗ and WL, which
means that we need to express QL as a function of p∗ and the data on the left
hand side. We substitute the relations

ûL =
QL

ρL
, û∗ =

QL

ρ∗L
,

obtained from (4.14) into equation (4.15) to produce

Q2
L = − p∗ − pL

1
ρ∗L

− 1
ρL

. (4.18)

As seen in Sect. 3.1.3 of Chap. 3, the density ρ∗L is related to the pressure p∗
behind the left shock via
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ρ∗L = ρL

⎡
⎣

(
γ−1
γ+1

)
+
(

p∗
pL

)
(

γ−1
γ+1

)(
p∗
pL

)
+ 1

⎤
⎦ . (4.19)

Substitution of ρ∗L into (4.18) yields

QL =
[
p∗ + BL

AL

] 1
2

, (4.20)

which in turn reduces (4.17) to

u∗ = uL − fL(p∗,WL) , (4.21)

with

fL(p∗,WL) = (p∗ − pL)
[

AL

p∗ + BL

] 1
2

and

AL =
2

(γ + 1)ρL
, BL =

(γ − 1)
(γ + 1)

pL .

Thus, the sought expression for fL for the case in which the left wave is a
shock wave has been obtained.

4.2.2 Function fL for Left Rarefaction

Now we derive an expression for fL for the case in which the left wave
is a rarefaction wave, as shown in Fig. 4.5. The unknown state W∗L is now
connected to the left data state WL using the isentropic relation and the
Generalised Riemann Invariants for the left wave. As seen in Sect. 3.1.2 of

L

L

p
u

p
u

L

discontinuity
Contact

Rarefaction

*

*

*L

ρ

ρ

0

t

x

Fig. 4.5. Left wave is a rarefaction wave that connects the data state WL with the
unknown state W∗L in the star region to the left of the contact discontinuity

Chap. 3, the isentropic law
p = Cργ , (4.22)

where C is a constant, may be used across rarefactions. C is evaluated at the
initial left data state by applying the isentropic law, namely
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pL = Cργ
L ,

and so the constant C is
C = pL/ργ

L ,

from which we write

ρ∗L = ρL

(
p∗
pL

) 1
γ

. (4.23)

In Sect. 3.1.3 of Chap. 3 we showed that across a left rarefaction the Gener-
alised Riemann Invariant IL(u, a) is constant. By evaluating the constant on
the left data state we write

uL +
2aL

γ − 1
= u∗ +

2a∗L
γ − 1

, (4.24)

where aL and a∗L denote the sound speed on the left and right states bounding
the left rarefaction wave. See Fig. 4.5.

Substitution of ρ∗L from (4.23) into the definition of a∗L gives

a∗L = aL

(
p∗
pL

) γ−1
2γ

, (4.25)

and equation (4.24) leads to

u∗ = uL − fL(p∗,WL) , (4.26)

with

fL(p∗,WL) =
2aL

(γ − 1)

[(
p∗
pL

) γ−1
2γ

− 1

]
.

This is the required expression for the function fL for the case in which the
left wave is a rarefaction wave.

4.2.3 Function fR for a Right Shock

Here we find the expression for the function fR for the case in which the
right wave is a shock wave travelling with speed SR. The situation is entirely
analogous to the case of a left shock wave. Pre–shock values are ρR, uR and
pR and post–shock values are ρ∗R, u∗ and p∗. In the transformed frame of
reference moving with the shock, the shock speed is zero and the relative
velocities are

ûR = uR − SR , û∗ = u∗ − SR . (4.27)

Application of the Rankine–Hugoniot conditions gives

ρ∗Rû∗ = ρRûR ,

ρ∗Rû2
∗ + p∗ = ρRû2

R + pR ,

û∗(Ê∗R + p∗) = ûR(ÊR + pR) .

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.28)
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Now the mass flux is defined as

QR ≡ −ρ∗Rû∗ = −ρRûR . (4.29)

By performing algebraic manipulations similar to those for a left shock we
derive the following expression for the mass flux

QR =
[
p∗ + BR

AR

] 1
2

. (4.30)

Hence the particle velocity in the Star Region satisfies

u∗ = uR + fR(p∗,WR) , (4.31)

with

fR(p∗,WR) = (p∗ − pR)
[

AR

p∗ + BR

] 1
2

,

AR =
2

(γ + 1)ρR
, BR =

(γ − 1)
(γ + 1)

pR .

This is the sought expression for fR for the case in which the right wave is a
shock wave.

4.2.4 Function fR for a Right Rarefaction

The derivation of the function fR for the case in which the right wave is
a rarefaction wave is carried out in an entirely analogous manner to the case
of a left rarefaction. The isentropic law gives

ρ∗R = ρR

(
p∗
pR

) 1
γ

(4.32)

and the Generalised Riemann Invariant IR(u, a) for a right rarefaction gives

u∗ −
2a∗R
γ − 1

= uR − 2aR

γ − 1
. (4.33)

Using (4.32) into the definition of sound speed a∗R gives

a∗R = aR

(
p∗
pR

) γ−1
2γ

, (4.34)

which if substituted into (4.33) leads to

u∗ = uR + fR(p∗,WR) , (4.35)

with
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fR(p∗,WR) =
2aR

γ − 1

[(
p∗
pR

) γ−1
2γ

− 1

]
.

The functions fL and fR have now been determined for all four possible wave
patterns of Fig. 4.2. Now by eliminating u∗ from equations (4.21) or (4.26)
and (4.31) or (4.35) we obtain a single equation

f(p∗,WL,WR) ≡ fL(p∗,WL) + fR(p∗,WR) + Δu = 0 , (4.36)

which is the required equation (4.5) for the pressure. This proves the first
part of the proposition. Assuming this single non–linear algebraic equation is
solved (numerically) for p∗ then the solution for the particle velocity u∗ can
be found from equation (4.21) if the left wave is a shock (p∗ > pL) or from
equation (4.26) if the left wave is a rarefaction (p∗ ≤ pL) or from equation
(4.31) if the right wave is a shock (p∗ > pR) or from equation (4.35) if the
right wave is a rarefaction wave (p∗ ≤ pR). It can also be found from a mean
value as

u∗ =
1
2
(uL + uR) +

1
2

[fR(p∗) − fL(p∗)] ,

which is equation (4.9), and the proposition has thus been proved.

4.3 Numerical Solution for Pressure

The unknown pressure p∗ in the Star Region is found by solving the single
algebraic equation (4.5), f(p) = 0, numerically. Any standard technique can
be used. See Maron and Lopez [337] for background on numerical methods
for algebraic equations. The behaviour of the pressure function f(p) plays a
fundamental role in finding its roots numerically.

4.3.1 Behaviour of the Pressure Function

Given data ρL, uL, pL and ρR, uR, pR the pressure function f(p) behaves
as shown in Fig. 4.6. It is monotone and concave down as we shall demonstrate.
The first derivatives of fK (K=L,R) with respect to p are

f ′
K =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(
AK

BK+p

)1/2 [
1 − p−pK

2(BK+p)

]
if p > pK (shock) ,

1
ρKaK

(
p

pK

)−(γ+1)/2γ

if p ≤ pK (rarefaction) .

(4.37)

As f ′ = f ′
L + f ′

R and by inspection f ′
K > 0, the function f(p) is monotone

as claimed. The second derivatives of the functions fK are
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Fig. 4.6. Behaviour of the pressure function in the solution of the Riemann problem

f”K =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

− 1
4

(
AK

BK+p

)1/2 [
4BK+3p+pK

(BK+p)2

]
if p > pK (shock) ,

− (γ+1)aK
2γ2p2

K

(
p

pK

)−(3γ+1)/2γ

if p ≤ pK (rarefaction) .

(4.38)

Since f ′′ = f ′′
L + f ′′

R and f ′′
K < 0 the function f(p) is concave down as an-

ticipated. From equations (4.37) and (4.38) it can be seen that f ′
K → 0 as

p → ∞ and f ′′
K → 0 as p → ∞. This behaviour of fK, and thus of f(p), has

implications when devising iteration schemes to find the zero p∗ of f(p) = 0.
The velocity difference Δu = uR − uL and the pressure values pL, pR are the
most important parameters of f(p). With reference to Fig. 4. 6 we define

pmin = min(pL, pR) , pmax = max(pL, pR) ,

fmin = f(pmin) , fmax = f(pmax) .

For given pL, pR it is the velocity difference Δu which determines the value
of p∗. Three intervals I1, I2 and I3 can be identified:

p∗ lies in I1 = (0, pmin) if fmin > 0 and fmax > 0 ,

p∗ lies in I2 = [pmin, pmax] if fmin ≤ 0 and fmax ≥ 0 ,

p∗ lies in I3 = (pmax, ∞) if fmin < 0 and fmax < 0 .

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.39)

For sufficiently large Δu, as (Δu)1 in Fig. 4.6, the solution p∗ is as p∗1,
which lies in I1 and thus p∗ < pL, p∗ < pR; so the two non–linear waves are
rarefaction waves. For Δu as (Δu)2 in Fig. 4.6 p∗ = p∗2 lies between pL and
pR and hence one non–linear wave is a rarefaction wave and the other is a
shock wave. For sufficiently small values of Δu, as (Δu)3 in Fig. 4.6, p∗ = p∗3
lies in I3, that is p∗ > pL, p∗ > pR, which means that both non–linear waves
are shock waves. The interval where p∗ lies is identified by noting the signs of
fmin and fmax; see 4.39.
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Another observation on the behaviour of f(p) is this: in I1 both f ′(p)
and f ′′(p) vary rapidly; this may lead to numerical difficulties when searching
for the root of f(p) = 0. As p increases the shape of f(p) tends to resemble
that of a straight line. For non–vacuum initial data WL, WR there exists a
unique positive solution p∗ for pressure, provided Δu is sufficiently small. As
a matter of fact, even for the case in which the data states are non–vacuum
states, values of Δu larger than a critical value (Δu)crit lead to vacuum in the
solution of the Riemann problem. The critical value can be found analytically
in terms of the initial data. Clearly for a positive solution for pressure p∗
we require f(0) < 0. Direct evaluation of f(p) gives the pressure positivity
condition

(Δu)crit ≡
2aL

γ − 1
+

2aR

γ − 1
> uR − uL . (4.40)

Vacuum is created by the non–linear waves if this condition is violated. The
structure of the solution in this case is different from that depicted in Fig. 4.1
and so is the method of solution, as we shall see in Sect. 4.6 of this chapter.

4.3.2 Iterative Scheme for Finding the Pressure

Given the particularly simple behaviour of the pressure function f(p) and
the availability of analytical expressions for the derivative of f(p) we use
a Newton–Raphson [337] iterative procedure to find the root of f(p) = 0.
Suppose a guess value p0 for the true solution p∗ is available; since f(p) is a
smooth function we can find an approximate value of f(p) at a neighbouring
point p0 + δ via a Taylor expansion

f(p0 + δ) = f(p0) + δf ′(p0) + O(δ2) . (4.41)

If the p0 + δ is a solution of f(p) = 0 then

f(p0) + δf ′(p0) = 0 , (4.42)

and so the corrected value p1 = p0 + δ is

p1 = p0 −
f(p0)
f ′(p0)

. (4.43)

The above procedure generalises to

p(k) = p(k−1) −
f(p(k−1))
f ′(p(k−1))

, (4.44)

where p(k) is the k–th iterate. The iteration procedure is stopped whenever
the relative pressure change

CHA =
|p(k) − p(k−1)|

1
2

[
p(k) + p(k−1)

] , (4.45)
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is less than a prescribed small tolerance TOL. Typically TOL = 10−6.
In order to implement the iteration scheme (4.44) we need a guess value

p0 for the pressure. Given the benign behaviour of f(p) the choice of p0 is
not too critical. An inadequate choice of p0 results in a large number of itera-
tions to achieve convergence. A difficulty that requires special handling in the
Newton–Raphson method arises when the root is close to zero (strong rarefac-
tion waves) and the guess value p0 is too large: the next iterate for pressure
can be negative. This is due to the rapid variations of the first and second
derivatives of f(p) near p = 0. We illustrate the effect of the initial guess value
by considering four possible choices. Three of these are approximations to the
solution p∗ for pressure, see Chap. 9 for details. One such approximation is
the so called Two–Rarefaction approximation

pTR =

⎡
⎣aL + aR − 1

2 (γ − 1)(uR − uL)

aL/p
γ−1
2γ

L + aR/p
γ−1
2γ

R

⎤
⎦

2γ
γ−1

, (4.46)

and results from the exact function (4.5) for pressure under the assumption
that the two non–linear waves are rarefaction waves. If the solution actually
consists of two rarefactions then pTR is exact and no iteration is required.
A second guess value results from a linearised solution based on primitive
variables. This is

p0 = max(TOL, pPV) ,

pPV = 1
2 (pL + pR) − 1

8 (uR − uL)(ρL + ρR)(aL + aR) .

⎫
⎬
⎭ (4.47)

A third guess value is given by a Two–Shock approximation

p0 = max(TOL, pTS) ,

pTS = gL(p̂)pL+gR(p̂)pR−Δu
gL(p̂)+gR(p̂) ,

gK(p) =
(

AK
p+BK

) 1
2

,

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.48)

where AK and BK given by (4.8). Here p̂ is an estimate of the solution; the
value p̂ = p0 given by (4.47) works well. Note that approximate solutions may
predict, incorrectly, a negative value for pressure, even when condition (4.40)
is satisfied. Thus in order to avoid negative guess values we introduce the
small positive constant TOL, as used in the iteration procedure. As a fourth
guess value we utilise the arithmetic mean of the data, namely

p0 =
1
2
(pL + pR) . (4.49)

Next, we carry out some tests on the effect of the various guess values for p0

on the convergence of the Newton–Raphson iterative scheme for finding the
pressure p∗.
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4.3.3 Numerical Tests

Five Riemann problems are selected to test the performance of the Rie-
mann solver and the influence of the initial guess for pressure. The tests are
also used to illustrate some typical wave patterns resulting from the solution
of the Riemann problem. Table 4.1 shows the data for all five tests in terms
of primitive variables. In all cases the ratio of specific heats is γ = 1.4. The
source code for the exact Riemann solver, called HE-E1RPEXACT, is part of
the library NUMERICA [519]; a listing is given in Sect. 4.9.

Test 1 is the so called Sod test problem [453]; this is a very mild test and
its solution consists of a left rarefaction, a contact and a right shock. Fig.
4.7 shows solution profiles for density, velocity, pressure and specific internal
energy across the complete wave structure, at time t = 0.25 units. Test 2,
called the 123 problem, has solution consisting of two strong rarefactions and
a trivial stationary contact discontinuity; the pressure p∗ is very small (close
to vacuum) and this can lead to difficulties in the iteration scheme to find p∗
numerically. Fig. 4.8 shows solution profiles. Test 2 is also useful in assessing
the performance of numerical methods for low density flows, see Einfeldt et.
al. [182]. Test 3 is a very severe test problem, the solution of which contains a
left rarefaction, a contact and a right shock; this test is actually the left half
of the blast wave problem of Woodward and Colella [584], Fig. 4.9 shows solu-
tion profiles. Test 4 is the right half of the Woodward and Colella problem; its
solution contains a left shock, a contact discontinuity and a right rarefaction,
as shown in Fig. 4.10. Test 5 is made up of the right and left shocks emerging
from the solution to tests 3 and 4 respectively; its solution represents the col-
lision of these two strong shocks and consists of a left facing shock (travelling
very slowly to the right), a right travelling contact discontinuity and a right
travelling shock wave. Fig. 4.11 shows solution profiles for Test 5.

Test ρL uL pL ρR uR pR

1 1.0 0.0 1.0 0.125 0.0 0.1
2 1.0 -2.0 0.4 1.0 2.0 0.4
3 1.0 0.0 1000.0 1.0 0.0 0.01
4 1.0 0.0 0.01 1.0 0.0 100.0
5 5.99924 19.5975 460.894 5.99242 -6.19633 46.0950

Table 4.1. Data for five Riemann problem tests

Table 4.2 shows the computed values for pressure in the Star Region by
solving the pressure equation f(p) = 0 (equation 4.5) by a Newton–Raphson
method. This task is carried out by the subroutine STARPU, which is contained
in the FORTRAN 77 program given in Sect. 4.9 of this chapter.
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Test p∗ pTR pPV pTS
1
2 (pL + pR)

1 0.30313 0.30677(3) 0.55000(5) 0.31527(3) 0.55(5)
2 0.00189 exact(1) TOL(8) TOL(8) 0.4(9)
3 460.894 912.449(5) 500.005(4) 464.108(3) 500.005(4)
4 46.0950 82.9831(5) 50.005(4) 46.4162(3) 50.005(4)
5 1691.64 2322.65(4) 781.353(5) 1241.21(4) 253.494(6)

Table 4.2 Guess values p0 for iteration scheme. Next to each guess
is the required number of iterations for convergence (in parentheses).
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Fig. 4.7. Test 1: Exact solution for density, velocity, pressure and specific internal
energy at time t = 0.25 units

The exact, converged, solution for pressure is given in column 2. Columns
3 to 6 give the guess values pTR, pPV, pTS and the arithmetic mean value of
the data. The number in parentheses next to each guess value is the number
of iterations required for convergence for a tolerance TOL = 10−6. For Test 1,
pTR and pTS are the best guess values for p0. For Test 2, pTR is actually the
exact solution (two rarefactions). By excluding Test 2, pTS is the best guess
overall. Experience in using hybrid schemes suggests that a combination of two
or three approximations is bound to provide a suitable guess value for p0 that
is both accurate and efficient. In the FORTRAN 77 program provided in Sect.
4.9 of this chapter, the subroutine STARTE contains a hybrid scheme involving
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Fig. 4.8. Test 2: Exact solution for density, velocity, pressure and specific internal
energy at time t = 0.15 units

pPV, pTR and pTS. In a typical application of the exact Riemann solver to
a numerical method, the overwhelming majority of Riemann problems will
consist of nearby states which can be accurately approximated by the simple
value pPV.

Having found p∗, the solution u∗ for the particle velocity follows from
(4.9) and the density values ρ∗L, ρ∗R follow from appropriate wave relations,
as detailed in the next section. Table 4.3 shows exact solutions for pressure p∗,
speed u∗, densities ρ∗L and ρ∗R for tests 1 to 5. These quantities may prove
of some use for initial testing of programs.

Test p∗ u∗ ρ∗L ρ∗R
1 0.30313 0.92745 0.42632 0.26557
2 0.00189 0.00000 0.02185 0.02185
3 460.894 19.5975 0.57506 5.99924
4 46.0950 -6.19633 5.99242 0.57511
5 1691.64 8.68975 14.2823 31.0426

Table 4.3. Exact solution for pressure, speed and densities for tests 1 to 5.
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Fig. 4.9. Test 3: Exact solution for density, velocity, pressure and specific internal
energy at time t = 0.012 units

4.4 The Complete Solution

So far, we have an algorithm for computing the pressure p∗ and particle
velocity u∗ in the Star Region. We still dot not know the sought values ρ∗L
and ρ∗R for the density in this region; these are computed by identifying the
types of non–linear waves, and can be done by comparing the pressure p∗ to
the pressures pL and pR, and then applying the appropriate conditions across
the respective waves. Another pending task is to determine completely the left
and right waves. For shock waves we only need to find the density behind the
wave and the shock speed. For rarefaction waves there is more work involved:
we need ρ behind the wave, equations for the Head and Tail of the wave and
the full solution inside the rarefaction fan.

There are two cases. First we consider the case in which the sampling point
(x, t) lies to the left of the contact discontinuity, as in Fig. 4.12. Again, there
are two possibilities; these are now studied separately.

Left Shock Wave

A left shock wave, see Fig. 4.12a, is identified by the condition p∗ > pL.
We know p∗ and u∗. From the pressure ratio, see Sect. 3.1.3 of Chap. 3, we
find the density according to
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Fig. 4.10. Test 4: Exact solution for density, velocity, pressure and specific internal
energy at time t = 0.035 units

ρ∗L = ρL

[
p∗
pL

+ γ−1
γ+1

γ−1
γ+1

p∗
pL

+ 1

]
. (4.50)

The shock speed SL is also a function of the pressure p∗. From (4.10) and
(4.14) we deduce the shock speed as

SL = uL − QL/ρL , (4.51)

where the mass flux QL is given by (4.20). More explicitly, see Sect. 3.1.3 of
Chap. 3, one has

SL = uL − aL

[
γ + 1
2γ

p∗
pL

+
γ − 1
2γ

] 1
2

. (4.52)

We have therefore completely determined the solution for the entire region
to the left of the contact discontinuity in the case in which the left wave is a
shock wave.

Left Rarefaction Wave

A left rarefaction wave, see Fig. 4.12b, is identified by the condition p∗ ≤
pL. The pressure p∗ and the particle velocity u∗ in the Star Region are known.
The density follows from the isentropic law as



134 4 The Riemann Problem for the Euler Equations

0

20

40

11

D
en

si
ty

 

Position

0

12.5

25

11

V
el

oc
ity

Position

0100

2000

11

Pr
es

su
re

Position

0

200

400

11

In
te

rn
al

 E
ne

rg
y

Position

Fig. 4.11. Test 5: Exact solution for density, velocity, pressure and specific internal
energy at time t = 0.035 units
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Fig. 4.12. Sampling the solution at a point to the left of the contact: (a) left wave
is a shock (b) left wave is a rarefaction

ρ∗L = ρL

(
p∗
pL

) 1
γ

. (4.53)

The sound speed behind the rarefaction is

a∗L = aL

(
p∗
pL

) γ−1
2γ

. (4.54)

The rarefaction wave is enclosed by the Head and the Tail, which are the
characteristics of speeds given respectively by

SHL = uL − aL , STL = u∗ − a∗L . (4.55)
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We now find the solution for WLfan = (ρ, u, p)T inside the left rarefaction fan.
This is easily obtained by considering the characteristic ray through the origin
(0, 0) and a general point (x, t) inside the fan. The slope of the characteristic
is

dx

dt
=

x

t
= u − a ,

where u and a are respectively the sought particle velocity and sound speed
at (x, t). Also, use of the Generalised Riemann Invariant IL(u, a) yields

uL +
2aL

γ − 1
= u +

2a

γ − 1
.

The simultaneous solution of these two equations for u and a, use of the
definition of the sound speed a and the isentropic law give the result

WLfan =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ = ρL

[
2

(γ+1) + (γ−1)
(γ+1)aL

(
uL − x

t

)] 2
γ−1

,

u = 2
(γ+1)

[
aL + (γ−1)

2 uL + x
t

]
,

p = pL

[
2

(γ+1) + (γ−1)
(γ+1)aL

(
uL − x

t

)] 2γ
γ−1

.

(4.56)

Next we consider the solution at a point (x, t) to the right of the contact
discontinuity for the two possible wave configurations of Fig. 4.13.
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t t
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R TR

HR

Case (a) Case (b)
0
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x x

Fig. 4.13. Sampling the solution at a point to the right of the contact: (a) right
wave is a shock (b) right wave is a rarefaction

Right Shock Wave

A right shock wave, see Fig. 4.13a, is identified by the condition p∗ > pR.
We know the pressure p∗ and the particle velocity u∗. The density ρ∗R is found
to be

ρ∗R = ρR

[
p∗
pR

+ γ−1
γ+1

γ−1
γ+1

p∗
pR

+ 1

]
(4.57)
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and the shock speed is
SR = uR + QR/ρR , (4.58)

with the mass flux QR given by (4.30). More explicitly we have

SR = uR + aR

[
(γ + 1)

2γ

p∗
pR

+
(γ − 1)

2γ

] 1
2

. (4.59)

Right Rarefaction Wave

A right rarefaction wave, see Fig. 4.13b, is identified by the condition
p∗ ≤ pR. The pressure p∗ and velocity u∗ in the Star Region are known. The
density is found from the isentropic law as

ρ∗R = ρR

(
p∗
pR

) 1
γ

, (4.60)

from which the sound speed follows as

a∗R = aR

(
p∗
pR

) γ−1
2γ

. (4.61)

The speeds for the Head and Tail are given respectively by

SHR = uR + aR , STR = u∗ + a∗R . (4.62)

The solution for WRfan inside a right rarefaction fan is found in an analogous
manner to the case of a left rarefaction fan. The solution is

WRfan =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ = ρR

[
2

(γ+1) −
(γ−1)

(γ+1)aR

(
uR − x

t

)] 2
γ−1

,

u = 2
(γ+1)

[
−aR + (γ−1)

2 uR + x
t

]
,

p = pR

[
2

(γ+1) −
(γ−1)

(γ+1)aR

(
uR − x

t

)] 2γ
γ−1

.

(4.63)

4.5 Sampling the Solution

We have developed a solver to find the exact solution of the complete
wave structure of the Riemann problem at any point (x, t) in the relevant
domain of interest xL < x < xR; t > 0, with xL < 0 and xR > 0. We now
provide a solution sampling procedure which, apart from being a summary of
the solution, may also prove of practical use when programming the solution
algorithm. Suppose we wish to evaluate the solution at a general point (x, t).
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We denote the solution of the Riemann problem at (x, t) in terms of the
vector of primitive variables W = (ρ, u, p)T . As the solution W is a similarity
solution we perform the sampling in terms of the speed S = x/t. When the
solution at a specified time t is required the solution profiles are only a function
of space x. In sampling the complete solution there are two cases to consider.

4.5.1 Left Side of Contact: S = x/t ≤ u∗

As shown in Fig. 4.12 there are two possible wave configurations. Fig.
4.12a shows the case in which the left wave is a shock wave. In this case the
complete solution on the left hand side of the contact wave is

W(x, t) =

⎧
⎨
⎩

Wsho
∗L if SL ≤ x

t ≤ u∗ ,

WL if x
t ≤ SL ,

(4.64)

where SL is the shock speed given by (4.52), Wsho
∗L = (ρsho

∗L , u∗, p∗)T with ρsho
∗L

given by (4.50) and WL is the left data state. If the left wave is a rarefaction,
as depicted by Fig. 4.12b, then the complete solution on the left hand side of
the contact consists of three states, namely

W(x, t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

WL if x
t ≤ SHL ,

WLfan if SHL ≤ x
t ≤ STL ,

Wfan
∗L if STL ≤ x

t ≤ u∗ ,

(4.65)

where SHL and STL are the speeds of the head and tail of the rarefaction given
by (4.55), Wfan

∗L = (ρfan
∗L , u∗, p∗) with ρfan

∗L given by (4.53), WLfan is the state
inside the rarefaction fan given by (4.56) and WL is the left data state. Fig.
4.14 shows a flow chart for sampling the solution at any point (x, t) to the left
of the contact discontinuity. An analogous flow chart results from the case in
which the point (x, t) lies to the right of the contact discontinuity; the reader
is encouraged to draw the flow chart for this case.

4.5.2 Right Side of Contact: S = x/t ≥ u∗

As shown in Fig. 4.13 there are two possible wave configurations. Fig.
4.13a shows the case in which the right wave is a shock wave. In this case the
complete solution on the right hand side of the contact wave is

W(x, t) =

⎧
⎨
⎩

Wsho
∗R if u∗ ≤ x

t ≤ SR ,

WR if x
t ≥ SR ,

(4.66)

where SR is the shock speed given by (4.59), Wsho
∗R = (ρsho

∗R , u∗, p∗)T with
ρsho
∗R given by (4.57) and WR is the right data state. If the right wave is a
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Fig. 4.14. Flow chart for sampling the solution at a point (x, t) to the left of the
contact discontinuity dx
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rarefaction, as depicted by Fig. 4.13b, then the complete solution on the right
hand side of the contact consists of three states, namely

W(x, t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Wfan
∗R if u∗ ≤ x

t ≤ STR ,

WRfan if STR ≤ x
t ≤ SHR ,

WR if x
t ≥ SHR ,

(4.67)

where SHR and STR are the speeds of the head and tail of the rarefaction
given by (4.62), Wfan

∗R = (ρfan
∗R , u∗, p∗)T with ρfan

∗R given by (4.60), WRfan is
the state inside the right rarefaction fan given by (4.63) and WR is the right
data state.

Exercise 4.3. Write a flow chart for sampling the solution at any point
(x, t) to the right of the contact discontinuity dx

dt = u∗.

Solution 4.4. (Left to the reader).

In Sect. 4.9 we give a program for finding the complete solution of the
Riemann problem for ideal gases, excluding the cases in which vacuum is
present.
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4.6 The Riemann Problem in the Presence of Vacuum

The admission of flowing material adjacent to vacuum plays an important
role in a number of practical applications. Loosely, vacuum is characterised by
the condition ρ = 0. It follows that the total energy per unit mass also van-
ishes, E = 0. Values of pressure and particle velocity in vacuum are discussed
later. Naturally, in vacuum regions the Euler equations, or any other math-
ematical model based on the continuum assumption, are no longer a valid
description of the physics. Here we discuss solutions of the Euler equations in
domains adjacent to regions of vacuum. As for the non–vacuum case described
previously, the simplest problem involving the vacuum state is furnished by
the Riemann problem. There are two obvious cases to consider. One is that
in which the left non–vacuum state is adjacent to a right vacuum state at
the initial time t = 0. The second case is simply the previous case reversed,
the right non–vacuum state is adjacent to a left vacuum state. There is a
third case, in which both left and right data states are non–vacuum states,
but the vacuum state is generated in the interaction of the data states via
the Riemann problem. The solution of the Riemann problem in the presence
of vacuum involves the computation of free boundaries separating vacuum
regions from those in which material exists.

In the presence of vacuum the structure of the solution of the Riemann
problem is different from that of the conventional case shown in Fig. 4.1; the
Star Region does no longer exist. Attempts at using the pressure equation
(4.5) and an iterative scheme to solve it will fail, simply because the scheme
would be assuming a solution structure that does not exist. The temptation to
use small values of density and pressure to simulate vacuum with the Riemann
solver for the non–vacuum case will also prove frustrating. If this is done in
approximate Riemann solvers, then one is effectively changing the local wave
structure of the solution.

Concerning the admissible elementary waves present in the structure of the
solution of the Riemann problem including the vacuum state, an important
observation is that a shock wave cannot be adjacent to a vacuum region. This
is stated in the following proposition

Proposition 4.5. A shock wave cannot be adjacent to a vacuum region.

Proof. Let us consider a left non–vacuum constant state WL = (ρL, uL, pL)T

adjacent to a right vacuum state W0 ≡ (ρ0, u0, p0)T at the initial time t = 0,
where ρ0 = 0. Assume these states are connected by a discontinuity of speed
S. Application of the Rankine–Hugoniot conditions, see Sect. 3.1.3 of Chap.
3, gives

ρLuL − ρ0u0 = S(ρL − ρ0) , (4.68)

ρLu2
L + pL − (ρ0u

2
0 + p0) = S(ρLuL − ρ0u0) , (4.69)

uL(EL + pL) − u0(E0 + p0) = S(EL − E0) . (4.70)
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As E0 = 0 and assuming u0 to be finite, manipulation of the equations gives

uL = u0 = S , pL = p0 . (4.71)

It follows that a shock wave cannot be adjacent to a region of vacuum, pL = p0.
The proposition is thus proved.

From the result (4.71) it also follows that a contact discontinuity can be
adjacent to a region of vacuum, uL = u0 = S, which makes perfect physical
sense. This wave separates a region of material from a region of no material
and is therefore a boundary. The velocity u0 of the front is also the maximum
particle velocity across the wave system connecting a non–vacuum state with
the vacuum state and is called the escape velocity. It turns out that u0 is
completely determined by the data on the non–vacuum state. As to the pres-
sure p0 we note that the previous result is independent of the specification of
p0. However, in order to determine the solution of the Riemann problem ad-
mitting regions of vacuum it is necessary to make some statements regarding
pressure p and sound speed a. This is most conveniently done by specifying
an equation of state. As the only possible waves are contacts and rarefactions,
it is reasonable to adopt an isentropic–type equation of state and assume that
this is valid all the way up to the boundary separating material from vacuum.
We take the EOS

p = p(ρ) , (4.72)

subject to the following conditions, see Liu and Smoller [373],

p(0) = 0 , p′(0) = 0 , p′(ρ) > 0 , p′′(ρ) > 0 . (4.73)

Thus from now on we denote the vacuum state by W0 = (ρ0, u0, p0)T ≡
(0, u0, 0)T . From equation (4.71) the velocity u0 is the speed of the boundary
between the region of material and the region of vacuum. As pointed out in
solving the Riemann problem including W0 there are three cases to consider.
The structure of the solution of the Riemann problem for each of the three
cases is depicted in Figs. 4.15, 4.16 and 4.17 respectively. We now study each
case in detail.

4.6.1 Case 1: Vacuum Right State

In this case the Riemann problem has data of the type

W(x, 0) =

⎧
⎨
⎩

WL �= W0 if x < 0 ,

W0 (vacuum) if x > 0 ,
(4.74)

with WL = (ρL, uL, pL)T and W0 = (0, u0, 0)T .
This problem may be seen as a mathematical model for the following

physical situation: a shock tube of constant cross sectional area is filled with



4.6 The Riemann Problem in the Presence of Vacuum 141

a gas at uniform conditions. Assume the right–hand boundary is a piston of
speed uP = 0 at time t = 0. Suppose the piston is instantaneously accelerated
to a speed uP > 0 (to the right). Clearly if uP > u0 vacuum will take place.
The incipient cavitation case is uP = u0. The structure of the solution of the

0

*Lx/t=S

WW

0

t
x/t=u

: Vacuum

Vacuum front
rarefaction

Head of

L

L-a L

x

Fig. 4.15. Riemann problem solution for a right vacuum state

Riemann problem with initial data (4.74) is shown in Fig. 4.15 and consists of
a left rarefaction wave and a contact wave that coalesces with the tail of the
rarefaction. Obviously across the contact, Δu = Δp = 0. Note that the right
non–linear wave of Fig. 4.1 is absent in Fig. 4.15. The physical interpretation
of this is that there is no medium for this wave to propagate through. The
exact solution follows directly from the methods of previous sections if the
speed of the contact front is known. Application of the Generalised Riemann
Invariant IL(u, a) to connect a point on the left data state with a point along
the contact gives

u0 +
2a0

γ − 1
= uL +

2aL

γ − 1
. (4.75)

From the assumptions (4.73) on the equation of state and the definition of
sound speed we find that the sound speed vanishes along the contact, that is,
a0 = 0. Use of (4.73) with a0 = 0 gives the speed of the front as

S∗L ≡ u0 = uL +
2aL

γ − 1
. (4.76)

It is worth remarking that the conditions ρ0 = 0, p0 = 0 do not, in general,
imply a0 = 0. The value of a0 depends on the particular equation of state.
The complete solution W(x, t) can now be written as

WL0(x, t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

WL if x
t ≤ uL − aL ,

WLfan if uL − aL < x
t < S∗L ,

W0 if x
t ≥ S∗L ,

(4.77)

where WLfan is the solution inside the left rarefaction fan given by (4.56).
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4.6.2 Case 2: Vacuum Left State

In this case the Riemann problem has data of the type

W(x, 0) =

⎧
⎨
⎩

W0 (vacuum) if x < 0 ,

WR �= W0 if x > 0 .
(4.78)

The structure of the solution in the x–t plane is illustrated in Fig. 4.16.

a+Rx/t=u

x

t

0

W

R

: Vacuum

Vacuum front
Head of rarefaction

R

x/t=S *R

W0

Fig. 4.16. Riemann problem solution for a left vacuum state

Compared with the regular Riemann problem case of Fig. 4.1, the left non–
linear wave is missing and the contact wave separating the vacuum state from
the non–vacuum state coalesces with the tail of the right rarefaction wave.
The speed of the contact is found to be

S∗R = uR − 2aR

γ − 1
, (4.79)

and thus the complete solution is given by

WR0(x, t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

W0 if x
t ≤ S∗R ,

WRfan if S∗R < x
t < uR + aR ,

WR if x
t ≥ uR + aR ,

(4.80)

where WRfan is the solution inside the right fan and is given by (4.63).

4.6.3 Case 3: Generation of Vacuum

This case has general data WL = (ρL, uL, pL)T �= W0, WR = (ρR, uR, pR)T �=
W0 but combinations of particle and sound speeds are such that vacuum is
generated as part of the interaction between WL and WR. The structure of
the solution for this case is depicted in Fig. 4.17. There are two rarefaction
waves and two contact waves of speeds S∗L and S∗R that enclose the generated
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t
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Fig. 4.17. Riemann problem solution for non–vacuum data states that do not
satisfy the pressure positivity condition. Vacuum is generated in the middle of two
rarefaction waves

vacuum state. The speeds S∗L and S∗R are as given by equations (4.76) and
(4.79) respectively. The full solution reads

W(x, t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

WL0(x, t) if x
t ≤ S∗L ,

W0 (vacuum) if S∗L < x
t < S∗R ,

WR0(x, t) if x
t ≥ S∗R ,

(4.81)

where WL0(x, t) and WR0(x, t) are the solutions for the two previous cases
given by (4.77) and (4.80) respectively. Note that for solution (4.81) to apply
the condition S∗L ≤ S∗R must be valid. This implies

(Δu)crit ≡
2aL

γ − 1
+

2aR

γ − 1
≤ uR − uL , (4.82)

which is consistent with the pressure positivity condition (4.40). The vacuum
condition (4.82), which is stated purely in terms of the data values for particle
velocity and sound speed, can be very useful in practical applications of the
Riemann problem to numerical methods of the Godunov type. A note of cau-
tion is in order: it is also possible to determine a vacuum generating condition
for approximate Riemann solvers, but this will in general be different from
the exact condition (4.82). Two useful references concerning vacuum are the
papers by Munz [358] and Munz et. al. [359].

4.7 The Riemann Problem for Covolume Gases

A small perturbation of the ideal gas equation of state (4.3) is the covolume
EOS (4.4). For details on the Thermodynamics of covolume gases see Sect.
1.2.2 of Chap. 1. We now solve the Riemann problem for the Euler equations
(4.1)-(4.2) for covolume gases. The solution methodology [498] applied is the
same as for the ideal gas case and we shall therefore omit much of the detail.

The sound speed for covolume gases is
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a =
√

(p/ρ2 − eρ)/ep =
√

γp

ρ(1 − bρ)
. (4.83)

The structure of the solution in the x–t plane is identical to that for the
Riemann problem with the ideal gas EOS (4.3), in which b = 0. The solution
procedure presented for the ideal gas case applies directly to the covolume
case, except for finding the solution inside rarefaction waves. No closed–form
solution can be found in this case and an extra iterative step is required.

4.7.1 Solution for Pressure and Particle Velocity.

In solving the Riemann problem we need to determine the flow quantities
in the Star Region, see Fig. 4.1. The first step is to find the pressure and
particle velocity.

Proposition 4.6 (Solution for p∗ and u∗). The solution for pressure p∗
and particle velocity u∗ of the Riemann problem (4.1), (4.2) with the covolume
gas Equation of State (4.4) in the unknown Star Region is given by the root
of the algebraic equation

f(p,WL,WR) ≡ fL(p,WL)+fR(p,WR)+Δu = 0 , Δu ≡ uR−uL , (4.84)

where the function fL is given by

fL(p,WL) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(p − pL)
[

AL
p+BL

] 1
2

if p > pL (shock) ,

2aL(1−bρL)
(γ−1)

[(
p

pL

) γ−1
2γ − 1

]
if p ≤ pL (rarefaction) ,

(4.85)

the function fR is given by

fR(p,WR) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(p − pR)
[

AR
p+BR

] 1
2

if p > pR (shock) ,

2aR(1−bρR)
(γ−1)

[(
p

pR

) γ−1
2γ − 1

]
if p ≤ pR (rarefaction) ,

(4.86)

and the data–dependent constants AL, BL, AR, BR are given by

AL = 2(1−bρL)
(γ+1)ρL

, BL = (γ−1)
(γ+1)pL ,

AR = 2(1−bρR)
(γ+1)ρR

, BR = (γ−1)
(γ+1)pR .

⎫
⎪⎬
⎪⎭

(4.87)

The particle velocity in the Star Region is given by

u∗ =
1
2
(uL + uR) +

1
2

[fR(p∗) − fL(p∗)] . (4.88)



4.7 The Riemann Problem for Covolume Gases 145

Proof. As for the case of ideal gases the derivation of the function fL

requires the analysis of the left non–linear wave, which can either be a shock
wave or a rarefaction wave. Similarly for the function fR.

We first consider fL and assume the left wave is a shock wave of speed
SL. Application of the Rankine–Hugoniot Conditions yields the following re-
lations of interest: The density ρ∗L is related to the pressure p∗ behind the
left shock via

ρ∗L = ρL

⎡
⎣

p∗
pL

+ γ−1
γ+1(

γ−1+2bρL
γ+1

)
p∗
pL

+ γ+1−2bρL
γ+1

⎤
⎦ (4.89)

The mass flux

QL = − p∗ − pL

u∗ − uL
(4.90)

is worked out to be

QL =
[
p∗ + BL

AL

] 1
2

, (4.91)

with AL and BL as given by (4.87). From (4.90) we obtain

u∗ = uL − fL(p∗,WL) , (4.92)

with

fL(p∗,WL) = (p∗ − pL)
[

AL

p∗ + BL

] 1
2

and

AL =
2(1 − bρL)
(γ + 1)ρL

, BL =
(γ − 1)
(γ + 1)

pL .

This is the sought expression for fL for the case in which the left wave is a
shock wave.

When the left wave is a rarefaction we apply the IL(u, a) Generalised
Riemann Invariant to obtain

uL +
2aL

γ − 1
(1 − bρL) = u∗ +

2a∗L
γ − 1

(1 − bρ∗L) , (4.93)

where aL and a∗L denote the sound speed on the left and right states bounding
the left rarefaction wave. Now the isentropic law gives

ρ∗L = ρL

(
1 − bρ∗L
1 − bρL

)(
p∗
pL

) 1
γ

. (4.94)

Substitution of ρ∗L from (4.94) into the definition of a∗L reduces equation
(4.93) to

u∗ = uL − fL(p∗,WL) , (4.95)

with
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fL(p∗,WL) =
2aL(1 − bρL)

(γ − 1)

[(
p∗
pL

) γ−1
2γ

− 1

]
,

which is the required expression for the function fL for the case in which the
left wave is a rarefaction wave.

We now determine the function fR. For a right shock wave of speed SR

we find

ρ∗R = ρR

⎡
⎣

p∗
pR

+ γ−1
γ+1(

γ−1+2bρR
γ+1

)
p∗
pR

+ γ+1−2bρR
γ+1

⎤
⎦ . (4.96)

The mass flux

QR =
p∗ − pR

u∗ − uR
(4.97)

becomes

QR =
[
p∗ + BR

AR

] 1
2

(4.98)

and leads to
u∗ = uR + fR(p∗,WR) , (4.99)

where

fR(p∗,WR) = (p∗ − pR)
[

AR

p∗ + BR

] 1
2

,

with AR and BR as given by (4.87). This is the sought expression for fR for
the case in which the right wave is a shock wave.

When the right wave is a rarefaction we apply the IR(u, a) Generalised
Riemann Invariant to obtain

uR − 2aR

γ − 1
(1 − bρR) = u∗ −

2a∗R
γ − 1

(1 − bρ∗R) , (4.100)

where a∗R and aR denote the sound speed on the left and right states bounding
the right rarefaction wave. Now the isentropic law gives

ρ∗R = ρR

(
1 − bρ∗R
1 − bρR

)(
p∗
pR

) 1
γ

. (4.101)

Substitution of ρ∗R from (4.101) into the definition of a∗L reduces equation
(4.100) to

u∗ = uR + fR(p∗,WR) , (4.102)

with

fR(p∗,WR) =
2aR(1 − bρR)

(γ − 1)

[(
p∗
pR

) γ−1
2γ

− 1

]
,

which is the required expression for the function fR for the case in which the
right wave is a rarefaction wave.
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The numerical solution of the algebraic equation f(p) = 0 given by (4.84)
yields the pressure p∗. The particle velocity u∗ may be computed from (4.92)
if p∗ > pL or from (4.95) if p∗ ≤ pL or from (4.99) if p∗ > pR or from (4.102)
if p∗ ≤ pR. It can also be found from a mean value as

u∗ =
1
2
(uL + uR) +

1
2
(fR(p∗) − fL(p∗))

and the proposition is thus proved.

4.7.2 Numerical Solution for Pressure

The numerical solution of the pressure equation is carried out by a
Newton–Raphson iteration scheme, as done for the ideal gas case in Sect.
4.3. This requires the calculation of the derivative of the function f(p). De-
tails of this are found in [498]. A possible guess value p0 for the iteration
scheme is given by a Two–Rarefaction approximation to p∗, namely

pTR =

⎡
⎣ (1 − bρL)aL + (1 − bρR)aR − 1

2 (γ − 1)(uR − uL)

(1 − bρL)aL/p
γ−1
2γ

L + (1 − bρR)aR/p
γ−1
2γ

R

⎤
⎦

2γ
γ−1

, (4.103)

and results from the exact function (4.84) for pressure under the assumption
that the two non–linear waves are rarefaction waves. If the solution actually
consists of two rarefactions then pTR is exact and no iteration is required.
A second guess value results from a linearised solution based on primitive
variables. This is

p0 = max(TOL, pPV) ,

pPV = 1
2 (pL + pR) − 1

8 (uR − uL)(ρL + ρR)(aL + aR) .

⎫
⎬
⎭ (4.104)

It is worth remarking here that the form of the pPV approximation for co-
volume remains identical to that for the ideal gas case. The equation of state
makes its input through the sound speeds aL and aR. The Two–Shock approx-
imation is applied in exactly the same way as in the ideal gas case with the
appropriate definitions for the quantities involved. See Sect. 9.4 of Chapt. 9.

4.7.3 The Complete Solution

So far, we know how to find p∗ and u∗. The density values ρ∗L and ρ∗R
follow from the appropriate (determined by the value of p∗) left and right
wave relations. If the left wave is a shock wave, p∗ > pL, then ρ∗L follows from
(4.89). As in the ideal gas case the shock speed SL is

SL = uL − QL/ρL ,
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where the mass flux QL is given by (4.91). If the left wave is a rarefaction
wave, p∗ ≤ pL, ρ∗L follows from (4.94). The rarefaction fan is enclosed by the
characteristics of speeds

SHL = uL − aL , STL = u∗ − a∗L .

For a right shock wave, p∗ > pR, ρ∗L is given by (4.96) and the shock speed is

SR = uR + QR/ρR ,

where the mass flux QR is given by (4.98). For a right rarefaction, p∗ ≤ pR,
ρ∗L follows from (4.101) and the wave is enclosed by the characteristics of
speeds

STR = u∗ + a∗R , SHR = uR + aR .

Solution values inside rarefaction fans cannot be obtained directly, as in the
ideal gas case. For covolume gases an extra iterative procedure is needed.

4.7.4 Solution Inside Rarefactions

Unlike the ideal gas case the solution inside rarefaction waves for covolume
gases is not direct. An extra iterative procedure is needed. Here we give the
details for the case of a left rarefaction. Consider a general point (x, t) inside
a left rarefaction fan and a characteristic ray through the origin and the point
(x, t). The slope of the characteristic is

x

t
= u − a . (4.105)

Use of the IL(u, a) Generalised Riemann Invariant allows us to write

a

[
1 +

2
γ − 1

(1 − bρ)
]

= IL(uL, aL) − x

t
, (4.106)

where ρ, u and a are the sought solution values at (x, t) inside the left rar-
efaction wave. Use of the isentropic relation for the covolume EOS gives

p = pL

(
1 − bρL

ρL

)γ (
ρ

1 − bρ

)γ

. (4.107)

Further algebraic manipulations lead to a non–linear algebraic equation for
the density ρ at the point (x, t) inside the left rarefaction fan, namely

ZL(ρ) ≡ ργ−1(γ + 1 − 2bρ)2 − βL(1 − bρ)γ+1 = 0 , (4.108)

where the constant βL is given by

βL =

{
(γ − 1)[IL(uL, aL) − x

t ]
}2

γpL[(1 − bρL)/ρL]γ
, (4.109)
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where IL(uL, aL) is the left Riemann invariant evaluated on the left data state.
Equation (4.108) is solved numerically for ρ using a Newton–Raphson

iteration, for which one needs the derivative

Z ′
L(ρ) = (γ + 1)[bβL(1 − bρ)γ + (γ + 1 − 2bρ)(γ − 1 − 2bρ)ργ−2] . (4.110)

Once ρ has been found to a given accuracy the pressure p follows immediately
from equation (4.107). The sound speed a follows from definition (4.83) and
the velocity u follows directly from (4.105).

The solution at a point (x, t) inside the right rarefaction fan is found in
an entirely analogous way. In this case the density function ZR(ρ) is

ZR(ρ) ≡ ργ−1(γ + 1 − 2bρ)2 − βR(1 − bρ)γ+1 = 0 , (4.111)

where the constant βR is given by

βR =

{
(γ − 1)[IR(uR, aR) − x

t ]
}2

γpR[(1 − bρR)/ρR]γ
, (4.112)

where IR(uR, aR) is the right Riemann invariant evaluated on the right data
state.

The solution W = (ρ, u, p)T of the Riemann problem for the Euler equa-
tions with the covolume equation of state is now known at any point (x, t) in
the relevant domain. The solution sampling procedure is entirely analogous
to the ideal gas case of Sect. 4.5 and is omitted.

Exercise 4.7. Write a flow chart for sampling the solution of the Riemann
problem for covolume gases at any point (x, t) in a domain of interest xL ≤
x ≤ xR, t > 0, with xL < 0 and xR > 0.

Solution 4.8. (Left to the reader).

4.8 The Split Multi–Dimensional Case

For the purpose of using the Riemann problem solution in conjunction
with numerical methods of the Godunov type, see Chaps. 5, 6, 14 and 16, it
is useful to solve the split multi–dimensional Riemann problem. See Chap. 3.
The x–split Riemann problem is the IVP for

Ut + F(U)x = 0 ,

U =

⎡
⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
E

⎤
⎥⎥⎥⎥⎦

, F(U) =

⎡
⎢⎢⎢⎢⎣

ρu
ρu2 + p

ρuv
ρuw

u(E + p)

⎤
⎥⎥⎥⎥⎦

,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.113)
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with initial conditions

U(x, 0) =

⎧
⎨
⎩

UL if x < 0 ,

UR if x > 0 .
(4.114)

We note here that the x–direction will in general be understood as the direc-
tion normal to the boundary of a domain in two or three–dimensional space,
see Sect. 3.2.4 of Chap. 3 and Sect. 16.7.3 of Chap. 16.
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Fig. 4.18. Structure of the solution of the Riemann problem for the split three-
dimensional case

As seen in Sect. 3.2.4 of Chap. 3 the exact solution to this problem is
virtually identical to that of the genuine one–dimensional problem discussed
previously. Fig. 4.18 shows the structure of the solution in terms of primitive
variables W = (ρ, u, v, w, p)T . The outer non–linear waves are exactly the
same as in the one–dimensional case. The multiplicity 3 of the eigenvalue
λ = u generates three, coincident middle waves. So effectively there are three
waves that separate four constant states WL, W∗L, W∗R and WR. In the
Star Region between the left and right waves the solution for pressure, normal
velocity and density is exactly the same as in the one–dimensional case. The
two extra quantities v and w (tangential velocity components) only jump
across the middle wave from their left data values to their right data values.

In summary, the solution to the x–split three–dimensional Riemann prob-
lem (4.113), (4.114) is exactly the same as that for the one–dimensional Rie-
mann problem for the quantities ρ, u and p; for q = v and q = w we have, in
addition,

q(x, t) =

⎧
⎨
⎩

qL if x
t < u∗ ,

qR if x
t > u∗ .

(4.115)

As a matter of fact, for any passively advected quantity q(x, y, z, t) by the
fluid, that is

qt + uqx + vqy + wqz = 0 , (4.116)
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one can, by making use of the continuity equation, derive a new conservation
law

(ρq)t + (uρq)x + (vρq)y + (wρq)z = 0 . (4.117)

When this conservation law is added to the set of one–dimensional Euler equa-
tions the x–split Riemann problem has solution for ρ, u and p as described
earlier and the solution for the advected quantity q is as given by (4.115).
One may have several advected quantities such as q. In chemically reactive
compressible flows the quantity q may stand for the concentration of a chem-
ical species, the progress variable of a chemical reaction or a fluid interface
parameter.

Finally, we remark that although the exact solution to the split three–
dimensional Riemann problem for any passively advected quantity, such as
the tangential velocity components or concentration of chemical species, is so
simple, approximate Riemann solvers may produce solutions for these quan-
tities that are completely incorrect.

A highly relevant reference on the general theme of this chapter is the paper
by Zhang [601]. Exact and approximate Riemann solvers for compressible
liquids with various equations of state are given in [263]. For exact Riemann
solvers for real gases see Colella and Glaz [135] and Menikoff and Plohr [349].
Approximate Riemann solvers for the ideal Euler equations are presented in
Chaps. 9 to 12.

The methodology can be applied quite directly to solve the Riemann prob-
lem for other hyperbolic systems. For the steady supersonic Euler equations,
exact Riemann solvers have been given by, amongst others, Marshall and Plohr
[340]; Honma, Wada and Inomata [257]; Dawes [151]; Toro and Chou [533] and
Toro and Chakravarthy [532]. Approximate Riemann solvers for the steady
supersonic Euler equations have been given by Roe [407], Pandolfi [374], Toro
and Chou [533] and Toro and Chakravarthy [532].

4.9 FORTRAN Program for Exact Riemann Solver

A listing of a FORTRAN 77 program to compute the exact solution to
the Riemann problem for the one–dimensional time–dependent Euler equa-
tions for ideal gases is now given. The data file is called exact.ini. The main
program calls two routines: STARPU and SAMPLE. The first routine solves it-
eratively for the pressure p∗ and then computes the particle speed u∗; the
guessed value for the iteration is provided by the subroutine GUESSP. The
subroutine SAMPLE finds, for given p∗, u∗ and S = x/t, the solution of the
Riemann problem at the point (x, t). This routine can then be utilised in nu-
merical methods to solve the general initial boundary value problem for the
Euler equations. For the Godunov first–order method, see Chap. 6, one calls
SAMPLE with S = 0. For Glimm’s method, see Chap. 7, one calls SAMPLE with
S = θx/t, where θ is a random number. The source code is also part of the
library NUMERICA [519].
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*
*----------------------------------------------------------*
* *
C EXACT RIEMANN SOLVER *
C FOR THE EULER EQUATIONS *
* *
C Name of program: HE-E1RPEXACT *
* *
C Purpose: to solve the Riemann problem exactly, *
C for the time dependent one dimensional *
C Euler equations for an ideal gas *
* *
C Input file: exact.ini *
C Output file: exact.out (exact solution) *
* *
C Programer: E. F. Toro *
* *
C Last revision: February 1st 1999 *
* *
C Theory is found in Chapter 4 of Reference 1 *
* *
C 1. Toro, E. F., "Riemann Solvers and Numerical *
C Methods for Fluid Dynamics" *
C Springer-Verlag, *
C Second Edition, 1999 *
* *
C This program is part of *
* *
C NUMERICA *
C A Library of Source Codes for Teaching, *
C Research and Applications, *
C by E. F. Toro *
C Published by NUMERITEK LTD, *
C Website: www.numeritek.com *
* *
*----------------------------------------------------------*
*

IMPLICIT NONE
*
C Declaration of variables:
*

INTEGER I, CELLS
*

REAL GAMMA, G1, G2, G3, G4, G5, G6, G7, G8,
& DL, UL, PL, CL, DR, UR, PR, CR,
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& DIAPH, DOMLEN, DS, DX, PM, MPA, PS, S,
& TIMEOUT, UM, US, XPOS

*
COMMON /GAMMAS/ GAMMA, G1, G2, G3, G4, G5, G6, G7, G8
COMMON /STATES/ DL, UL, PL, CL, DR, UR, PR, CR

*
OPEN(UNIT = 1,FILE = ’exact.ini’,STATUS = ’UNKNOWN’)

*
C Initial data and parameters are read in
*

READ(1,*)DOMLEN ! Domain length
READ(1,*)DIAPH ! Initial discontinuity position
READ(1,*)CELLS ! Number of computing cells
READ(1,*)GAMMA ! Ratio of specific heats
READ(1,*)TIMEOUT ! Output time
READ(1,*)DL ! Initial density on left state
READ(1,*)UL ! Initial velocity on left state
READ(1,*)PL ! Initial pressure on left state
READ(1,*)DR ! Initial density on right state
READ(1,*)UR ! Initial velocity on right state
READ(1,*)PR ! Initial pressure on right state
READ(1,*)MPA ! Normalising constant

*
CLOSE(1)

*
C Compute gamma related constants
*

G1 = (GAMMA - 1.0)/(2.0*GAMMA)
G2 = (GAMMA + 1.0)/(2.0*GAMMA)
G3 = 2.0*GAMMA/(GAMMA - 1.0)
G4 = 2.0/(GAMMA - 1.0)
G5 = 2.0/(GAMMA + 1.0)
G6 = (GAMMA - 1.0)/(GAMMA + 1.0)
G7 = (GAMMA - 1.0)/2.0
G8 = GAMMA - 1.0

*
C Compute sound speeds
*

CL = SQRT(GAMMA*PL/DL)
CR = SQRT(GAMMA*PR/DR)

*
C The pressure positivity condition is tested for
*

IF(G4*(CL+CR).LE.(UR-UL))THEN
*
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C The initial data is such that vacuum is generated.
C Program stopped.
*

WRITE(6,*)
WRITE(6,*)’***Vacuum is generated by data***’
WRITE(6,*)’***Program stopped***’
WRITE(6,*)

*
STOP

ENDIF
*
C Exact solution for pressure and velocity in star
C region is found
*

CALL STARPU(PM, UM, MPA)
*

DX = DOMLEN/REAL(CELLS)
*
C Complete solution at time TIMEOUT is found
*

OPEN(UNIT = 2,FILE = ’exact.out’,STATUS = ’UNKNOWN’)
*

DO 10 I = 1, CELLS
*

XPOS = (REAL(I) - 0.5)*DX
S = (XPOS - DIAPH)/TIMEOUT

*
C Solution at point (X,T) = ( XPOS - DIAPH,TIMEOUT)
C is found
*

CALL SAMPLE(PM, UM, S, DS, US, PS)
*
C Exact solution profiles are written to exact.out.
*

WRITE(2, 20)XPOS, DS, US, PS/MPA, PS/DS/G8/MPA
*
10 CONTINUE

*
CLOSE(2)

*
20 FORMAT(5(F14.6, 2X))

*
END

*
*----------------------------------------------------------*
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*
SUBROUTINE STARPU(P, U, MPA)

*
IMPLICIT NONE

*
C Purpose: to compute the solution for pressure and
C velocity in the Star Region
*
C Declaration of variables
*

INTEGER I, NRITER
*

REAL DL, UL, PL, CL, DR, UR, PR, CR,
& CHANGE, FL, FLD, FR, FRD, P, POLD, PSTART,
& TOLPRE, U, UDIFF, MPA

*
COMMON /STATES/ DL, UL, PL, CL, DR, UR, PR, CR
DATA TOLPRE, NRITER/1.0E-06, 20/

*
C Guessed value PSTART is computed
*

CALL GUESSP(PSTART)
*

POLD = PSTART
UDIFF = UR - UL

*
WRITE(6,*)’----------------------------------------’
WRITE(6,*)’ Iteration number Change ’
WRITE(6,*)’----------------------------------------’

*
DO 10 I = 1, NRITER

*
CALL PREFUN(FL, FLD, POLD, DL, PL, CL)
CALL PREFUN(FR, FRD, POLD, DR, PR, CR)
P = POLD - (FL + FR + UDIFF)/(FLD + FRD)
CHANGE = 2.0*ABS((P - POLD)/(P + POLD))
WRITE(6, 30)I, CHANGE
IF(CHANGE.LE.TOLPRE)GOTO 20
IF(P.LT.0.0)P = TOLPRE
POLD = P

*
10 CONTINUE

*
WRITE(6,*)’Divergence in Newton-Raphson iteration’

*
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20 CONTINUE
*
C Compute velocity in Star Region
*

U = 0.5*(UL + UR + FR - FL)
*

WRITE(6,*)’---------------------------------------’
WRITE(6,*)’ Pressure Velocity’
WRITE(6,*)’---------------------------------------’
WRITE(6,40)P/MPA, U
WRITE(6,*)’---------------------------------------’

*
30 FORMAT(5X, I5,15X, F12.7)
40 FORMAT(2(F14.6, 5X))

*
RETURN
END

*
*----------------------------------------------------------*
*

SUBROUTINE GUESSP(PM)
*
C Purpose: to provide a guess value for pressure
C PM in the Star Region. The choice is made
C according to adaptive Riemann solver using
C the PVRS, TRRS and TSRS approximate
C Riemann solvers. See Sect. 9.5 of Chapt. 9
C of Ref. 1
*

IMPLICIT NONE
*
C Declaration of variables
*

REAL DL, UL, PL, CL, DR, UR, PR, CR,
& GAMMA, G1, G2, G3, G4, G5, G6, G7, G8,
& CUP, GEL, GER, PM, PMAX, PMIN, PPV, PQ,
& PTL, PTR, QMAX, QUSER, UM

*
COMMON /GAMMAS/ GAMMA, G1, G2, G3, G4, G5, G6, G7, G8
COMMON /STATES/ DL, UL, PL, CL, DR, UR, PR, CR

*
QUSER = 2.0

*
C Compute guess pressure from PVRS Riemann solver
*
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CUP = 0.25*(DL + DR)*(CL + CR)
PPV = 0.5*(PL + PR) + 0.5*(UL - UR)*CUP
PPV = AMAX1(0.0, PPV)
PMIN = AMIN1(PL, PR)
PMAX = AMAX1(PL, PR)
QMAX = PMAX/PMIN

*
IF(QMAX.LE.QUSER.AND.
& (PMIN.LE.PPV.AND.PPV.LE.PMAX))THEN

*
C Select PVRS Riemann solver
*

PM = PPV
ELSE

IF(PPV.LT.PMIN)THEN
*
C Select Two-Rarefaction Riemann solver
*

PQ = (PL/PR)**G1
UM = (PQ*UL/CL + UR/CR +

& G4*(PQ - 1.0))/(PQ/CL + 1.0/CR)
PTL = 1.0 + G7*(UL - UM)/CL
PTR = 1.0 + G7*(UM - UR)/CR
PM = 0.5*(PL*PTL**G3 + PR*PTR**G3)

ELSE
*
C Select Two-Shock Riemann solver with
C PVRS as estimate
*

GEL = SQRT((G5/DL)/(G6*PL + PPV))
GER = SQRT((G5/DR)/(G6*PR + PPV))
PM = (GEL*PL + GER*PR - (UR - UL))/(GEL + GER)

ENDIF
ENDIF

*
RETURN
END

*
*----------------------------------------------------------*
*

SUBROUTINE PREFUN(F, FD, P, DK, PK, CK)
*
C Purpose: to evaluate the pressure functions
C FL and FR in exact Riemann solver
*
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IMPLICIT NONE
*
C Declaration of variables
*

REAL AK, BK, CK, DK, F, FD, P, PK, PRAT, QRT,
& GAMMA, G1, G2, G3, G4, G5, G6, G7, G8

*
COMMON /GAMMAS/ GAMMA, G1, G2, G3, G4, G5, G6, G7, G8

*
IF(P.LE.PK)THEN

*
C Rarefaction wave
*

PRAT = P/PK
F = G4*CK*(PRAT**G1 - 1.0)
FD = (1.0/(DK*CK))*PRAT**(-G2)

ELSE
*
C Shock wave
*

AK = G5/DK
BK = G6*PK
QRT = SQRT(AK/(BK + P))
F = (P - PK)*QRT
FD = (1.0 - 0.5*(P - PK)/(BK + P))*QRT

ENDIF
*

RETURN
END

*
*----------------------------------------------------------*
*

SUBROUTINE SAMPLE(PM, UM, S, D, U, P)
*
C Purpose: to sample the solution throughout the wave
C pattern. Pressure PM and velocity UM in the
C Star Region are known. Sampling is performed
C in terms of the ’speed’ S = X/T. Sampled
C values are D, U, P
*
C Input variables : PM, UM, S, /GAMMAS/, /STATES/
C Output variables: D, U, P
*

IMPLICIT NONE
*
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C Declaration of variables
*

REAL DL, UL, PL, CL, DR, UR, PR, CR,
& GAMMA, G1, G2, G3, G4, G5, G6, G7, G8,
& C, CML, CMR, D, P, PM, PML, PMR, S,
& SHL, SHR, SL, SR, STL, STR, U, UM

*
COMMON /GAMMAS/ GAMMA, G1, G2, G3, G4, G5, G6, G7, G8
COMMON /STATES/ DL, UL, PL, CL, DR, UR, PR, CR

*
IF(S.LE.UM)THEN

*
C Sampling point lies to the left of the contact
C discontinuity
*

IF(PM.LE.PL)THEN
*
C Left rarefaction
*

SHL = UL - CL
*

IF(S.LE.SHL)THEN
*
C Sampled point is left data state
*

D = DL
U = UL
P = PL

ELSE
CML = CL*(PM/PL)**G1
STL = UM - CML

*
IF(S.GT.STL)THEN

*
C Sampled point is Star Left state
*

D = DL*(PM/PL)**(1.0/GAMMA)
U = UM
P = PM

ELSE
*
C Sampled point is inside left fan
*

U = G5*(CL + G7*UL + S)
C = G5*(CL + G7*(UL - S))
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D = DL*(C/CL)**G4
P = PL*(C/CL)**G3

ENDIF
ENDIF

ELSE
*
C Left shock
*

PML = PM/PL
SL = UL - CL*SQRT(G2*PML + G1)

*
IF(S.LE.SL)THEN

*
C Sampled point is left data state
*

D = DL
U = UL
P = PL

*
ELSE

*
C Sampled point is Star Left state
*

D = DL*(PML + G6)/(PML*G6 + 1.0)
U = UM
P = PM

ENDIF
ENDIF

ELSE
*
C Sampling point lies to the right of the contact
C discontinuity
*

IF(PM.GT.PR)THEN
*
C Right shock
*

PMR = PM/PR
SR = UR + CR*SQRT(G2*PMR + G1)

*
IF(S.GE.SR)THEN

*
C Sampled point is right data state
*

D = DR
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U = UR
P = PR

ELSE
*
C Sampled point is Star Right state
*

D = DR*(PMR + G6)/(PMR*G6 + 1.0)
U = UM
P = PM

ENDIF
ELSE

*
C Right rarefaction
*

SHR = UR + CR
*

IF(S.GE.SHR)THEN
*
C Sampled point is right data state
*

D = DR
U = UR
P = PR

ELSE
CMR = CR*(PM/PR)**G1
STR = UM + CMR

*
IF(S.LE.STR)THEN

*
C Sampled point is Star Right state
*

D = DR*(PM/PR)**(1.0/GAMMA)
U = UM
P = PM

ELSE
*
C Sampled point is inside left fan
*

U = G5*(-CR + G7*UR + S)
C = G5*(CR - G7*(UR - S))
D = DR*(C/CR)**G4
P = PR*(C/CR)**G3

ENDIF
ENDIF

ENDIF
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ENDIF
*

RETURN
END

*
*----------------------------------------------------------*
*



5

Notions on Numerical Methods

We assume the reader to be familiar with some basic concepts on numeri-
cal methods for partial differential equations in general. In particular, we shall
assume the concepts of truncation error, order of accuracy, consistency, mod-
ified equation, stability and convergence. For background on these concepts
the reader may consult virtually any standard book on numerical methods
for differential equations. As general references, useful textbooks are those of
Smith [450], Anderson et. al. [7], Mitchell and Griffiths [352], Roache [405],
Richtmyer and Morton [402], Hoffmann [253] and Fletcher [192]. Very relevant
textbooks to the main themes of this book are Sod [454], Holt [254], Hirsch
Volumes I [251] and II [252], LeVeque [308], Godlewski and Raviart [215],
Kröner [291] and Thomas [484].

The contents of this chapter are designed specifically to provide the nec-
essary background for the application of high–resolution upwind and centred
numerical methods to hyperbolic conservation laws. Our prime objective is
to present the basic Godunov method [216] in a simple setting so as to make
the application of upwind methods to non–linear systems of conservation laws
an easier task in the forthcoming chapters. Essential background material is
given in Chap. 2. For those who are absolute beginners in the field I would
recommend the following self study programme as a way of obtaining more
benefit from this text book: (a) read chapters 2 to 4 of the book by Hoffmann
[253] and do exercises, (b) read chapters 7 to 10 of the book by Hirsch Vol. I
[251] and do exercises.

5.1 Discretisation: Introductory Concepts

Our concern is the utilisation of numerical methods for solving partial dif-
ferential equations (PDEs). Numerical methods replace the continuous prob-
lem represented by the PDEs by a finite set of discrete values. These are ob-
tained by first discretising the domain of the PDEs into a finite set of points
or volumes via a mesh or grid. The corresponding discretisation of the PDEs
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on the grid results in discrete values. In the Finite Difference approach one
regards these values as point values defined at grid points. The Finite Volume
approach regards these discrete values as averages over finite volumes. We are
mostly interested in the second approach but for the purpose of introducing
some of the basic concepts in numerical methods we also consider the Finite
Difference approach. For most of this chapter we restrict the discussion to
model problems, such as the model PDE

ut + aux = 0 ,

with u = u(x, t) and a �= 0 a constant wave propagation speed. See Sect. 2.1
of Chap. 2. In this equation there are two partial derivatives, namely a time
derivative ut and a spatial derivative ux.

5.1.1 Approximation to Derivatives

Given a sufficiently smooth function g(x), by using Taylor’s theorem, we
can always find the value of g(x) at any neighbouring point x0 +Δx of x = x0

if we know g(x) and all its derivatives g(k)(x) at x = x0, that is

g(x0 + Δx) = g(x0) +
∑

k

(Δx)k

k!
g(k)(x0) . (5.1)

By truncating the Taylor series one can obtain approximations to g(x0 +Δx).
Also one can obtain approximations to derivatives of g(x). Consider a function
g(x) and three equally–spaced points x0 − Δx, x0 and x0 + Δx, as shown in
Fig. 5.1. As an illustrative example we shall derive three approximations to
the first derivative of g(x) at the point x0. By neglecting terms of third order
and higher, O(Δx3), we can write

g(x0 + Δx) = g(x0) + Δxg(1)(x0) +
(Δx)2

2
g(2)(x0) + O(Δx3) (5.2)

and

g(x0 − Δx) = g(x0) − Δxg(1)(x0) +
(Δx)2

2
g(2)(x0) + O(Δx3) . (5.3)

Neglecting second order terms in (5.2) leads immediately to an approximation
to the first derivative g(1)(x) of g(x), that is

g(1)(x0) =
g(x0 + Δx) − g(x0)

Δx
+ O(Δx) . (5.4)

This is a first–order approximation to g(1)(x) at x = x0, the leading term in
the remaining part contains Δx to the power unity. It is a one–sided approxi-
mation to the first derivative of g(x), usually called a forward finite difference
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approximation; the points used by the approximation are x0 (the point at
which the derivative is sought) and its neighbour x0 + Δx on the right hand
side. From (5.3) we can also obtain a backward first–order approximation

g(1)(x0) =
g(x0) − g(x0 − Δx)

Δx
+ O(Δx) . (5.5)

Note that by subtracting (5.3) from (5.2) we obtain

0 x
0

Δ x

Δ

x

x

g(x)

x0

Δ

approximation

Backward
approximation

- Δx

Central

x x

+

True derivative

Forward
approximation

Fig. 5.1. Finite difference approximations to the first derivative of a function g(x)
at the point x0: backward, centred and forward

g(1)(x0) =
g(x0 + Δx) − g(x0 − Δx)

2Δx
+ O(Δx2) . (5.6)

This is a central finite–difference approximation to g(1)(x0) and is second-
order accurate; it uses the left and right hand side neighbours of x = x0. It
can also be obtained by taking a mean value of the forward and backward
approximations (5.4) and (5.5). For the problems of our concern here the dis-
tinction between one–sided and central approximations is significant. Upwind
Methods may be viewed as one–sided differencing schemes. The question of
which side is also of paramount importance.

5.1.2 Finite Difference Approximation to a PDE

Consider the Initial Boundary Value Problem (IBVP) for the linear advec-
tion equation in the domain [0, L] × [0, T ] on the x–t plane. This consists of
a PDE together with initial condition (IC) and boundary conditions (BCs),
namely

PDE : ut + aux = 0 ,

IC : u(x, 0) = u0(x) ,

BCs : u(0, t) = ul(t) , u(L, t) = ur(t) .

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.7)
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Solving this IBVP means evolving the solution u(x, t) in time starting from
the initial condition u0(x) at time t = 0 and subject to boundary conditions.
For the moment we assume that the boundary constraints take the form of
prescribed boundary functions ul(t) and ur(t). The application of boundary
conditions is intimately linked to the physics of the problem at hand. A more
meaningful discussion is presented in Chap. 6 in the context of physically more
meaningful systems of PDEs.

A possible finite difference mesh for discretising the domain is depicted
in Fig. 5.2. This is a regular grid of dimensions Δx (spacing of grid points
in the x–direction) by Δt (spacing in the t–direction). In general if [0, L] is
discretised by M equally spaced grid points then

Δx =
L

M − 1
. (5.8)

The points of the mesh are positioned at (iΔx, nΔt) on the x–t plane, with
i = 0, . . . ,M and n = 0, . . .. Often we shall use the notation xi = iΔx,
tn = nΔt. The discrete values of the function u(x, t) at (iΔx, nΔt) will be
denoted by

un
i ≡ u(iΔx, nΔt) ≡ u(xi, t

n) .

The superscript n refers to the time discretisation and is called the time
level. The subscript i refers to the space discretisation and designates the
spatial position in the mesh. We shall also use the symbol un

i to denote an
approximation to the exact mesh value u(iΔx, nΔt). The distinction will be
made at appropriate places. If the IBVP (5.7) has given data at a time level

x

t

T

n+1

n

Δt

x=Lx=0

x
n-1

i-1 i i+1

Δ

Fig. 5.2. Finite difference discretisation of domain on x–t plane. Regular mesh of
dimensions Δx × Δt is assumed

n, say, this can be represented by a set of discrete values un
i , i = 0, . . . , M .

Solving (5.7) requires finding the solution at the next time level n + 1, that
is, we want to find the set un+1

i , i = 0, . . . ,M . The extreme boundary points
un

0 , un
M are determined by the particular boundary conditions to be applied.

For the moment we simply assume that these are prescribed for all time levels.
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Consider now approximations to the time derivative ut at the grid point
(xi, t

n). A first–order forward approximation gives

ut =
un+1

i − un
i

Δt
. (5.9)

For the spatial derivatives one could use the second–order central approxima-
tion

ux =
un

i+1 − un
i−1

2Δx
. (5.10)

By replacing ut and ux in the PDE in (5.7) by their respective approximations
(5.9) and (5.10) we obtain

un+1
i − un

i

Δt
+ a

[
un

i+1 − un
i−1

2Δx

]
= 0 . (5.11)

This is the discrete analogue of the PDE in (5.7). The differential equation
has been replaced by a finite difference equation. As all values at the time
level n in (5.11) are prescribed data values at the initial time, or have already
been computed, we can solve for the single unknown un+1

i at the new time
level as

un+1
i = un

i − 1
2
c
[
un

i+1 − un
i−1

]
, (5.12)

where
c =

Δta

Δx
=

a

Δx/Δt
(5.13)

is a dimensionless quantity known as the Courant number; it is also known as
the Courant–Friedrichs–Lewy number, or CFL number. This quantity can be
regarded as the ratio of two speeds, namely the wave propagation speed a in
the partial differential equation in (5.7) and the grid speed Δx/Δt defined by
the discretisation of the domain. Formula (5.12) provides an explicit scheme
for evolving the solution in time and has resulted from approximating the
time and space derivatives of the PDE in (5.7) by first and second order finite
differences respectively. This appears to be a reasonable step.

It is disappointing however, and perhaps surprising, to realise that the
resulting scheme (5.12) is totally useless. It is unconditionally unstable. This
can be seen by performing a von Neumann stability analysis. Consider the
trial solution un

i = AneIiθ. A is the amplitude, θ = PΔx is the phase angle,
P is the wave number in the x–direction, λ = 2π/P is the wave length and
I =

√
−1 is the unit complex number. Substitution of the trial solution into

the scheme (5.12) gives A = 1 − Ic sin θ. For stability one requires ‖A‖ ≤ 1.
But note that ‖A‖ = 1 + c2 sin2 θ ≥ 1 and thus the scheme is unstable under
all circumstances, unconditionally unstable.
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5.2 Selected Difference Schemes

We study some of the most well–known finite difference schemes, of first
and second order of accuracy.

5.2.1 The First Order Upwind Scheme

One way of remedying our failed attempt at devising a useful numerical
method for the PDE in (5.7) is to replace the central finite difference approx-
imation to the spatial derivative ux by a first–order one–sided approximation.
Two choices are

ux =
un

i − un
i−1

Δx
, (5.14)

ux =
un

i+1 − un
i

Δx
. (5.15)

It turns out that only one of these yields a useful numerical scheme. The
correct choice of either (5.14) or (5.15) will depend on the sign of the wave
propagation speed a of the differential equation in (5.7). Suppose a is positive,
then (5.14) together with (5.9) give the scheme

un+1
i = un

i − c(un
i − un

i−1) . (5.16)

A von-Neumann stability analysis of (5.16) gives

‖A‖2 = (1 − c)2 + 2c(1 − c) cos θ + c2 ,

from which it follows that the scheme is stable if the CFL number c lies
between zero and unity; it is conditionally stable with stability condition

0 ≤ c ≤ 1 . (5.17)

Recall that the CFL number depends on the speed a, the mesh spacing Δx and
the time step size Δt. Of these, a is prescribed at the outset, Δx is chosen on
desired accuracy or on computing resources available. We are left with some
freedom to choose Δt, the time step size. The stability restriction (5.17) on c
means a restriction on Δt and thus we are not free to choose the time step at
our will, at least for the schemes under discussion.

Scheme (5.16) is called the first–order upwind method and is due to
Courant, Isaacson and Rees [144]; we shall also call it the CIR scheme. The
key feature of this numerical method is the fact that the discretisation has
been performed according to the sign of the wave propagation speed a in the
differential equation. The physics and mathematics embodied in the PDE are
intimately linked to the discretisation procedure. The term upwind, or up-
stream, refers to the fact that spatial differencing is performed using mesh
points on the side from which information (wind) flows; see Fig. 5.3. For pos-
itive a the upwind side is the left side and for negative a the upwind side is
the right side.
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Suppose that for positive a we use the downwind information to perform
the spatial differencing. This gives the downwind scheme

un+1
i = un

i − c(un
i+1 − un

i ) , (5.18)

which can easily be checked to be unconditionally unstable. Thus, in order to
obtain a useful one–sided scheme one must perform the spatial differencing
according to the sign of the speed a of the PDE. For negative speed a the
upwind scheme is (5.18).

In order to formulate the upwind scheme, in a unified manner, for both
positive and negative wave speeds a we introduce the following notation

a+ = max(a, 0) =
1
2
(a+ | a |) , a− = min(a, 0) =

1
2
(a− | a |) , (5.19)

where | a | denotes the absolute value of a, that is,

| a |= a if a ≥ 0 , | a |= −a if a ≤ 0 .

It can easily be verified that for any value of the speed a the speeds a+ and
a− satisfy

a+ ≥ 0 , a− ≤ 0 .

Clearly, for a ≥ 0 one has a+ = a and a− = 0; for a ≤ 0 one has a+ = 0 and
a− = a. Based on the speeds a+ and a− we define Courant numbers

c+ = Δta+/Δx , c− = Δta−/Δx . (5.20)

Using the above notation the first–order upwind scheme can be expressed in
general form as

un+1
i = un

i − c+
(
un

i − un
i−1

)
− c−

(
un

i+1 − un
i

)
. (5.21)

For a ≥ 0 the second difference term vanishes leading to (5.16); if a ≤ 0
we obtain (5.18). The idea of splitting the difference into positive and nega-
tive components can be generalised to systems of conservation laws. Now the
stability condition for the upwind scheme (5.21) is

0 ≤| c | ≤1 . (5.22)

The stencil of the first–order upwind scheme for the case a > 0 is shown in Fig.
5.3. It has a triangular shape, the three mesh points involved define a triangle.
The base of the triangle defines the numerical domain of dependence of the
scheme. This is generally different from the (true) domain of dependence of
the PDE, see Sect. 2.3.5 of Chap. 2. One can relate the meaning of the scheme
and its stability condition to the exact behaviour of the differential equation
in (5.7).

Consider the characteristic of speed a through the mesh point (xi, t
n+1) in

Fig. 5.3, at which a numerical solution un+1
i is sought. Since the exact solution
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Δt

dx/dt = a > 0

Δt

x/

t

c Δx

dx/dt = Δ

x

Δ x

True domain
of dependency

Numerical domain of dependency

i-1 x x

n

n+1

p i

x

Fig. 5.3. Stencil of first–order upwind scheme (CIR) for positive speed a of wave
propagation. Upwind direction lies on the left hand side.

of the PDE in (5.7) is constant along characteristics of speed dx/dt = a, see
Sect. 2.2 of Chap. 2, the true solution at (xi, t

n+1) is

u(xi, t
n+1) = u(xp, t

n) , (5.23)

with xp between xi−1 and xi. Unfortunately, the only values at time level
n available to us are those at the grid points and thus we could not set
un+1

i = u(xp, t
n), unless c = 1 of course.

One may however utilise the information at the mesh points xi−1 and xi

at the time level n to produce an estimate of the data at the point xp. For
instance we can construct a linear interpolation function ũ(x) based on the
two points (xi−1, u

n
i−1) and (xi, u

n
i ). From Fig. 5.3, the distance d between xp

and xi is

d = Δta =
Δta

Δx
Δx = cΔx ,

and thus
xp = (i − 1)Δx + (1 − c)Δx .

The linear interpolant is then

ũ(x) = un
i−1 +

(un
i − un

i−1)
Δx

(x − xi−1) ,

which if evaluated at x = xp gives

ũ(xp) = un
i − c(un

i − un
i−1) .

This is precisely the first–order upwind scheme (5.16), which can then be seen
as a linear interpolation scheme. Fig. 5.3 is also useful for interpreting the
stability condition (5.17), which states
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0 ≤ a

Δx/Δt
≤ 1 .

Thus for stability, the grid speed Δx/Δt must be larger than the speed a in
the PDE. In the context of Fig. 5.3 this means that the characteristics

dx

dt
= Δx/Δt ,

dx

dt
= a ,

must be as shown. That is the numerical domain of dependence must contain
the true domain of dependence of the PDE, which is in fact the single point
xp.

A truncation error analysis reveals that the CIR scheme is first–order
accurate in space and time. Moreover, the corresponding modified equation is

qt + aqx = αcirqxx , (5.24)

where αcir is the numerical viscosity coefficient of the CIR scheme and is given
by

αcir =
1
2
Δxa(1− | c |) . (5.25)

The advection–diffusion equation (5.24) is the actual equation solved by the
numerical scheme, to second–order accuracy in fact; see LeVeque [308]. The
viscous term αcirqxx is responsible for the production of the artificial or nu-
merical viscosity of the scheme. This vanishes when Δx = 0, which is impos-
sible in practice. It also vanishes when | c |= 1, which is only of the academic
importance, as for non–linear systems it is impossible to enforce this CFL
number unity condition. The case a = 0 is interesting, as it allows for the per-
fect resolution of stationary discontinuities. In general αcir > 0 and one of the
consequences is that discontinuities in the solution tend to be heavily spread
or smeared and extreme values tend to be clipped. This is a disadvantage of
the CIR scheme, which is in fact common to all first–order methods, with the
exception of the Random Choice Method, see Chap. 7.

Scheme (5.21) is part of a wider class of methods that can be written as

un+1
i = H

(
un

i−lL
, . . . , un

i+lR

)
,

=
∑lR

k=−lL
bkun

i+k ,

⎫
⎬
⎭ (5.26)

with lL and lR two non–negative integers; bk, k = −lL, . . . , lR are the coef-
ficients of the scheme and un

i+k are data values at time level n. For the CIR
scheme (5.21) the coefficients are given by

b−1 = c+ , b0 = (1− | c |) , b1 = −c− . (5.27)

Under the CFL stability condition (5.22) we see that

bk ≥ 0 , ∀k , (5.28)

i.e. all coefficients (5.27) are positive or zero.
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Definition 5.1 (Monotone Schemes). A scheme of the form (5.26) is
said to be monotone if all coefficients bk are positive or zero. An alternative
definition is given in terms of the function H in (5.26); this is required to
satisfy

∂H

∂un
k

≥ 0 , ∀ k . (5.29)

The class of monotone schemes form the basis of modern schemes for con-
servation laws. Monotone schemes are, however, at most first–order accurate;
high–order extensions are studied in Chaps. 13, 14 and 16.

5.2.2 Other Well–Known Schemes

Another first–order scheme is that of Lax and Friedrichs. The scheme
is sometimes also called the Lax Method [299], or the scheme of Keller and
Lax. This does not require the differencing to be performed according to
upwind directions and can be seen as a way of stabilising the unstable scheme
(5.12) obtained from forward in time and central in space approximations to
the partial derivatives. The Lax–Friedrichs scheme results if un

i in the time
derivative (5.9) is replaced by

1
2
(
un

i−1 + un
i+1

)
,

a mean value of the two neighbours at time level n. Then the modified scheme
becomes

un+1
i =

1
2
(
un

i−1 + un
i+1

)
− 1

2
c
(
un

i+1 − un
i−1

)

or
un+1

i =
1
2
(1 + c)un

i−1 +
1
2
(1 − c)un

i+1 . (5.30)

A von Neumann stability analysis reveals that scheme (5.30) is stable
under the stability condition (5.22) and a truncation error analysis says that
the scheme is first–order accurate. The modified equation is like (5.24) with
numerical viscosity coefficient given by

αlf =
Δxa

2c
(1 − c2) . (5.31)

By comparing αlf with αcir we see that the Lax–Friedrichs scheme is consid-
erably more diffusive than the CIR scheme; in fact for 0 ≤ c ≤ 1 we have

2 ≤ αlf/αcir =
1 + c

c
< ∞ .

When written in the form (5.26) the coefficients of the Lax–Friedrichs scheme
are found to be
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b−1 =
1
2
(1 + c) , b0 = 0 , b1 =

1
2
(1 − c) .

Under the stability condition (5.22) all coefficients bk in the Lax–Friedrich
scheme (5.30) are positive or zero. Therefore the scheme is monotone.

A scheme of historic as well as practical importance is that of Lax
and Wendroff [302]. For a comprehensive treatment of the family of Lax–
Wendroff schemes see Hirsch [252], Chap. 17. The basic Lax–Wendroff scheme
is second–order accurate in both space and time. There are several ways of
deriving the scheme for the model equation in (5.7). A rather unconventional
derivation is this: for the time derivative ut insist on the first–order forward
approximation (5.9); for the space derivative ux take an average of the upwind
(stable if a > 0) and downwind (unstable if a > 0) approximations (5.14) and
(5.15) respectively, that is

ux = β1

un
i − un

i−1

Δx
+ β2

un
i+1 − un

i

Δx
. (5.32)

If the coefficients β1, β2 are chosen as

β1 =
1
2
(1 + c) , β2 =

1
2
(1 − c) , (5.33)

the resulting scheme is the Lax–Wendroff method

un+1
i =

1
2
c(1 + c)un

i−1 + (1 − c2)un
i − 1

2
c(1 − c)un

i+1 . (5.34)

This scheme is second–order in space and time although all finite difference
approximations used to generate it are first–order accurate. Moreover, one of
the terms in the spatial derivative originates from an unconditionally unstable
scheme and yet the Lax–Wendroff scheme is stable with stability condition
(5.22). This scheme is a good example to show that the order of accuracy of
the scheme cannot in general be inferred from the order of accuracy of the
finite difference approximations to the partial derivatives involved.

When written in the form (5.26) the Lax–Wendroff scheme (5.34) has
coefficients

b−1 =
(1 + c)c

2
, b0 = 1 − c2 , b1 = − (1 − c)c

2
.

Therefore this scheme is not monotone. Not all coefficients in (5.34) are pos-
itive or zero. The fact that a scheme is not monotone is associated with the
phenomenon of spurious oscillations in the numerical solution in the vicinity
of sharp gradients, such as at discontinuities; see Chap. 13.

Another second–order accurate scheme for (5.7) is the upwind method of
Warming and Beam [574]. For positive speed a it reads

un+1
i =

1
2
c(c − 1)un

i−2 + c(2 − c)un
i−1 +

1
2
(c − 1)(c − 2)un

i . (5.35)
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Note that the scheme is fully one–sided in the sense that all the mesh points
involved, other than the centre of the stencil, are on the left hand side of
the centre of the stencil. There is an equivalent scheme for negative speed a.
Clearly the Warming–Beam scheme is not monotone. The stability restriction
for this scheme is

0 ≤| c |≤ 2 . (5.36)

The enlarged stability range means that one may advance in time with a larger
time step Δt, which has a bearing on the efficiency of the scheme.

Yet another second order scheme is the Fromm scheme [195]. For the
linear advection equation in (5.7), for a > 0, the scheme reads

un+1
i = − 1

4 (1 − c)cun
i−2 + 1

4 (5 − c)cun
i−1

+ 1
4 (1 − c)(4 + c)un

i − 1
4 (1 − c)cun

i+1 ,

⎫
⎬
⎭ (5.37)

which has stability restriction (5.22). Also, it can be easily verified that the
Fromm scheme is not monotone.

Second–order schemes such as the Lax–Wendroff, Warming–Beam and
Fromm schemes have modified equation of the form

qt + aqx = βqxxx , (5.38)

which is a dispersive equation. See LeVeque [308] for details.

5.3 Conservative Methods

Computing solutions containing discontinuities, such as shock waves, poses
stringent requirements on (i) the mathematical formulation of the governing
equations and (ii) the numerical schemes to solve the equations. As seen in
Chaps. 2 and 3 the formulation of the equations can be differential or integral.
Also, there are various choices for the set of variables to be used. One obvious
choice is the set of conserved variables. In Sect. 3.3 of Chap. 3, through an
example, we highlighted the fact that formulations based on variables other
than the conserved variables (non–conservative variables) fail at shock waves.
They give the wrong jump conditions; consequently they give the wrong shock
strength, the wrong shock speed and thus the wrong shock position. Recent
work by Hou and Le Floch [259] has shown that non–conservative schemes
do not converge to the correct solution if a shock wave is present in the
solution. The classical result of Lax and Wendroff [302], on the other hand,
says that conservative numerical methods, if convergent, do converge to the
weak solution of the conservation law. Therefore, it appears as if there is
no choice but to work with conservative methods if shock waves are part of
the solution. There are alternative special procedures involving shock fitting
[355], [353] and adaptive primitive–conservative schemes [508], [279]. Some
primitive–variable schemes are presented in Sect. 14.6 of Chap. 14.



5.3 Conservative Methods 175

5.3.1 Basic Definitions

Here we shall study conservative shock capturing methods. Of the class
of conservative methods we are particularly interested in upwind methods,
but not exclusively. This section is designed to introduce some basic concepts
in the simple setting of model problems. Consider a scalar conservation law
written in differential form

ut + f(u)x = 0 , (5.39)

where f = f(u) is the flux function. The choice of flux f(u) = au reproduces
the linear advection equation in (5.7). In order to include weak solutions of
(5.39) we must use the integral form of the equations. Two possibilities are

∮
(u dx − f dt) = 0 (5.40)

and
∫ x2

x1

u(x, t2) dx =
∫ x2

x1

u(x, t1) dx +
∫ t2

t1

f(u(x1, t)) dt −
∫ t2

t1

f(u(x2, t)) dt

(5.41)
for any rectangular control volume [x1, x2]× [t1, t2]. See Sect. 2.4 of Chap. 2.

Definition 5.2 (Conservative Method). A conservative scheme for the
scalar conservation law (5.39) is a numerical method of the form

un+1
i = un

i +
Δt

Δx

[
fi− 1

2
− fi+ 1

2

]
, (5.42)

where
fi+ 1

2
= fi+ 1

2

(
un

i−lL , . . . , un
i+lR

)
, (5.43)

with lL, lR two non–negative integers; fi+ 1
2

is called the numerical flux, an
approximation to the physical flux f(u) in (5.39).

For any particular choice of numerical flux fi+ 1
2

a corresponding conserva-
tive scheme results. A fundamental requirement on the numerical flux is the
consistency condition

fi+ 1
2
(v, . . . v) = f(v) . (5.44)

This means that if all arguments in (5.43) are equal to v then the numerical
flux is identical to the physical flux at u = v. See LeVeque [308].

Exercise 5.3. Verify that the choice of numerical flux

fi+ 1
2

= fi+ 1
2
(un

i , un
i+1) =

1
2
(fn

i + fn
i+1) ,

with fn
i = f(un

i ), fn
i+1 = f(un

i+1), when substituted into the conservative
formula (5.42), reproduces the unconditionally unstable scheme (5.12), when
applied to the linear advection equation, in which f(u) = au.
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Fig. 5.4. Discretisation of domain [0, L] into M finite volumes Ii (computing cells)

Solution 5.4. (Left to the reader).

The conservative scheme (5.42) requires a redefinition of the discretisation
of the domain. Now one is concerned with cell averages defined over finite
volumes. A domain [0, L] × [0, T ] in the x–t plane is discretised as shown in
Fig. 5.4. The spatial domain of length L is subdivided into M finite volumes,
called computing cells or simply cells, given as

xi− 1
2

= (i − 1)Δx ≤ x ≤ iΔx = xi+ 1
2

. (5.45)

The extreme values xi− 1
2

and xi+ 1
2

of cell Ii define the position of the inter-
cell boundaries at which the corresponding intercell numerical fluxes must be
specified. The size of the cell is

Δx = xi+ 1
2
− xi− 1

2
=

L

M
. (5.46)

Obviously one may discretise the domain into cells of irregular size. For sim-
plicity we assume regular meshes in this chapter. The average value of u(x, t)
in cell i, the cell average, at a fixed time t = tn = nΔt is defined as

un
i =

1
Δx

∫ x
i+ 1

2

x
i− 1

2

u(x, tn) dx . (5.47)

Note here that although within cell i one may have spatial variations of u(x, t)
at time t = tn, the integral average value un

i given above is constant. We shall
assign that constant value at the centre of the cell, which gives rise to cell–
centred conservative methods. Computationally, we shall deal with approxi-
mations to the cell averages un

i , which for simplicity we shall still denote as
un

i . The set of cell averages (5.47) defines a piece–wise constant distribution
of the solution at time tn; see Fig. 5.5.
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Fig. 5.5. Piece–wise constant distribution of data at time level n

5.3.2 Godunov’s First–Order Upwind Method

Godunov [216] is credited with the first successful conservative extension
of the CIR scheme (5.21) to non–linear systems of conservation laws. When
applied to the scalar conservation law (5.39) with f(u) = au, Godunov’s
scheme reduces to the CIR scheme, allowing for appropriate interpretation of
the values {un

i }.
Godunov’s first–order upwind method is a conservative method of the

form (5.42), where the intercell numerical fluxes fi+ 1
2

are computed by using
solutions of local Riemann problems. A basic assumption of the method is
that at a given time level n the data has a piece–wise constant distribution
of the form (5.47), as depicted in Fig. 5.5. The data at time level n may be
seen as pairs of constant states (un

i , un
i+1) separated by a discontinuity at the

intercell boundary xi+ 1
2
. Then, locally, one can define a Riemann problem

PDE : ut + f(u)x = 0 .

IC : u(x, 0) = u0(x) =
{

un
i if x < 0 ,

un
i+1 if x > 0 ,

This local Riemann problem may be solved analytically, if desired. Thus, at a
given time level n, at each intercell boundary xi+ 1

2
we have the local Riemann

problem RP (un
i , un

i+1) with initial data (un
i , un

i+1). What is then needed is a
way of finding the solution of the global problem at a later time level n + 1.

First Version of Godunov’s Method

Godunov proposed the following scheme to update a cell value un
i to a new

value un+1
i : solve the two Riemann problems RP (un

i−1, u
n
i ) and RP (un

i , un
i+1)
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for the conservation law (5.39), take an integral average in cell i of the com-
bined solutions of these two local problems and assign the value to un+1

i . Fig.
5.6 illustrates the situation for the special case f(u) = au, a > 0. The exact
solution of RP (un

i−1, u
n
i ) for a > 0, see Sect. 2.2.2 of Chap. 2, is

ui− 1
2
(x/t) =

{
un

i−1 if x/t < a ,
un

i if x/t > a ,
(5.48)

where the local origin of the Riemann problem is (0, 0). Likewise the solution
ui+ 1

2
(x/t) of RP (un

i , un
i+1) is given by

ui+ 1
2
(x/t) =

{
un

i if x/t < a ,
un

i+1 if x/t > a .
(5.49)

The Godunov scheme defines the updated solution as

RP(u ii-1
n nRP(u

i i+1

A DB C
, u

i-1/2 i+1/2

tΔdx/dt=a

,i
n

i+1) )n

i-1

Fig. 5.6. Illustration of Godunov’s method for the linear advection equation for
positive speed a. Riemann problem solutions are averaged at time t = Δt inside cell
Ii

un+1
i =

1
Δx

[∫ 1
2 Δx

0

ui− 1
2
(x/Δt) dx +

∫ 0

− 1
2 Δx

ui+ 1
2
(x/Δt) dx

]
. (5.50)

This integral is evaluated at time Δt (local time) between the points A and
D in Fig. 5.6. Note that we only use the right half of the solution ui− 1

2
(x/t)

and the left half of the solution ui+ 1
2
(x/t). The reader should realise that each

solution has its own local frame of reference with origin (0, 0) corresponding
with the intercell boundaries at xi− 1

2
and xi+ 1

2
. In order to evaluate the

integral we impose a restriction on the size of the time step Δt. We set

c =
aΔt

Δx
≤ 1

2
. (5.51)
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The first term in (5.50) involves the intervals AB and BC; these have lengths
respectively given by

lAB = cΔx , lBC = (
1
2
− c)Δx .

The integrand is give by (5.48) and (5.49); hence we have

1
Δx

∫ 1
2 Δx

0

ui− 1
2
(x/Δt) dx = cun

i−1 + (
1
2
− c)un

i .

The second term gives

1
Δx

∫ 0

− 1
2 Δx

ui+ 1
2
(x/Δt) dx =

1
2
un

i .

Hence (5.50) becomes

un+1
i = un

i + c(un
i−1 − un

i ) , (5.52)

which is identical to the CIR first order upwind method (5.16) for positive
speed a. The conservative character of the Godunov method is self evident:
the updated solution is obtained by integral averaging, a conservative process,
of local exact solutions of the conservation law.

Exercise 5.5. Using geometric arguments, show that the Godunov ap-
proach described above also reproduces the CIR scheme for negative a.

Solution 5.6. (Left to the reader).

Second Version of Godunov’s Method

A second interpretation of the Godunov method leads directly to the con-
servative formula (5.42), which is easier to apply in practice and avoids the
over–restrictive CFL–like condition (5.51). The integral average (5.50) of the
solution of the Riemann problems RP (un

i−1, u
n
i ) and RP (un

i , un
i+1) can also

be written as
un+1

i =
1

Δx

∫ x
i+ 1

2

x
i− 1

2

ũ(x,Δt) dx , (5.53)

where ũ(x, t) is understood as the combined solution of RP (un
i−1, u

n
i ) and

RP (un
i , un

i+1). Since ũ(x, t) is an exact solution to the original conservation
law (5.39) we can make use of it in its integral form (5.41), say, in the control
volume [xi− 1

2
, xi+ 1

2
] × [0,Δt] to write

∫ x
i+ 1

2
x

i− 1
2

ũ(x,Δt) dx =
∫ x

i+ 1
2

x
i− 1

2

ũ(x, 0) dx +
∫Δt

0
f(ũ(xi− 1

2
, t)) dt

−
∫Δt

0
f(ũ(xi+ 1

2
, t)) dt .

⎫
⎪⎬
⎪⎭

(5.54)
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Using the definition of cell averages (5.47) into equation (5.54) followed by
division through by Δx we reproduce the conservative formula

un+1
i = un

i +
Δt

Δx

[
fi− 1

2
− fi+ 1

2

]
, (5.55)

with the intercell fluxes defined as time integral averages, namely

fi− 1
2

=
1

Δt

∫ Δt

0

f(ũ(xi− 1
2
, t)) dt , fi+ 1

2
=

1
Δt

∫ Δt

0

f(ũ(xi+ 1
2
, t)) dt . (5.56)

Thus, by invoking the integral form of the conservation laws on a control
or finite volume [xi− 1

2
, xi+ 1

2
] × [0,Δt] in x–t space we have arrived at the

conservative formula (5.55) with intercell fluxes (5.56); these are time integral
averages of the physical flux f(u) evaluated at the intercell boundaries. The
integrand f(ũ(x, t)) at each cell interface depends on the exact solution ũ(x, t)
of the Riemann problem along the t–axis (local coordinates); this is given by

ũ(xi− 1
2
, t) = ui− 1

2
(0) , ũ(xi+ 1

2
, t) = ui+ 1

2
(0) , (5.57)

and the intercell fluxes fi− 1
2

and fi+ 1
2

become

fi− 1
2

= f(ui− 1
2
(0)) , fi+ 1

2
= f(ui+ 1

2
(0)) . (5.58)

In general, one expresses the Godunov intercell numerical flux as

fgod

i+ 1
2

= f(ui+ 1
2
(0)) , (5.59)

where ui+ 1
2
(0) denotes the exact solution ui+ 1

2
(x/t) of the Riemann prob-

lem RP (un
i , un

i+1) evaluated at x/t = 0, i.e. the solution is evaluated along
the intercell boundary, which coincides with the t–axis in the local frame of
the Riemann problem solution. We have thus defined the second version of
Godunov’s method for a general scalar conservation law (5.39), as the con-
servative formula (5.55) together with the intercell numerical flux (5.59). For
the special conservation law with flux f(u) = au, a > 0, we have

fi− 1
2

= aun
i−1 , fi+ 1

2
= aun

i , (5.60)

which if substituted in the conservative formula (5.55) reproduce the CIR
scheme. The second version (5.55), (5.59) of Godunov’s method is the one
that is mostly used in practice.

Exercise 5.7. Verify that the second version of the Godunov method
based on the conservative formula (5.55) and the Godunov intercell flux (5.59)
also reproduces the CIR scheme when applied to (5.39) with flux f(u) = au
and a < 0.

Solution 5.8. (Left to the reader).
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5.3.3 Godunov’s Method for Burgers’s Equation

As a way of illustrating Godunov’s method in the context of non–linear
PDEs we apply the scheme to the inviscid Burgers equation

ut + f(u)x = 0 , f(u) =
1
2
u2 . (5.61)

We adopt the second version (5.55) with numerical flux given by (5.59).
We need the solution ui+ 1

2
(x/t) of the Riemann problem RP (un

i , un
i+1). As

seen in Sect. 2.4.2 of Chap. 2, the solution is a shock wave, when un
i > un

i+1,
and a rarefaction wave when un

i ≤ un
i+1. The complete solution is

ui+ 1
2
(x/t) =

{
un

i if S ≥ x/t
un

i+1 if S ≤ x/t
S = 1

2 (un
i + un

i+1)

⎫
⎬
⎭ if un

i > un
i+1 ,

ui+ 1
2
(x/t) =

⎧
⎨
⎩

un
i if x/t ≤ un

i

x/t if un
i < x/t < un

i+1

un
i+1 if x/t ≥ un

i+1

⎫
⎬
⎭ if un

i ≤ un
i+1 .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.62)

The Godunov’s flux requires ui+ 1
2
(0); this is the solution ui+ 1

2
(x/t) evaluated

along the intercell boundary xi+ 1
2
, that corresponds to x/t = 0 in the frame of

the local Riemann problem. The second stage is to identify all possible wave
patterns in the solution of the Riemann problem. For Burgers’s equation there
are five possibilities. These are illustrated in Fig. 5.7. If the solution is a shock
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Fig. 5.7. Five possible wave patterns in the solution of the Riemann problem for
the inviscid Burgers equations, when evaluating the Godunov flux

wave then cases (a) and (b) can occur. The sought value ui+ 1
2
(0), on the t–

axis, depends on the sign of the shock speed S. If the solution is a rarefaction
wave then the three possible cases are illustrated in Figs. 5.7c, 5.7d and 5.7e.
Applying terminology from Gas Dynamics to the rarefaction cases, Fig. 5.7c
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is called supersonic to the left and that of Fig. 5.7d supersonic to the right.
The case of Fig. 5.7e is that of a transonic rarefaction or sonic rarefaction; as
the wave is crossed, there is a sign change in the characteristic speed u and
thus there is one point at which u = 0, a sonic point. The complete sought
solution is summarised as follows

ui+ 1
2
(0) =

{
un

i if S ≥ 0
un

i+1 if S ≤ 0
S = 1

2 (un
i + un

i+1)

⎫
⎬
⎭ if un

i > un
i+1 ,

ui+ 1
2
(0) =

⎧
⎨
⎩

un
i if 0 ≤ un

i

0 if un
i < 0 < un

i+1

un
i+1 if 0 ≥ un

i+1

⎫
⎬
⎭ if un

i ≤ un
i+1 .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.63)

Naturally, Godunov’s method can also be implemented using approximate
solutions to the Riemann problem. For a review on the Godunov scheme in the
context of two well–known approximations to the Riemann problem solution
for Burgers’s equation, the reader is referred to the paper by van Leer [562].

In applying Godunov’s scheme to solve Burgers’s equation there are two
more issues to consider. One concerns the application of boundary conditions
and the other is to do with the choice of the time step Δt.

Boundary Conditions

The conservative formula (5.55) can be applied directly to all cells i, for
i = 2, . . . , M−1. The two required intercell fluxes at xi− 1

2
and xi+ 1

2
are defined

in terms of the corresponding Riemann problems. For each of the cells 1 and
M , which are adjacent to the left and right boundaries respectively, we only
have one intercell flux. Some special procedure needs to be implemented. Let
us consider the left boundary x = 0. One possibility is to assume a boundary
function ul(t) prescribed there. Then we could define an intercell flux at the
boundary by setting f 1

2
= f(ul(t)).

A more attractive alternative is to specify a fictitious cell 0 to the left of the
boundary x = 0 together with a cell average un

0 , at each time level n, so that
a Riemann problem RP (un

0 , un
1 ) can be posed and solved to find the missing

intercell flux f 1
2
. For the right boundary we prescribe a fictitious cell M+1 and

a cell average un
M+1 to find the intercell flux fM+ 1

2
. The prescription of the

fictitious states depends entirely on the physics of the particular problem at
hand. Provisionally, for the inviscid Burgers’s equation we apply the boundary
conditions

un
0 = un

1 , un
M+1 = un

M . (5.64)

Note that the fictitious states here are given in terms of the data at the states
within the computational domain adjacent to the boundaries. This particular
type of boundary conditions will cause no disturbance at the boundaries;
waves will hopefully go through the boundaries as if the boundaries were not
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there. Often one speaks of transparent or transmissive boundary conditions,
in this case.

Choosing the Time Step

As seen for the linear case, the choice of the size of the time step Δt in
the conservative formula is related to the stability condition of the particular
scheme. For Godunov’s method (the CIR scheme in this case) the choice of Δt
depends on the restriction on the Courant number c. For non–linear problems,
at each time level, there are multiple wave speeds and thus multiple associated
Courant numbers. In deriving the second version of Godunov’s method we
made the implicit assumption that the value of the local Riemann problem
solution along the intercell boundary is constant. This means that the fastest
wave at a given time travels for at most one cell length Δx in the sought time
step Δt. Denoting by Sn

max the maximum wave speed throughout the domain
at time level n we define the maximum Courant number Ccfl

Ccfl = ΔtSn
max/Δx , (5.65)

where Δt is such that
0 < Ccfl ≤ 1 .

We shall often call Ccfl the CFL coefficient or the Courant number coefficient.
The time step Δt follows as

Δt = CcflΔx/Sn
max . (5.66)

A matter of crucial importance is the estimation of the maximum speed Sn
max.

In realistic applications this can be difficult and frustrating, as inappropriate
choices can cause the scheme to crash, no matter how sophisticated this is.
For Burgers’s equation one can identify wave speeds, such as those emerging
from solutions of Riemann problems at the intercell boundaries, and charac-
teristic speeds u. At any time level n, there are M + 2 characteristic speeds
un

i (including the fictitious cells) and hence one possibility is to take Sn
max as

the maximum of these, in absolute value. Another possibility is to select, at
each time level, a speed Sn

i+ 1
2

from the solution Riemann problem at each cell
interface; this information is available as part of the flux computation process.
For the case of a shock, one obviously takes the shock speed. For the case of
a rarefaction there are two characteristic speeds of significance, namely those
of the head and tail of the expansion. Thus we define an intercell speed

Sn
i+ 1

2
=

⎧
⎨
⎩

| 1
2 (un

i + un
i+1) | (shock),

max(| un
i |, | un

i+1 |) (rarefaction).
(5.67)

Finally, we define a maximum wave speed at time level n as follows
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Sn
max = max

i

{
Sn

i+ 1
2

}
for i = 0, . . . , M + 1 . (5.68)

Having chosen Ccfl, the time step Δt to march the solution to the next time
level is given by (5.66). For a scheme with linearised stability condition |c| ≤ 1,
one usually takes the empirical value Ccfl = 0.9.

In Sect. 5.6 we give a listing of a FORTRAN program for Godunov’s
method in conjunction with the exact Riemann solver, to solve numerically
the inviscid Burgers equation.

5.3.4 Conservative Form of Difference Schemes

Conventional finite difference schemes can often be expressed in conserva-
tion form (5.42). It is a question of finding an intercell flux (5.43).

The Lax–Friedrichs Scheme

Recall that the Lax–Friedrichs scheme as applied to the linear advection
equation is

un+1
i =

(1 + c)
2

un
i−1 +

(1 − c)
2

un
i+1 . (5.69)

It is easy to verify that the conservative formula (5.42) together with the
intercell flux

fi+ 1
2

=
(1 + c)

2c
f(un

i ) +
(c − 1)

2c
f(un

i+1) (5.70)

reproduces the Lax–Friedrichs scheme. Therefore, at least for the linear ad-
vection equation, one can recast the Lax–Friedrichs scheme in conservative
form.

An interesting way of viewing the Lax–Friedrichs scheme (5.69) is as an
integral average within cell i, namely

un+1
i =

1
Δx

∫ x
i+ 1

2

x
i− 1

2

ũ(x,
1
2
Δt) dx , (5.71)

in which ũ(x, t) is the solution of the Riemann problem RP (un
i−1, u

n
i+1) (note

subscripts), that is

ũ(x/t) =
{

un
i−1 if x/t < a ,

un
i+1 if x/t > a .

(5.72)

Exercise 5.9. Verify that exact evaluation of the integral (5.71) repro-
duces the Lax–Friedrichs scheme (5.69).

Solution 5.10. (Left to the reader).
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Remark 5.11. We note that the Lax–Friedrichs solution at cell i is a
weighted average of the solution of the Riemann problem with the left and
right neighbour states as data, at time t = 1

2Δt. One could state that the
Lax–Friedrichs scheme is upwind biased, as the upwind term has always the
larger weight.

Let us now attempt to generalise interpretation (5.71) of the Lax–Friedrichs
scheme to non–linear systems of conservation laws

Ut + F(U)x = 0 . (5.73)

Now (5.71) reads

Un+1
i =

1
Δx

∫ x
i+ 1

2

x
i− 1

2

Ũ(x,
1
2
Δt) dx , (5.74)

where Ũ(x, t) is the solution of the Riemann problem RP (Un
i−1,U

n
i+1). Given

an exact Riemann solver, e.g. see Chap. 4, one could then implement this
Riemann–problem based version of the Lax–Friedrichs scheme. The author
has implemented this version of the scheme for non–linear systems. The nu-
merical results obtained are indistinguishable from those obtained from the
conventional form of the scheme. Version (5.74) offers no obvious advantages
over the conventional form; in fact it is more expensive and complex and hence
is of no practical use. A stochastic evaluation of the integral leads to a random
choice type method; see Sect. 7.3 of Chap. 7.

If the space integral (5.74) at time 1
2Δt is replaced by invoking the integral

form of conservation law (Chap. 2, equation (2.67)) in the control volume
[− 1

2Δx, 1
2Δx] × [0, 1

2Δt] we obtain

∫ 1
2 Δx

− 1
2 Δx

Ũ(x, 1
2Δt) dx =

∫ 1
2 Δx

− 1
2 Δx

Ũ(x, 0) dx +
∫ 1

2 Δt

0
F(Ũ(− 1

2Δx, t)) dt

−
∫ 1

2 Δt

0
F(Ũ( 1

2Δx, t)) dt .

⎫
⎪⎬
⎪⎭
(5.75)

Direct evaluation of the integrals and use of the definition of integral averages
(5.74) in cell i, as applied to systems, yield

Un+1
i =

1
2
(Un

i−1 + Un
i+1) +

1
2

Δt

Δx
(Fn

i−1 − Fn
i+1) .

Simple algebraic manipulations of this expression lead to a conservative ver-
sion of the Lax–Friedrichs scheme for systems

Un+1
i = Un

i +
Δt

Δx

[
Fi− 1

2
− Fi+ 1

2

]
, (5.76)

with the Lax–Friedrichs intercell flux given by

FLF
i+ 1

2
=

1
2
(Fn

i + Fn
i+1) +

1
2

Δx

Δt
(Un

i − Un
i+1) . (5.77)
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This is the conventional numerical flux for the Lax–Friedrichs scheme when
applied to systems of conservations laws (5.73). No mention of the Riemann
problem is needed in this formulation. Compare the conservative formula
(5.76) for systems with the conservative formula (5.55) for scalar conserva-
tion laws.

The Lax–Wendroff Scheme

The Lax–Wendroff scheme (5.34) as applied to the linear advection equa-
tion may also be written in conservation form (5.42). The intercell numerical
flux is

fi+ 1
2

=
(1 + c)

2
(aun

i ) +
(1 − c)

2
(aun

i+1) ,

which is a weighted average of fluxes on the left and right of the interface.
For the linear advection equation, it is easy to check that this can also be
obtained from

fi+ 1
2

= f
(
u

n+ 1
2

i+ 1
2

)
, u

n+ 1
2

i+ 1
2

=
(1 + c)

2
un

i +
(1 − c)

2
un

i+1 .

For non–linear scalar conservation laws, such as Burgers’s equations (5.61),
this generalises to

fi+ 1
2

= f
(
u

n+ 1
2

i+ 1
2

)
; u

n+ 1
2

i+ 1
2

=
1

Δx

∫ 1
2 Δx

− 1
2 Δx

ui+ 1
2
(x,

1
2
Δt) dx , (5.78)

where ui+ 1
2
(x, t) is the solution of the Riemann problem RP (un

i , un
i+1). A

straightforward Riemann–problem based generalisation of the Lax–Wendroff
scheme to non–linear hyperbolic systems (5.73) ([499], [506]) reads

Fi+ 1
2

= F(Un+ 1
2

i+ 1
2

) ; Un+ 1
2

i+ 1
2

=
1

Δx

∫ 1
2 Δx

− 1
2 Δx

Ui+ 1
2
(x,

1
2
Δt) dx ,

where Ui+ 1
2
(x, t) is the solution of the Riemann problem RP (Un

i ,Un
i+1). This

scheme is called the Weighted Average Flux (waf) method and is studied in
Chaps. 13, 14 and 16.

As done for the Lax–Friedrichs scheme one may replace the integral in-
volving the solution of the Riemann problem by invoking the integral form
of the conservation laws, see Sect. 2.4.1 of Chap. 2, in the control volume
[− 1

2Δx, 1
2Δx] × [0, 1

2Δt] to obtain

Fi+ 1
2

= F
(
Un+ 1

2
i+ 1

2

)
; Un+ 1

2
i+ 1

2
=

1
2
(Un

i + Un
i+1) +

1
2

Δt

Δx
(Fn

i − Fn
i+1) . (5.79)

This scheme is known as the two–step Richtmyer version of the Lax–Wendroff
method, as applied to non–linear systems of conservation laws (5.73). No
mention of the Riemann problem solution is necessary here.
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Remark 5.12. Note the similarities between the reinterpretations and gen-
eralisations of the Lax–Friedrichs and Lax–Wendroff schemes. For both schemes
one ends up with two formulations. For the Lax–Friedrichs scheme the
weighted–average character leads to an integral formulation involving the so-
lution of the Riemann problem. The second version of the scheme eliminates
the role of the Riemann problem by utilising the integral form of the conserva-
tion law and leads to the conventional form of the Lax–Friedrichs scheme for
non–linear systems. For the Lax–Wendroff method the procedure is entirely
analogous. An integral average interpretation leads to a Riemann–problem
based extension to non–linear systems [499]. Utilisation of the integral form
of the conservation law eliminates the role of the Riemann problem and leads
to the conventional Richtmyer version of the scheme. Both versions of the
Lax–Wendroff method have actually been applied in practice.

Exercise 5.13. Verify that the Fromm scheme (5.37) as applied to the
linear advection equation in (5.7), for positive a, can be written in conservation
form (5.42) with numerical flux

fFR
i+ 1

2
= −1

4
(1 − c)fi−1 + fi +

1
4
(1 − c)fi+1 ,

where c is the Courant number.

Solution 5.14. (Left to the reader).

Exercise 5.15. Verify that the numerical flux of the scheme of Warming
and Beam (5.35), as applied to (5.7) with a > 0, is

fWB
i+ 1

2
=

1
2
(c − 1)fi−1 +

1
2
(3 − c)fi .

Solution 5.16. (Left to the reader).

Remark 5.17. The Warming–Beam numerical flux can be derived from
(5.78) in terms of integral averages of solutions of Riemann problems under
the assumption 1 ≤ c ≤ 2. An extension of this interpretation to non–linear
systems was proposed by Toro and Billett [527].

Exercise 5.18. Apply (5.78) to the linear advection equation and derive
the Warming–Beam flux for negative speed a. Assume −2 ≤ c ≤ −1.

Solution 5.19. (Left to the reader).

5.4 Upwind Schemes for Linear Systems

Here we apply the first–order upwind scheme to hyperbolic systems with
constant coefficients
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Ut + AUx = 0 . (5.80)

For background on mathematical properties of these PDEs see Sect. 2.3 of
Chap. 2. We denote the real eigenvalues of the m × m constant coefficient
matrix A by λj with j = 1, . . . , m and assume they are ordered as

λ1 < λ2 < λ3 . . . < λm .

The corresponding right eigenvectors are denoted by K(1),K(2), . . . ,K(m).
Note here that in general the eigenvalues λj can be of any sign and thus a
one–sided differencing scheme applied to (5.80) directly will only work if all
the eigenvalues are of the same sign. In the general case with eigenvalues of
mixed sign the particular chosen side for the differencing will be upwind for
only some of the eigenvalues and downwind for the rest. The difficulty can be
resolved by splitting the matrix into two matrices, one of them having positive
or zero eigenvalues and the other having negative or zero eigenvalues. From
the assumption of hyperbolicity, A may be diagonalised as

A = KΛK−1 , (5.81)

where K is the matrix whose columns are the right eigenvectors K(j), K−1 is
the inverse of K and Λ is the diagonal matrix formed by the eigenvalues of
A, namely

Λ =

⎛
⎜⎜⎜⎝

λ1 0
. . .

0 λm

⎞
⎟⎟⎟⎠ . (5.82)

See Sect. 2.3.1 of Chap. 2. In terms of the characteristic variables

V = K−1U , (5.83)

system (5.80) becomes the decoupled system

Vt + ΛVx = 0 , (5.84)

where the j–th equation

∂

∂t
vj + λj

∂

∂x
vj = 0 , for j = 1, ..,m, (5.85)

involves only the variable vj(x, t).

5.4.1 The CIR Scheme

From a numerical point of view the decomposition of (5.80) into the de-
coupled set (5.84) with component equations (5.85) is very convenient. Each
component equation (5.85) is a linear advection equation with characteristic
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speed λj = constant, just as the PDE in (5.7), in which the speed is a, a
constant. The CIR first–order upwind scheme (5.21) can directly be applied
to each component equation (5.85). As for the scalar case we introduce the
following definitions

λ+
j ≡ max(λj , 0) = 1

2 (λj+ | λj |) ,

λ−
j ≡ min(λj , 0) = 1

2 (λj− | λj |) ,

}
(5.86)

where | λj | is the absolute value of λj . The following relations can be easily
verified

λj = λ+
j + λ−

j , | λj |= λ+
j − λ−

j . (5.87)

Then, the CIR scheme (5.21) applied to each PDE in (5.85) for the charac-
teristic variables reads

(vj)n+1
i = (vj)n

i − Δt
Δxλ+

j

[
(vj)n

i − (vj)n
i−1

]

− Δt
Δxλ−

j

[
(vj)n

i+1 − (vj)n
i

]
.

(5.88)

This is a straight generalisation of the first–order upwind scheme (5.21) to the
decoupled linear hyperbolic system (5.84).

Based on definitions (5.86) we can form the positive Λ+ and negative Λ−

components of the diagonal matrix Λ, namely

Λ± ≡

⎛
⎜⎜⎜⎝

λ±
1 0

. . .

0 λ±
m

⎞
⎟⎟⎟⎠ . (5.89)

Property (5.81) allows us to introduce the positive and negative components
of the coefficient matrix A as

A− = KΛ−K−1 , A+ = KΛ+K−1 . (5.90)

Based on properties (5.87), the matrices (5.89), (5.90) can be shown to satisfy
the following

Λ = Λ+ + Λ− , | Λ |= Λ+ − Λ− ,

A = A+ + A− , | A |= A+ − A− .

⎫
⎬
⎭ (5.91)

The CIR scheme (5.88) can be written as

Vn+1
i = Vn

i − Δt
ΔxΛ+(Vn

i − Vn
i−1)

− Δt
ΔxΛ−(Vn

i+1 − Vn
i ) .

⎫
⎬
⎭ (5.92)

In terms of the original variables U = KV this scheme may be expressed as
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Un+1
i = Un

i − Δt
ΔxA+

[
Un

i − Un
i−1

]

− Δt
ΔxA− [

Un
i+1 − Un

i

]
.

⎫
⎬
⎭ (5.93)

This is the generalisation of scheme (5.21) to linear hyperbolic systems (5.80)
with constant coefficients. It is left to the reader to verify that the above result
can be obtained by multiplying (5.92) from the left by the matrix K and
using (5.90). Note that by splitting the coefficient matrix A into a positive
and a negative component we have been able to retain the basic principle
of performing the one–sided spatial differencing according to the sign of the
characteristic speeds. The differencing Un

i −Un
i−1 is upwind for the coefficient

matrix A+ and Un
i+1 − Un

i is upwind for the coefficient matrix A−.

5.4.2 Godunov’s Method

Consider the constant coefficient, linear hyperbolic system (5.80) written
in conservation–law form

Ut + F(U)x = 0 , F(U) ≡ AU . (5.94)

The Godunov first–order upwind method utilises the conservative formula
(5.76) and requires the solution Ui+ 1

2
(x/t) of the local Riemann problem

RP (Un
i ,Un

i+1) for (5.94) to compute the intercell numerical flux

Fi+ 1
2

= F(Ui+ 1
2
(0)) . (5.95)

See Sect. 5.3.2. Here Ui+ 1
2
(0) is the value of the solution Ui+ 1

2
(x/t) at x/t = 0

along the intercell boundary. As seen in Sect. 2.3.3 of Chap. 2, the solution

I+1I2
1 λ

λ
m

nn

i+1i UU

Godunov  flux

λλ
λ

0

t

x

Fig. 5.8. Evaluation of the Godunov intercell flux for linear hyperbolic systems
with constant coefficients

Ui+ 1
2
(x/t) can be easily found by first expanding the initial data Un

i ,Un
i+1

in terms of the right eigenvectors as

Un
i =

m∑
j=1

αjK(j) , Un
i+1 =

m∑
j=1

βjK(j) . (5.96)
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The general solution at any point (x, t) is given by

Ui+ 1
2
(x/t) =

I∑
j=1

βjK(j) +
m∑

j=I+1

αjK(j) , (5.97)

where I is the largest integer with 1 ≤ I ≤ m such that x/t ≥ λI . The
Godunov flux (5.95) requires the solution at x/t = 0 in (5.97). See Fig. 5.8.
For x/t = 0 I is such that λI ≤ 0 and λI+1 ≥ 0, then Ui+ 1

2
(0) is obtained by

manipulating (5.97), namely

Ui+ 1
2
(0) = Un

i +
I∑

j=1

(βj − αj)K(j) (5.98)

or

Ui+ 1
2
(0) = Un

i+1 −
m∑

j=I+1

(βj − αj)K(j) . (5.99)

Recall that the jump across wave j with eigenvalue λj and eigenvector K(j)

is given by (βj −αj)K(j). Note that the solution of the Riemann problem, at
x/t = 0, as given by (5.98), can be interpreted as being the left data state Un

i

plus all wave jumps across waves of negative or zero speed. Similarly, the form
(5.99) gives the solution as the right data state Un

i+1 minus the wave jumps
across all waves of positive or zero speeds. By combining (5.98) and (5.99) we
obtain

Ui+ 1
2
(0) =

1
2
(Un

i + Un
i+1) −

1
2

m∑
j=1

sign(λj)(βj − αj)K(j) . (5.100)

The Godunov intercell numerical flux (5.95) can now be obtained by eval-
uating F(U) at any of the expressions (5.98)–(5.100) for the solution of the
Riemann problem. Use of (5.98) gives

Fi+ 1
2

= Fn
i +

I∑
j=1

A(βj − αj)K(j) , (5.101)

and since AK(j) = λjK(j),

Fi+ 1
2

= Fn
i +

I∑
j=1

(βj − αj)λjK(j) . (5.102)

Similarly, (5.99) gives

Fi+ 1
2

= Fn
i+1 −

m∑
j=I+1

(βj − αj)λjK(j) , (5.103)
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or combining (5.102) and (5.103) we obtain

Fi+ 1
2

=
1
2
(
Fn

i + Fn
i+1

)
− 1

2

m∑
j=1

(βj − αj) | λj | K(j) . (5.104)

Next we show that the Godunov flux can also be expressed in two more
alternative forms.

Proposition 5.20. The Godunov flux (5.95) to solve (5.94) via (5.76) can
be written as

Fi+ 1
2

=
1
2
(Fn

i + Fn
i+1) −

1
2
| A | (Un

i+1 − Un
i ) . (5.105)

Proof. Starting from (5.104) and using the properties (5.87) and (5.91)
one writes

Fi+ 1
2

=
1
2
(
Fn

i + Fn
i+1

)
− 1

2

m∑
j=1

(βj − αj)(λ+
j − λ−

j )K(j)

=
1
2
(
Fn

i + Fn
i+1

)
− 1

2

m∑
j=1

(βj − αj)
[
λ+

j K(j) − λ−
j K(j)

]

=
1
2
(
Fn

i + Fn
i+1

)
− 1

2

m∑
j=1

(βj − αj)
[
A+K(j) − A−K(j)

]

=
1
2
(
Fn

i + Fn
i+1

)
− 1

2

m∑
j=1

(βj − αj)
[
A+ − A−]K(j)

=
1
2
(
Fn

i + Fn
i+1

)
− 1

2
| A |

m∑
j=1

(βj − αj)K(j) .

Hence
Fi+ 1

2
=

1
2
(
Fn

i + Fn
i+1

)
− 1

2
| A | (Un

i+1 − Un
i )

and the proposition is proved.

Proposition 5.21. The Godunov flux (5.95) for (5.94) can be written in
flux–split form as

Fi+ 1
2

= A+Un
i + A−Un

i+1 . (5.106)

Proof. The result follows directly from manipulating (5.105) and using
appropriate definitions. Alternatively we have

Fi+ 1
2

= AUi+ 1
2
(0)

=
I∑

j=1

βjAK(j) +
m∑

j=I+1

αjAK(j)
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=
I∑

j=1

βjλjK(j) +
m∑

j=I+1

αjλjK(j)

=
m∑

j=1

βjλ
−
j K(j) +

m∑
j=1

αjλ
+
j K(j)

=
m∑

j=1

βjA−K(j) +
m∑

j=1

αjA+K(j)

= A+
m∑

j=1

αjK(j) + A−
m∑

j=1

βiK(j)

= A+Un
i + A−Un

i+1 ,

and the proposition is proved.

Remark 5.22. The intercell flux has been split as

Fi+ 1
2

= F+
i+ 1

2
+ F−

i+ 1
2

, (5.107)

where the positive F+
i+ 1

2
and negative F−

i+ 1
2

flux components are

F+
i+ 1

2
= A+Un

i , F−
i+ 1

2
= A−Un

i . (5.108)

Note that, trivially, the respective Jacobian matrices have eigenvalues that
are all positive (or zero) and all negative (or zero).

Exercise 5.23. Consider the linearised equations of Gas Dynamics

Ut + AUx = 0 ,

with

U =
[

u1

u2

]
≡
[

ρ
u

]
, A =

[
0 ρ0

a2/ρ0 0

]
.

Using the results of Sect. 2.3.4 of Chap. 2

• Find the matrices Λ−, Λ+, A−, A+ .
• Write the scheme (5.93) in full, that is for the two components of the

vector of unknowns.
• Compute the Godunov intercell flux directly by using the explicit solution

of the Riemann problem in the Star Region

ρ∗ = 1
2 (ρL + ρR) − 1

2 (uR − uL)ρ0/a ,

u∗ = 1
2 (uL + uR) − 1

2 (ρR − ρL)a/ρ0 .

⎫
⎬
⎭

How many possible wave patterns do you need to consider here ?
• Write a computer program to solve the linearised equations of Gas Dy-

namics using the method of Godunov.

Solution 5.24. (Left to the reader).
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5.5 Sample Numerical Results

To complete this chapter, we present some numerical results obtained by
some of the most well known schemes as applied to two model PDEs.

5.5.1 Linear Advection

We apply four schemes to solve

ut + f(u)x = 0 , f(u) = au , a = constant (5.109)

with two types of initial conditions.

Test 1 for linear advection (smooth data)

Here the initial condition is the smooth profile

u(x, 0) = αe−βx2
. (5.110)

In the computations we take a = 1.0, α = 1.0, β = 8.0 and a CFL coefficient
Ccfl = 0.8; the initial profile u(x, 0) is evaluated in the interval −1 ≤ x ≤ 1.
Computed results are shown in Figs. 5.9 to 5.11; these correspond respectively
to the output times t = 1.0 unit (125 time steps), t = 10.0 units (1250 time
steps), t = 100.0 units (12499 time steps). In each figure we compare the exact
solution (shown by full lines) with the numerical solution (symbols) for the
Godunov method, the Lax–Friedrichs method, the Lax–Wendroff method and
the Warming–Beam method.

The results of Fig. 5.9 are in many ways representative of the quality
of each scheme. Collectively these results are also representative of most of
the current successes and limitations of numerical methods for PDEs govern-
ing wave propagation. The first–order method of Godunov (CIR scheme) has
modified equation of the form (5.24), where αcir is a numerical viscosity coef-
ficient. This is responsible for the clipping of the peak values. As seen earlier
αcir < αlf , which explains the fact that the Lax–Friedrichs scheme gives even
more diffused results. For the computational parameters used αcir = 0.1Δx
and αlf = 0.225Δx.

The results from the Lax–Wendroff method and the Warming–Beam
method, both second–order accurate, are much more accurate than those of
the first–order schemes. There are however, slight signs of error in the position
of the wave. For the Lax–Wendroff scheme the computed wave lags behind the
true wave (lagging phase error), while for the Warming–Beam method the
computed wave is ahead of the true wave (leading phase error). The phase
errors of second–order accurate schemes are explained by the dispersive term
of the modified equation (5.38).

The limitations of the schemes are more clearly exposed if the solution
is evolved for longer times. Fig. 5.10 shows results at the output time t =
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10.0 units (1250 time steps). Compare with Fig. 5.9. The numerical diffusion
inherent in first–order methods has ruined the solution of the Godunov and
Lax–Friedrichs schemes. Computed peak values are only of the order of 30 to
40% of the true peak values. The second–order methods are still giving more
satisfactory results than their first–order counterparts, but now the numerical
dispersion errors are clearly visible. Numerical diffusion is beginning to show
its effects too.

Fig. 5.11 shows results at the output time t = 100.0 units (12499 time
steps). Compare with Figs. 5.9. and 5.10. These results are truly disappoint-
ing and clearly expose the limitations of numerical methods for computing
solutions to problems involving long time evolution of wave phenomena. In
acoustics one may require the computation of (i) very weak signals (ii) over
long distances. The combination of these two requirements rules out automat-
ically a wide range of otherwise acceptable numerical methods for PDEs. See
Tam and Webb [480]. The numerical diffusion of the first–order schemes has
virtually flattened the wave, while the numerical dispersion of the second–
order methods has resulted in unacceptable position errors, in addition to
clipping by numerical diffusion.

Test 2 for linear advection (discontinuous data)

Now the initial data for (5.109) consists of a square wave, namely

u(x, 0) =

⎧
⎨
⎩

0 if x ≤ 0.3 ,
1 if 0.3 ≤ x ≤ 0.7 ,
0 if x ≥ 0.7 .

(5.111)

The computed results for the three output times are shown in Figs. 5.12 to
5.14. As for Test 1 the effects of numerical diffusion in the first–order methods
and the effects of dispersion in the second–order methods lead to visible errors
in the numerical solution (symbols), as compared with the exact solution
(full line). First–order methods smear discontinuities over many computing
cells; as expected this error is more apparent in the Lax–Friedrichs scheme.
Note also the pairing of neighbouring values in the Lax–Friedrichs scheme.
Second–order methods reduce the smearing of discontinuities, but at the cost
of overshoots and undershoots in the vicinity of the discontinuities. These
spurious oscillations are highly undesirable features of second and higher–
order methods. We shall return to this theme in Chaps. 13 and 14, where
improved methods for dealing with discontinuities will be presented.

Fig. 5.13 shows results for Test 2 at time t = 10.0 units (1250 time steps).
The errors observed in Fig. 5.12 are now exaggerated. Fig. 5.14 shows results at
time t = 100.0 units (12499 time steps). Once again first–order methods have
lost the solution while second–order methods exhibit unacceptable position
errors, in addition to spurious oscillations produced near discontinuities.
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5.5.2 The Inviscid Burgers Equation

Our Test 3 consists of the inviscid Burgers equation

ut + f(u)x = 0 , f(u) =
1
2
u2 (5.112)

in the domain [0, 3
2 ] with initial conditions

u(x, 0) =

⎧
⎨
⎩

− 1
2 if x ≤ 1

2 ,
1 if 1

2 ≤ x ≤ 1 ,
0 if x ≥ 1 .

(5.113)

We solve this problem numerically on a domain of length L = 1.5 discretised
by M = 75 equally spaced cells of width Δx = 0.02; the CFL coefficient used
is 0.8. Fig. 5.15 shows computed results (symbol) along with the exact (line)
solution, for the Godunov and Lax–Friedrichs schemes at time t = 0.5 units
(32 time steps). Two new features are now present in solving non–linear PDEs.
First the discontinuity on the right is a shock wave. This satisfies the entropy
condition, see Sect. 2.4.2 of Chap. 2, and characteristics on either side of the
discontinuity converge into the discontinuity. This compression mechanism
helps the more accurate resolution of shock waves. Compare with Fig. 5.12.
The Godunov method resolves the shock much more sharply (3 cells) than
the Lax–Friedrichs scheme (10 cells). The second new feature to note in this
non–linear example is the entropy glitch at x = 1

2 . This corresponds to a
sonic point, see Sect. 2.4.2 of Chap. 2. The entropy glitch affects the Godunov
method and not the Lax–Friedrichs method. A question of crucial importance
is the construction of entropy satisfying schemes [369].

More advanced concepts on numerical methods are presented in Chap. 13
for scalar problems. Chaps. 14, 15 and 16 deal with numerical methods for
non–linear systems.

5.6 FORTRAN Program for Godunov’s Method

A listing of a FORTRAN program to compute the numerical solution to
the inviscid Burgers equation is included.
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*
*----------------------------------------------------------*
* *
C Godunov’s method for the inviscid Burgers’s *
C equation *
* *
C Name of program: HL-B1GOD *
* *
C Purpose: to solve the inviscid Burgers equation *
C using the Godunov first order upwind *
C scheme in conjunction with the exact *
C Riemann solver *
* *
C Input file: b1god.ini *
C Output file: numer.out (numerical) *
* *
C Programer: E. F. Toro *
* *
C Last revision: February 7th 1999 *
* *
C Theory is found in Section 5.3.3, Chapter 5 of *
C Reference 1. *
* *
C 1. Toro, E. F., "Riemann Solvers and Numerical *
C Methods for Fluid Dynamics" *
C Springer-Verlag, *
C Second Edition, 1999 *
* *
C This program is part of *
* *
C NUMERICA *
C A Library of Source Codes for Teaching, *
C Research and Applications, *
C by E. F. Toro *
C Published by NUMERITEK LTD, *
C Website: www.numeritek.com *
* *
*----------------------------------------------------------*
*
C Driver program
*

IMPLICIT NONE
*
C Declaration of variables:
*
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INTEGER ITEST, CELLS, N, NFREQ, NTMAXI
*

REAL CFLCOE, DOMLEN, DT, TIME, TIMEOUT, TIMETO
*

COMMON /DATAIN/ CFLCOE, DOMLEN, ITEST, CELLS,
& NFREQ, NTMAXI, TIMEOUT
COMMON /DELTAT/ DT

*
DATA TIMETO /1.0E-07/

*
C Parameters of problem are read in from
C file "b1god.ini"
*

CALL READER
*
C Initial conditions are set up
*

CALL INITIA(DOMLEN, ITEST, CELLS)
*

WRITE(6,*)’------------------------------------------’
WRITE(6,*)’ Time step N TIME TIMEOUT’
WRITE(6,*)’------------------------------------------’

*
C Time marching procedure
*

TIME = 0.0
*

DO 10 N = 1, NTMAXI
*
C Boundary conditions are set
*

CALL BCONDI(CELLS)
*
C Courant-Friedrichs-Lewy (CFL) condition imposed
*

CALL CFLCON(CFLCOE, CELLS, TIME, TIMEOUT)
*

TIME = TIME + DT
*
C Intercell numerical fluxes are computed
*

CALL FLUXES(CELLS)
*
C Solution is updated according to
C conservative formula
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*
CALL UPDATE(CELLS)

*
IF(MOD(N,NFREQ).EQ.0)WRITE(6,20)N, TIME

*
C Check output time
*

IF(ABS(TIME - TIMEOUT).LE.TIMETO)THEN
*
C Solution is written to "numer.out’ at
C specified time TIMEOUT
*

CALL OUTPUT(CELLS)
*

WRITE(6,*)’-----------------------------------’
WRITE(6,*)’ Number of time steps = ’,N

*
STOP

ENDIF
*
10 CONTINUE

*
20 FORMAT(I12,6X, F12.7)

*
END

*
*----------------------------------------------------------*
*

SUBROUTINE READER
*
C Purpose: to read initial parameters of the problem
*

IMPLICIT NONE
*
C Declaration of variables
*

INTEGER ITEST, CELLS, NFREQ, NTMAXI
*

REAL CFLCOE, DOMLEN, TIMEOUT
*

COMMON /DATAIN/ CFLCOE, DOMLEN, ITEST, CELLS, NFREQ,
& NTMAXI, TIMEOUT

*
OPEN(UNIT = 1,FILE = ’b1god.ini’,STATUS = ’UNKNOWN’)

*
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READ(1,*)CFLCOE ! Courant number coefficient
READ(1,*)DOMLEN ! Domain length
READ(1,*)ITEST ! Test problem
READ(1,*)CELLS ! Number of cells in domain
READ(1,*)NFREQ ! Output frequency to screen
READ(1,*)NTMAXI ! Maximum number of time steps
READ(1,*)TIMEOUT ! Output time

*
CLOSE(1)

*
WRITE(6,*)’--------------------------------’
WRITE(6,*)’Data read in is echoed to screen’
WRITE(6,*)’--------------------------------’
WRITE(6,*)’CFLCOE = ’,CFLCOE
WRITE(6,*)’DOMLEN = ’,DOMLEN
WRITE(6,*)’ITEST = ’,ITEST
WRITE(6,*)’CELLS = ’,CELLS
WRITE(6,*)’NFREQ = ’,NFREQ
WRITE(6,*)’NTMAXI = ’,NTMAXI
WRITE(6,*)’TIMEOUT = ’,TIMEOUT
WRITE(6,*)’--------------------------------’

*
RETURN
END

*
*----------------------------------------------------------*
*

SUBROUTINE INITIA(DOMLEN, ITEST, CELLS)
*
C Purpose: to set initial conditions for solution U
C and initialise other variables. There are
C two choices of initial conditions,
C determined by ITEST
*
C Local variables:
*
C Name Description
* ==== ===========
*
C DX Spatial mesh size
C I Variable in do loop
C ITEST Defines test problem
C FLUX Array for intercell fluxes
C U Array for numerical solution
C XPOS Position along x-axis
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C XRIGHT Left diaphragm
C XMIDDL Middle diaphragm
C XRIGHT Right diaphragm
*

IMPLICIT NONE
*
C Declaration of variables
*

INTEGER I, ITEST, CELLS, IDIM
*

REAL DOMLEN, DX, FLUX, U, XLEFT, XPOS, XMIDDL,
& XRIGHT

*
PARAMETER (IDIM = 1000)

*
DIMENSION FLUX(0:IDIM + 1), U(0:IDIM + 1)

*
COMMON /DELTAX/ DX
COMMON /FLUXFS/ FLUX
COMMON /SOLUTI/ U

*
C Calculate mesh size DX
*

DX = DOMLEN/REAL(CELLS)
*
C Initialise arrays
*

DO 10 I = 0, IDIM + 1
FLUX(I) = 0.0
U(I) = 0.0

10 CONTINUE
*

IF(ITEST.EQ.1)THEN
*
C Test 1: smooth profile
*

XPOS = -1.0
*

DO 20 I = 1, CELLS
XPOS = XPOS + 2.0/REAL(CELLS)
U(I) = EXP(-8.0*XPOS*XPOS)

20 CONTINUE
*

ELSE
*
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C Test 2: square waves
*

XLEFT = 0.1*DOMLEN
XMIDDL = 0.5*DOMLEN
XRIGHT = 0.9*DOMLEN

*
DO 30 I = 1, CELLS

*
XPOS = (REAL(I)-1.0)*DX

*
IF(XPOS.LT.XLEFT)THEN

U(I) = -1.0
ENDIF

*
IF(XPOS.GE.XLEFT.AND.XPOS.LE.XMIDDL)THEN

U(I) = 1.0
ENDIF

*
IF(XPOS.GT.XMIDDL.AND.XPOS.LE.XRIGHT)THEN

U(I) = 0.0
ENDIF

*
IF(XPOS.GT.XRIGHT)THEN

U(I) = -1.0
ENDIF

*
30 CONTINUE

*
ENDIF

*
RETURN
END

*
*----------------------------------------------------------*
*

SUBROUTINE BCONDI(CELLS)
*
C Purpose: to apply boundary conditions
*

IMPLICIT NONE
*
C Declaration of variables
*

INTEGER CELLS, IDIM
*
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REAL U
*

PARAMETER (IDIM = 1000)
*

DIMENSION U(0:IDIM + 1)
*

COMMON /SOLUTI/ U
*
C Left boundary, periodic boundary condition
*

U(0) = U(CELLS)
*
C Right boundary, periodic boundary condition
*

U(CELLS + 1) = U(1)
*

RETURN
END

*
*----------------------------------------------------------*
*

SUBROUTINE CFLCON(CFLCOE, CELLS, TIME, TIMEOUT)
*
C Purpose: to apply the CFL condition to compute a
C stable time step DT
*

IMPLICIT NONE
*
C Declaration of variables
*

INTEGER I, CELLS, IDIM
*

REAL CFLCOE, DT, DX, SMAX, TIME, TIMEOUT, U
*

PARAMETER (IDIM = 1000)
*

DIMENSION U(0:IDIM + 1)
*

COMMON /SOLUTI/ U
COMMON /DELTAT/ DT
COMMON /DELTAX/ DX

*
SMAX = -1.0E+06

*
C Find maximum characteristic speed
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*
DO 10 I = 0, CELLS + 1

IF(ABS(U(I)).GT.SMAX)SMAX = ABS(U(I))
10 CONTINUE

*
DT = CFLCOE*DX/SMAX

*
C Check size of DT to avoid exceeding output time
*

IF((TIME + DT).GT.TIMEOUT)THEN
*
C Recompute DT
*

DT = TIMEOUT - TIME
ENDIF

*
RETURN
END

*
*----------------------------------------------------------*
*

SUBROUTINE UPDATE(CELLS)
*
C Purpose: to update the solution to a new time level
C using the explicit conservative formula
*

IMPLICIT NONE
*
C Declaration of variables
*

INTEGER I, CELLS, IDIM
*

REAL DT, DX, DTODX, FLUX, U
*

PARAMETER (IDIM = 1000)
*

DIMENSION U(0:IDIM + 1), FLUX(0:IDIM + 1)
*

COMMON /DELTAT/ DT
COMMON /DELTAX/ DX
COMMON /FLUXFS/ FLUX
COMMON /SOLUTI/ U

*
DTODX = DT/DX

*
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DO 10 I = 1, CELLS
U(I) = U(I) + DTODX*(FLUX(I-1) - FLUX(I))

10 CONTINUE
*

RETURN
END

*
*----------------------------------------------------------*
*

SUBROUTINE OUTPUT(CELLS)
*
C Purpose: to output the solution at a specified time
C TIMEOUT
*

IMPLICIT NONE
*
C Declaration of variables
*

INTEGER I, CELLS, IDIM
*

REAL DX, U, XPOS
*

PARAMETER (IDIM = 1000)
*

DIMENSION U(0:IDIM + 1)
*

COMMON /DELTAX/ DX
COMMON /SOLUTI/ U

*
OPEN(UNIT = 1,FILE = ’numer.out’,STATUS = ’UNKNOWN’)

*
DO 10 I = 1, CELLS

XPOS = REAL(I)*DX
WRITE(1,20)XPOS, U(I)

10 CONTINUE
*

CLOSE(1)
*
20 FORMAT(2(4X, F10.5))

*
RETURN
END

*
*----------------------------------------------------------*
*
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SUBROUTINE FLUXES(CELLS)
*
C Purpose: to compute intercell fluxes according to
C the Godunov first-order upwind method,
C in conjunction with the exact Riemann
C solver
*

IMPLICIT NONE
*
C Declaration of variables
*

INTEGER I, CELLS, IDIM
*

REAL FLUX, U, UL, UR, USTAR
*

PARAMETER (IDIM = 1000)
*

DIMENSION FLUX(0:IDIM + 1), U(0:IDIM + 1)
*

COMMON /FLUXFS/ FLUX
COMMON /SOLUTI/ U

*
C Compute intercell flux FLUX(I), I = 0, CELLS
C Solution of Riemann problem RP(I, I+1) is stored
C in FLUX(I)
*

DO 10 I = 0, CELLS
*
C Define states UL (Left) and UR (Right) for local
C Riemann problem RP(UL, UR)
*

UL = U(I)
UR = U(I+1)

*
C Solve the Riemann problem RP(UL, UR) exactly
*

CALL RIEMANN(UL, UR, USTAR)
*
C Compute Godunov intercell flux
*

FLUX(I) = 0.5*USTAR*USTAR
*
10 CONTINUE

*
RETURN
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END
*
*----------------------------------------------------------*
*

SUBROUTINE RIEMANN(UL, UR, USTAR)
*
C Purpose: to solve the Riemann problem for the inviscid
C Burgers equation exactly.
*
C Local variables:
*
C Name Description
* ==== ===========
*
C UL Left data state
C UR Right data state
C S Shock speed
C USTAR Sampled state
*

IMPLICIT NONE
*

REAL S, UL, UR, USTAR
*

IF(UL.GT.UR)THEN
*
C Solution is a shock wave
C Compute shock speed S
*

S = 0.5*(UL + UR)
*
C Sample the state along the t-axis
*

IF(S.GE.0.0)THEN
USTAR = UL

ELSE
USTAR = UR

ENDIF
*

ELSE
*
C Solution is a rarefaction wave.
C There are 3 cases:
*

IF(UL.GE.0.0)THEN
*
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C Right supersonic rarefaction
*

USTAR = UL
ENDIF

*
IF(UR.LE.0.0)THEN

*
C Left supersonic rarefaction
*

USTAR = UR
ENDIF

*
IF(UL.LE.0.0.AND.UR.GE.0.0)THEN

*
C Transonic rarefaction
*

USTAR = 0.0
ENDIF

*
ENDIF

*
RETURN
END

*
*----------------------------------------------------------*
*
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Fig. 5.9. Test 1: Comparison of numerical results for four numerical schemes (sym-
bols) with the exact solution (line) at output time of 1 unit (125 time steps)
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Fig. 5.10. Test 1: Comparison of numerical results for four numerical schemes
(symbols) with the exact solution (line) at time 10 units (1250 time steps)
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Fig. 5.11. Test 1: Comparison of numerical results for four numerical schemes
(symbols) with the exact solution (line) at time 100 units (12499 time steps)
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Fig. 5.12. Test 2: Comparison of numerical results for four numerical schemes
(symbols) with the exact solution (line) at output time of 1 unit (125 time steps)
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Fig. 5.13. Test 2: Comparison of numerical results for four numerical schemes
(symbols) with the exact solution (line) at time 10 units (1250 time steps)
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Fig. 5.14. Test 2: Comparison of numerical results for four numerical schemes
(symbols) with the exact solution (line) at time 100 units (12499 time steps)
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The Method of Godunov for Non–linear
Systems

It was almost 40 years ago when Godunov [216] produced a conservative
extension of the first–order upwind scheme of Courant, Isaacson and Rees
[144] to non–linear systems of hyperbolic conservation laws. In Chap. 5 we
advanced a description of Godunov’s method in terms of scalar equations
and linear systems with constant coefficients. In this chapter, we describe the
scheme for general non–linear hyperbolic systems; in particular, we give a
detailed description of the technique as applied to the time–dependent, one
dimensional Euler equations. The essential ingredient of Godunov’s method
is the solution of the Riemann problem, which may be the exact solution or
some suitable approximation to it. Here, we present the scheme in terms of
the exact solution. In Chaps. 9 to 12 we shall present versions of Godunov’s
scheme that utilise approximate Riemann solvers; these, if used cautiously,
will provide an improvement to the efficiency of the scheme. As seen in Chap.
5 the method is only first–order accurate, which makes it unsuitable for ap-
plication to practical problems; well–resolved solutions will require the use of
very fine meshes, with the associated computing expense. Second and third
order extensions of the basic Godunov method will be studied in Chap. 13 for
scalar conservation laws; some of these high–order methods are extended to
non–linear systems in Chaps. 14 and 16.

Relevant background for studying the Godunov’s method is found in all
preceding chapters, but detailed review of Chaps. 4 and 5 might be found
particularly helpful.

6.1 Bases of Godunov’s Method

Consider the general Initial–Boundary Value Problem (IBVP) for non–
linear systems of hyperbolic conservation laws

PDEs : Ut + F(U)x = 0 ,
ICs : U(x, 0) = U(0)(x) ,
BCs : U(0, t) = Ul(t) , U(L, t) = Ur(t) .

⎫
⎬
⎭ (6.1)

E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 213
c© Springer-Verlag Berlin Heidelberg 2009DOI 10.1007/b7976-1 6,
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Here, U(x, t) is the vector of conserved variables; F(U) is the vector of fluxes;
U(0)(x) is the initial data at time t = 0; [0, L] is the spatial domain and
boundary conditions are, for the moment, assumed to be represented by the
boundary functions Ul(t) and Ur(t). We make the assumption that the solu-
tion of IVBP (6.1) does exist.

In order to admit discontinuous solutions we must use one of the integral
forms of the conservation laws in (6.1). Here we adopt

∫ x2

x1
U(x, t2) dx =

∫ x2

x1
U(x, t1) dx +

∫ t2
t1

F(U(x1, t)) dt

−
∫ t2

t1
F(U(x2, t)) dt ,

⎫
⎪⎬
⎪⎭

(6.2)

for any control volume [x1, x2] × [t1, t2] in the domain of interest; see Sect.
2.4.1 of Chap. 2.

We discretise the spatial domain [0, L] into M computing cells or finite
volumes Ii = [xi− 1

2
, xi+ 1

2
] of regular size Δx = xi+ 1

2
− xi− 1

2
= L/M , with

i = 1, . . . , M . For a given cell Ii the location of the cell centre xi and the cell
boundaries xi− 1

2
, xi+ 1

2
are given by

xi− 1
2

= (i − 1)Δx , xi = (i − 1
2
)Δx , xi+ 1

2
= iΔx . (6.3)

See Fig. 5.4 of Chap. 5. We denote the temporal domain by [0, T ], where T
is some output time, not a boundary. The discretisation of the time interval
[0, T ] is generally done in time steps Δt of variable size; recall that for non–
linear systems wave speeds vary in space and time, and thus the choice of
Δt is carried out as marching in time proceeds. Given general initial data

kU

x

M1 i-1 i i+1

Fig. 6.1. Piece–wise constant distribution of data at time level n, for a single
component of the vector U

Ũ(x, tn) for (6.1) at time t = tn say, in order to evolve the solution to a time
tn+1 = tn + Δt, the Godunov method first assumes a piece–wise constant
distribution of the data. Formally, this is realised by defining cell averages
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Un
i =

1
Δx

∫ x
i+ 1

2

x
i− 1

2

Ũ(x, tn) dx , (6.4)

which produces the desired piecewise constant distribution U(x, tn), with

U(x, tn) = Un
i , for x in each cell Ii = [xi− 1

2
, xi+ 1

2
] , (6.5)

as illustrated in Fig. 6.1 for a single component Uk of the vector of conserved
variables. Data now consists of a set {Un

i } of constant states. Naturally these
are in terms of conserved variables, but other variables may be derived to
proceed with the implementation of numerical methods. In particular, for the
Godunov method we use the solution of the Riemann problem in terms of
primitive variables, which for the Euler equations are W = (ρ, u, p)T ; ρ is
density, u is velocity and p is pressure.

Once the piece–wise constant distribution of data has been established
the next step in the Godunov method is to solve the Initial Value Problem
(IVP) for the original conservation laws but with the modified initial data
(6.5). Effectively, this generates local Riemann problems RP (Un

i , Un
i+1) with

data Ui (left side) and Un
i+1 (right side), centred at the intercell boundary

positions xi+ 1
2
. As seen for the Euler equations in Chap. 4, the solution of

RP (Un
i ,Un

i+1) is a similarity solution and depends on the ratio x̄/t̄, see (6.7),
and the data states Un

i , Un
i+1; the solution is denoted by Ui+ 1

2
(x̄/t̄), where

(x̄, t̄) are the local coordinates for the local Riemann problem. Fig. 6.2 shows
typical wave patterns emerging from intercell boundaries xi− 1

2
and xi+ 1

2
when

solving the two Riemann problems RP (Un
i−1,U

n
i ) and RP (Un

i ,Un
i+1). For a

i i+1
i+1/2i-1/2

tt

x
i-1

Fig. 6.2. Typical wave patterns emerging from solutions of local Riemann problems
at intercell boundaries i − 1

2
and i + 1

2

time step Δt that is sufficiently small, to avoid wave interaction, one can
define a global solution Ũ(x, t) in the strip 0 ≤ x ≤ L, tn ≤ t ≤ tn+1 in terms
of the local solutions as follows

Ũ(x, t) = Ui+ 1
2
(x̄/t̄) , x ∈ [xi, xi+1] , (6.6)

where the correspondence between the global (x, t) and local (x̄, t̄) coordinates
is given by
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x̄ = x − xi+ 1
2

, t̄ = t − tn ,

x ∈ [xi, xi+1] , t ∈ [tn, tn+1] ,
x̄ ∈ [−Δx

2 , Δx
2 ] , t̄ ∈ [0,Δt] ,

⎫
⎬
⎭ (6.7)

and is illustrated in Fig. 6.3. Having found a solution Ũ(x, t) in terms of solu-

x
xx

0

t n+1 Δ t

t

(a) (b)

i+1/2

t

Fig. 6.3. Correspondence between the global (a) and local (b) frames of reference
for the solution of the Riemann problem

tions Ui+ 1
2
(x̄/t̄) to local Riemann problems, the Godunov method advances

the solution to a time tn+1 = tn + Δt by defining a new set of average values
{Un+1

i }, in a way to be described. We shall often use (x, t) to mean the local
frame of reference (x̄, t̄).

6.2 The Godunov Scheme

The first version of Godunov’s method defines new average values Un+1
i

at time tn+1 = tn + Δt via the integrals

Un+1
i =

1
Δx

∫ x
i+ 1

2

x
i− 1

2

Ũ(x, tn+1) dx (6.8)

within each cell Ii = [xi− 1
2
, xi+ 1

2
]. This averaging process is illustrated in Fig.

6.4.
Note first that in order to perform the averaging, we need to make the

assumption that no wave interaction takes place within cell Ii, in the chosen
time Δt. This is satisfied by imposing the following restriction on the size of
Δt, namely

Δt ≤
1
2Δx

Sn
max

, (6.9)

where Sn
max denotes the maximum wave velocity present throughout the do-

main at time tn. A consequence of this restriction is that only two Riemann
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i-1 i+1i
x

here
Averaging

tΔ

t t

i-1/2 i+1/2

Fig. 6.4. Godunov averaging of local solutions to Riemann problems within cell Ii

at a fixed time Δt

problem solutions affect cell Ii, namely the right travelling waves of Ui− 1
2
(x/t)

and the left travelling waves of Ui+ 1
2
(x/t), see Fig. 6.4. Thus Un+1

i , given by
(6.8), can be expressed as

Un+1
i =

1
Δx

∫ 1
2 Δx

0

Ui− 1
2

( x

Δt

)
dx +

1
Δx

∫ 0

− 1
2 Δx

Ui+ 1
2

( x

Δt

)
dx , (6.10)

after using (6.6) and (6.8). This version of Godunov’s method can obviously be
implemented as a practical computational scheme. We note however that it has
two main drawbacks. First, the CFL–like condition (6.9) is computationally
somewhat restrictive on Δt. Second, the evaluation of the integrals in (6.10),
although possible, could be involved. Rarefaction waves are bound to add to
the complexity of the scheme. The second version of Godunov’s method is
more attractive and is given by the following statement.

Proposition 6.1. The Godunov method can be written in conservative
form

Un+1
i = Un

i +
Δt

Δx
[Fi− 1

2
− Fi+ 1

2
] , (6.11)

with intercell numerical flux given by

Fi+ 1
2

= F(Ui+ 1
2
(0)) , (6.12)

if the time step Δt satisfies the condition

Δt ≤ Δx

Sn
max

. (6.13)

Proof. The integrand Ũ(x, t) in (6.8) is an exact solution of the conserva-
tion laws, see equation (6.6). We can therefore apply the integral form (6.2)
of the conservation laws to any control volume [x1, x2]× [t1, t2]. In particular,
we can apply it to the case in which x1 = xi− 1

2
, x2 = xi+ 1

2
, t1 = tn, t2 = tn+1.

From (6.4) we then have
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∫ x
i+ 1

2
x

i− 1
2

Ũ(x, tn+1) dx =
∫ x

i+ 1
2

x
i− 1

2

Ũ(x, tn) dx

+
∫Δt

0
F[Ũ(xi− 1

2
, t)] dt −

∫Δt

0
F[Ũ(xi+ 1

2
, t)] dt .

⎫
⎪⎬
⎪⎭
(6.14)

In terms of local solutions, as in (6.6), and assuming condition (6.13) we have

Ũ(xi− 1
2
, t) = Ui− 1

2
(0) = constant ,

Ũ(xi+ 1
2
, t) = Ui+ 1

2
(0) = constant ,

}
(6.15)

where Ui+ 1
2
(0) is the solution of the Riemann problem RP (Un

i ,Un
i+1) along

the ray x/t = 0, which is the t–axis in the local frame. Similarly, Ui− 1
2
(0) is

the solution of RP (Un
i−1,U

n
i ) along the t–axis. Division of (6.14) through by

Δx gives

1
Δx

∫ x
i+ 1

2
x

i− 1
2

Ũ(x, tn+1) dx = 1
Δx

∫ x
i+ 1

2
x

i− 1
2

Ũ(x, tn) dx

+ Δt
Δx [F(Ui− 1

2
(0)) − F(Ui+ 1

2
(0))] ,

⎫
⎪⎬
⎪⎭

(6.16)

which by virtue of (6.4) and (6.15) leads to the desired result (6.11)–(6.12),
and thus the proposition has been proved.

The following remarks are in order:

• The CFL condition (6.13) for the second version (6.11)–(6.12) of the Go-
dunov method is more generous than (6.9), thus allowing a larger time
step. This in turn results in a more efficient time–marching scheme. Here
a wave is allowed to travel, at most, a complete cell length Δx in a time
Δt.

• Condition (6.13) remains valid even if wave interaction takes place in time
Δt within cell Ii, under the assumption that no wave acceleration takes
place as a consequence of wave interaction; this is a kind of linearity as-
sumption. Condition (6.13) is necessary in (6.16) when computing the
fluxes along the left and right intercell boundaries.

• The second version (6.11)–(6.12) of the Godunov method is the one that
is used for practical computations.

6.3 Godunov’s Method for the Euler Equations

Here we describe Godunov’s method for the specific case of the time–
dependent, one–dimensional Euler equations. As data {Un

i } at time level n is
assumed, in order to march the solution to time level n+1 via the conservative
formula (6.11) we need to compute the intercell fluxes Fi− 1

2
and Fi+ 1

2
.
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6.3.1 Evaluation of the Intercell Fluxes

For a generic cell interface at xi+ 1
2

we compute the Godunov flux Fi+ 1
2

ac-
cording to (6.12). We therefore require the solution Ui+ 1

2
(x/t) of the Riemann

problem RP (Un
i ,Un

i+1) evaluated at the point S = x/t = 0.

(a4)

(a3)

(a2)

(a1)

(a5) (b5)

(b4)

(b3)

(b2)

(b1)

Fig. 6.5. Possible wave patterns in evaluating the Godunov flux for the Euler
equations:(a) positive particle speed in the Star Region (b) negative particle speed
in the Star Region

In Chap. 4 we presented the complete exact solution to a general Riemann
problem RP (Un

i ,Un
i+1) for the Euler equations. In practice we use the solution

in terms of the primitive variables, which we denote by Wi+ 1
2
, (x/t). Having

found Wi+ 1
2
(x/t) its evaluation at any point S = x/t is carried out by the

subroutine SAMPLE in the FORTRAN program given in Sect. 4.9 of Chap. 4.
Sampling requires the identification of ten possible wave patterns; these are
illustrated in Fig. 6.5. The flow chart of Fig. 4.14 in Chap. 4 relates to the
five sub–cases arising from the case in which the sampling point S lies to
the left of the contact discontinuity. There is an analogous flow chart for the
five sub–cases arising from the case in which the sampling point S lies to the
right of the contact discontinuity. For the Godunov method the sampling is
performed for the special value S = x/t = 0. Unfortunately, this does not
simplify the sampling procedure and all ten possible wave patterns must be
taken into account; these are shown in Fig. 6.5. Recall that in our convention
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a shock is a single thick ray, a contact is a dashed line and a rarefaction wave
is obviously a fan. A wave of unknown character is represented by a pair of
rays emanating from the origin. There are two situations, each of which has
five cases, namely (a) 0 ≤ u∗ (positive particle speed in the Star Region) and
(b) 0 ≥ u∗ (negative particle speed in the Star Region). The sampled value
Wi+ 1

2
(0) needed for evaluating the Godunov flux is given in Table 6.1 for all

ten possible wave patterns; see Fig. 6.5. Consider for example the situation in
which u∗ is positive. In order to compute correctly the value Wi+ 1

2
(0) along

the t–axis (left of contact) we must identify the character of the left wave.
This can be a shock, cases (a1) and (a2), or a rarefaction wave, cases (a3),
(a4) and (a5). If the left wave is a shock wave we compute the state W∗L
between the left shock and the contact using shock relations, see Sect. 4.5.1
of Chap. 4. Then the speed SL of the left shock is computed. This then allows
us to test whether the shock speed is positive (supersonic flow) or negative
(subsonic flow). If SL ≥ 0 then

Wi+ 1
2
(0) = WL .

If SL ≤ 0 then
Wi+ 1

2
(0) = W∗L .

The analysis for the remaining cases (a3) to (a5) is analogous, as is for the
set of cases (b1) to (b5). Details are omitted.

Sub–case Case (a): positive speed u∗ case (b): negative speed u∗
1 WL WR

2 W∗L W∗R
3 WL WR

4 W∗L W∗R
5 WLfan WRfan

Table 6.1. Value of Wi+ 1
2
(0) required for evaluating the Godunov flux, for

all ten possible wave patterns in the solution of the Riemann problem

Having identified the desired value Wi+ 1
2
(0) the intercell (6.12) becomes

Fi+ 1
2

= F(Wi+ 1
2
(0)) .

Exercise 6.2. Construct a flow chart for computing the Godunov flux for
the time–dependent, one–dimensional Euler equations.

Solution 6.3. (Left to the reader).

Exercise 6.4. Draw all possible wave patterns required for evaluating the
Godunov flux for the isentropic equations of Gas Dynamics; see Sect. 2.4.4 of
Chap. 4. Construct a flow chart for computing the Godunov flux.

Solution 6.5. (Left to the reader).



6.3 Godunov’s Method for the Euler Equations 221

6.3.2 Time Step Size

So far we know how to compute the intercell flux (6.12) to be used in the
conservative formula (6.11). The spatial discretisation length Δx is chosen
on desired accuracy or available computing resources. What remains to be
determined in (6.11) is the size of the time step Δt. This is based on the
condition (6.13). The time step is then given by

Δt =
CcflΔx

Sn
max

. (6.17)

Here Ccfl is a Courant or CFL coefficient satisfying

0 < Ccfl ≤ 1 . (6.18)

The closer the coefficient Ccfl is to 1, the more efficient the time marching
scheme is. Sn

max is the largest wave speed present throughout the domain at
time level n. This means that no wave present in the solution of all Riemann
problems travels more than a distance Δx in time Δt. As discussed in Chap. 5
in the context of simple problems, there are various ways of estimating Sn

max.
For the time–dependent, one dimensional Euler equations a reliable choice is

Sn
max = max

i

{
| SL

i+ 1
2
|, | SR

i+ 1
2
|
}

, (6.19)

for i = 0, . . . ,M , where SL
i+ 1

2
, SR

i+ 1
2

are the wave speeds of the left and
right non–linear waves present in the solution of the Riemann problem
RP (Un

i ,Un
i+1). Recall that this Riemann problem generates three waves; the

fastest are the non–linear waves, which can be shocks or rarefactions. For
rarefaction waves one selects the speed of the head. For shock waves one se-
lects the shock speed, naturally. Note that in sampling the wave speeds one
must include the boundaries, as these might generate large wave speeds. Us-
ing (6.19) to find Sn

max and thus Δt according to (6.17), is a simple and very
reliable procedure. As the local solutions of Riemann problems are available
for flux evaluation, it is just a question of using this information to find Δt
as well. For multi–dimensional problems however, this scheme for estimating
the maximum wave speed is unsuitable; see Sect. 16.3.2 of Chap. 16.

A popular alternative for estimating Sn
max, which extends to multi-dimensional

problems, is
Sn

max = max
i

{| un
i | +an

i } . (6.20)

Only data values for the particle velocity un
i and sound speed an

i are used here.
It is not difficult to see however that (6.20) can lead to an underestimate of
Sn

max. For instance, assume shock–tube data in which the flow is stationary
at time t = 0. Then un

i = 0 and the sound speed is the only contribution
to Sn

max. Underestimating Sn
max results in a choice of Δt that is too large

and instabilities may be developed from the beginning of the computations.
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A possible way of remedying this, is by choosing the CFL coefficient Ccfl in
(6.17) cautiously. If Sn

max is known reliably then the choice Ccfl = 1 is probably
adequate, although this implies that waves pass through each other without
acceleration, which is a kind of linearity assumption. A practical choice is
Ccfl = 0.9. If there are uncertainties in the estimate for Sn

max, such as when
(6.20) is used, a more conservative choice for Ccfl is advised. In spite of the
alluded disadvantages of choice (6.20), it provides a practical approach when
computing solutions to multi–dimensional problems. See Chap. 16.

6.3.3 Boundary Conditions

For a domain [0, L] discretised into M computing cells of length Δx we
need boundary conditions at the boundaries x = 0 and x = L as illustrated
in Fig. 6.6. Numerically, such boundary conditions are expected to provide
numerical fluxes F 1

2
, and FM+ 1

2
. These are required in order to apply the

conservative formula (6.11) to update the extreme cells I1 and IM to the next
time level n+1. The boundary conditions may result in direct prescription of
F 1

2
and FM+ 1

2
. Alternatively, we may prescribe fictitious data values in the

fictitious cells I0 and IM+1, adjacent to I1 and IM respectively; see Fig. 6.6.
In this way, boundary Riemann problems RP (Un

0 ,Un
1 ) and RP (Un

M ,Un
M+1)

are solved and the corresponding Godunov fluxes F 1
2

and FM+ 1
2

are com-
puted, as done for the interior cells. The imposition of boundary conditions

fictitious cell
Right

fictitious cell
Left

0 M+1

Computational

x=Lx=0

boundary
Right

boundary
Left

domain

M1

Fig. 6.6. Boundary conditions. Fictitious cells outside the computational domain
are created

is, fundamentally, a physical problem. Great care is required in their numeri-
cal implementation. For the Godunov method this task tends to be facilitated
by the fact that local Riemann problem solutions are used. Here we consider
only two types of boundaries: reflective and transparent or transmissive.

Reflective Boundaries

Consider the boundary at x = L and suppose it physically consists of
a fixed, reflective impermeable wall. Then the physical situation is correctly
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modelled by creating a fictitious state Wn
M+1 on the right hand side of the

boundary and defining the boundary Riemann problem RP (Wn
M ,Wn

M+1).
The fictitious state Wn

M+1 is defined from the known state Wn
M inside the

computational domain, namely

ρn
M+1 = ρn

M , un
M+1 = −un

M , pn
M+1 = pn

M . (6.21)

The exact solution of this boundary Riemann problem consists of either (i)
two shock waves if un

M > 0 or (ii) two rarefaction waves if un
M ≤ 0. In both

cases u∗ = 0 along the boundary; this is the desired condition at the solid,
fixed impermeable boundary. Consequently, the only non–zero contribution
to the flux vector at the boundary is in the momentum component and is due
to the pressure p∗ corresponding to u∗ = 0. In both cases the solution can
be obtained in closed form, no iteration is required. As a matter of fact, a
closed–form solution exists for the more general case in which the fluid under
consideration obeys the covolume equation of state and the impermeable wall
moves with a prescribed speed uwall [498]. The boundary conditions are

ρn
M+1 = ρn

M , un
M+1 = −un

M + 2uwall , pn
M+1 = pn

M . (6.22)

The exact solution of the Riemann problem RP (Wn
M ,Wn

M+1) containing
a moving boundary is symmetric about the path of the moving wall and
consists of either (a) two shocks or (b) two rarefactions, with the contact
wave coinciding with the moving wall, as desired. See Fig. 6.7.

x

(a) Two shocks

Path of moving wall

(b) Two rarefactions

tt

x

Fig. 6.7. Boundary Riemann problem for moving wall. Contact surface coincides
with moving solid boundary: (a) solution consists of two shocks and the contact (b)
solution consists of two rarefactions and the contact

We now find the exact solution for p∗ and u∗ in the moving–wall Riemann
problem. From the analysis of the exact function for pressure, see Sect. 4.3 of
Chap 4, it is seen that if Δu = −2(uM − uwall) = 0, that is uM = uwall, then
the solution p∗ for pressure at the boundary is p∗ = pM = pM+1. For Δu > 0
we have p∗ < pM = pM+1, that is, the solution consists of two rarefaction
waves, see Fig. 6.7b. For Δu < 0 we have p∗ > pM = pM+1 and the solution
consists of two shocks, see Fig. 6.7a. For the case of two rarefaction waves,
uM ≤ uwall, direct utilisation of the data in the pressure function f(p) = 0,
see Sect. 4.3 of Chap 4, gives
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p∗ = pM

[
1 +

1
2
(γ − 1)

(
CM

aM

)] 2γ
γ−1

. (6.23)

For the case of two shocks, uM > uwall, we have

p∗ = pM +
CM

2AM

{
CM +

[
C2

M + 4AM (BM + pM )
] 1

2
}

, (6.24)

where

AM =
2

(γ + 1)ρM
, BM =

(γ − 1)
(γ + 1)

pM , CM = uM − uwall . (6.25)

As anticipated, the solution for the velocity u∗ in both cases is found to be

u∗ = uwall . (6.26)

These closed–form solutions for the pressure and velocity at the boundary
(fixed or moving) can also be utilised in the Godunov method even when
this is used in conjunction with approximate Riemann solvers, particularly if
these are thought to be inaccurate for boundary data Riemann problems. A
useful discussion on solid–body boundary conditions for the Euler equations
in multi–dimensional domains is given by Rizzi [404]. A recommended paper
on boundary conditions for hyperbolic problems is that of Thompson [489].

Transmissive Boundaries

Transmissive, or transparent boundaries arise from the need to define fi-
nite, or sufficiently small, computational domains. The corresponding bound-
ary conditions are a numerical attempt to produce boundaries that allow the
passage of waves without any effect on them. For one–dimensional problems
the objective is reasonably well attained. For multi–dimensional problems this
is a substantial area of current research, usually referred to as open–end bound-
ary conditions, transparent boundary conditions, far–field boundary condi-
tions, radiation boundary conditions or non–reflecting boundary conditions.
For a transmissive right boundary we suggest the boundary conditions

ρn
M+1 = ρn

M , un
M+1 = un

M , pn
M+1 = pn

M . (6.27)

This data produces a trivial Riemann problem. No wave of finite strength is
produced at the boundary that may affect the flow inside the domain. Useful
publications dealing with transparent boundary conditions are those of Giles
[205], Bayliss and Turkel [34], Roe [413] and Karni [277].

For an assumed mesh of size Δx, we have defined all details for the practical
implementation of the Godunov method, see (6.11)–(6.13). These are

• intercell fluxes
• the maximum wave speed Sn

max to compute the time step size Δt, and
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• boundary conditions.

Remark 6.6. The wave speeds generated at the boundaries, after applying
boundary conditions, must be taken into account when selecting the time step
Δt.

Exercise 6.7. Write a flow chart to implement the Godunov method to
solve the one–dimensional, time dependent Euler equations in a tube of con-
stant cross sectional area. Assume the left wall is impermeable and fixed and
the right wall is transparent.

Solution 6.8. (Left to the reader).

6.4 Numerical Results and Discussion

Here we illustrate the performance of Godunov’s first–order upwind method
for the Euler equations on test problems with exact solution. For comparison
we also show numerical results obtained by the Lax–Friedrichs and Richt-
myer (or two–step Lax–Wendroff) methods, discussed in Chap. 5. In all
chosen tests, data consists of two constant states WL = (ρL, uL, pL)T and
WR = (ρR, uR, pR)T , separated by a discontinuity at a position x = x0. The
states WL and WR are given in Table 6.2. The ratio of specific heats is chosen
to be γ = 1.4. For all test problems the spatial domain is the interval [0, 1]
which is discretised with M = 100 computing cells. The Courant number co-
efficient is Ccfl = 0.9; boundary conditions are transmissive and Sn

max is found
using the simplified formula (6.20).

Remark 6.9. Given that formula (6.20) is not reliable, see discussion in
Sect. 6.3.2, in all computations presented here we take, for the the first 5 time
steps, a Courant number coefficient Ccfl reduced by a factor of 0.2. This allows
for waves to begin to form, after which formula (6.20) becomes more reliable.

The exact solutions were found by running the code HE-E1RPEXACT of
the library NUMERICA [519] and the numerical solutions were obtained by
running the code HE-E1GODSTATE of NUMERICA.

Test ρL uL pL ρR uR pR

1 1.0 0.75 1.0 0.125 0.0 0.1
2 1.0 -2.0 0.4 1.0 2.0 0.4
3 1.0 0.0 1000.0 1.0 0.0 0.01
4 5.99924 19.5975 460.894 5.99242 -6.19633 46.0950
5 1.0 -19.59745 1000.0 1.0 -19.59745 0.01

Table 6.2. Data for five test problems with exact solution. Test 5 is like Test
3 with negative uniform background speed
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Test 1 is a modified version of the popular Sod’s test [453]; the solution
consists of a right shock wave, a right travelling contact wave and a left sonic
rarefaction wave; this test is very useful in assessing the entropy satisfaction
property of numerical methods. Test 2 has solution consisting of two sym-
metric rarefaction waves and a trivial contact wave of zero speed; the Star
Region between the non–linear waves is close to vacuum, which makes this
problem a suitable test for assessing the performance of numerical methods
for low–density flows; this is the so called 123 problem introduced in chapter
Chap. 4. Test 3 is designed to assess the robustness and accuracy of numerical
methods; its solution consists of a strong shock wave, a contact surface and
a left rarefaction wave. Test 4 is also designed to test robustness of numeri-
cal methods; the solution consists of three strong discontinuities travelling to
the right. See Sect. 4.3.3 of Chap. 4 for more details on the exact solution of
these test problems. Test 5 is also designed to test the robustness of numerical
methods but the main reason for devising this test is to assess the ability of
the numerical methods to resolve slowly– moving contact discontinuities. The
exact solution of Test 5 consists of a left rarefaction wave, a right–travelling
shock wave and a stationary contact discontinuity. For each test we select a
convenient position x0 of the initial discontinuity and an output time. These
are stated in the legend of each figure displaying computational results.

Figs. 6.8 to 6.12 show comparisons between exact solutions (line) and
numerical solutions (symbol) at a given output time obtained by the Godunov
method, for all five test problems. The quantities shown are density ρ, particle
speed u, pressure p and specific internal energy e. For comparison, we also
solved these test problems using the Lax–Friedrichs method, see Figs. 6.13 to
6.17, and the Richtmyer (or two–step Lax–Wendroff) method, which failed to
produce solutions to Tests 2 to 5. For Test 1 the solution of the Richtmyer
scheme is shown in Fig. 6.18.

6.4.1 Numerical Results for Godunov’s Method

The results for Test 1, shown in Fig. 6.8, are typical of the Godunov’s
first–order accurate method described in this chapter.

The numerical approximation of the shock wave, of zero–width transition
in the exact solution, has a transition region of width approximately 4Δx;
that is, the shock has been smeared over 4 computing cells. This spreading
of shock waves may seem unsatisfactory, but it is quite typical of numerical
solutions; in fact most first–order methods will spread a shock wave even
more. A satisfactory feature of the numerical shock wave of Fig. 6.8 is that it
is monotone , there are no spurious oscillations in the vicinity of the shock, at
least for this example. Monotonicity of shock waves computed by the Godunov
method depends on the speed of the shock and it holds in most cases except
when the shock speed is very close to zero. The contact discontinuity, seen
in the density and internal energy plots, is smeared over 20 cells; generally
contact waves are much more difficult to resolve accurately than shock waves.



6.4 Numerical Results and Discussion 227

This is due to the linear character of contacts; characteristics on either side
of the wave run parallel to the wave. In shock waves, characteristics on either
side of the wave run into the shock, a compression mechanism that helps the
numerical resolution of shock waves. As for the shock case, the solution for
the contact is perfectly monotone.

Another positive feature of the numerical approximation of the disconti-
nuities is that their speed of propagation is correct and thus their average
positions are correct. This is a consequence of the conservative character of
Godunov’s method. The rarefaction wave is a smooth flow feature and is rea-
sonably well approximated by the method except near the head and the tail,
where a discontinuity in derivative exists. Another visible error in the rarefac-
tion is the small discontinuous jump within the rarefaction. This is sometimes
referred to as the entropy glitch and arises only in the presence of sonic rarefac-
tion waves, as in the present case. Godunov’s method is theoretically entropy
satisfying [244] and we therefore expect the size of the jump in the entropy
glitch to tend to zero as the mesh size Δx tends to zero. Fig. 6.19 shows the
result obtained by refining the mesh by a factor of 5. It appears as if the
numerical solution does converge to the exact solution.

The performance of Godunov’s method on Test 2, see Fig. 6.9, is generally
quite satisfactory as regards the physical variables p, u and ρ but not so
much for the specific internal energy, which is computed from ρ and p as
e = p/((γ − 1)ρ). In this low density example both pressure and density are
close to zero and thus small errors will be exaggerated by their ratio. In any
case, it is generally accepted that plots of the internal energy e can be quite
revealing of the quality of the numerical solution. On the other hand pressure
is probably the easiest quantity to get right. The main point of Test 2 is to
make the reader aware that this class of low density flows can easily cause
numerical methods to fail; even the robust Godunov method fails if used in
conjunction with certain approximate Riemann solvers [182]. The Richtmyer
(or two–step Lax–Wendroff) method fails to give a solution to this problem.

Test 3 is a very severe problem and is designed to test the robustness
of the Godunov method, the results of which are shown in Fig. 6.10. The
emerging right travelling shock wave has pressure ratio p∗/pR = 46000 and
a corresponding shock Mach number of 198. For flows involving such strong
shock waves as this, one would seriously question the validity of the ideal gas
equations of state. However, from the point of view of assessing the robust-
ness of numerical schemes, the validity of the test problem as a mathemat-
ical/numerical problem still holds. As for Test 1, the resolution of disconti-
nuities is worst for the contact wave; as a consequence of this, post shock
values are not attained, as is clearly seen in the density plot. The velocity
plot shows a kind of overshoot near the tail of the rarefaction. The Richtmyer
(or two–step Lax–Wendroff) scheme failed for this test.

As seen in Fig. 6.11 the solution of Test 4 consists of three discontinuities:
two shock waves and a contact. They all travel to the right; the left shock
has a small positive speed. The complete wave system has resulted from the
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interaction of two strong shock waves propagating in opposite directions. The
right shock is the fastest wave and is smeared over 5 cells, as seen in the
pressure plot; the left, slowly moving shock is sharply resolved (two cells)
but is not monotone; there are some low frequency spurious oscillations in its
vicinity, as seen in the internal energy plot. The contact discontinuity is heavily
smeared. Slowly moving shocks are sharply resolved by Godunov’s method.
In fact, isolated shocks and contacts of zero speed are perfectly resolved, if
non–defective Riemann solvers are used, see Chap. 10. The phenomenon of
spurious oscillations in slowly moving shocks has been studied by Roberts
[406] and is so far, to the author’s knowledge, an unresolved difficulty. Billett
and Toro [60] investigated some possible cures of the problem for the Euler
equations. See also the recent papers by Arora and Roe [19] and by Karni and
Ĉanić [280].

Test 5 is like Test 3 but with a uniform, negative background speed so as
to obtain a virtually stationary contact discontinuity. In addition to testing
the robustness of numerical methods, Test 5 is mainly designed to test the
ability of numerical methods to resolve slowly–moving or stationary contact
discontinuities. Fig. 6.12 shows the result obtained from the Godunov method
as compared with the exact solution. For this test problem the contact discon-
tinuity is virtually stationary; the Godunov method resolves this discontinuity
very sharply indeed. This result should be compared with that obtained by
the Lax–Friedrichs method, Fig. 6.17. Test 5 is a very challenging test prob-
lem, as we shall illustrate in subsequent chapters dealing with other numerical
methods.

6.4.2 Numerical Results from Other Methods

First we apply the Lax–Friedrichs method, see Sect. 5.3.4 of Chap. 5, to
Tests 1 to 5. The numerical results are shown in Figs. 6.13 to 6.17. The re-
sults for Test 1 are shown in Fig. 6.13 and are to be compared with those
of Godunov’s method, Fig. 6.8. The Lax–Friedrichs scheme has the peculiar
property of pairing cell values, which enhances smearing. The shock wave is
resolved with about 8 cells and looks acceptable. The resolution of the rarefac-
tion wave and the contact discontinuity is very poor. The solution for Test 2
is shown in Fig. 6.14. Note how inaccurate the solution for internal energy is;
compare with Fig. 6.9 and with the exact solution. A large class of methods
are known to have difficulties with this kind of symmetric Riemann problems
[512]. Fig. 6.15 shows results for Test 3; the scheme is unable to attain the
post–shock density values; compare with Fig. 6.10. The results for Test 4 are
shown in Fig. 6.16, which are to be compared with those of Fig. 6.11. The Lax–
Friedrichs method, although simpler and cheaper, is significantly less accurate
than the Godunov method. Fig. 6.17 shows the result from the Lax–Friedrichs
scheme for Test 5; this result and that of Fig. 6.12 show the crucial difference
between two major classes of numerical methods, namely centred methods and



6.4 Numerical Results and Discussion 229

Godunov–type methods. Test 5 highlights the fact that resolving linear waves
is perhaps one of the most challenging tasks for numerical methods today.

The second–order Richtmyer (or two–step Lax–Wendroff) method was ap-
plied to Test 1 and the results are shown in Fig. 6.18; compare with Figs. 6.8
and 6.13. The solution is generally more accurate in the smooth regions of the
flow, as is to be expected from a second–order accurate method; discontinuities
are also more sharply resolved but spurious oscillations near discontinuities
appear; see Chap. 5. This method failed to give a solution at all, for Tests 2
to 5.

In this chapter we have presented the Godunov method as used in conjunc-
tion with the exact Riemann solver. Godunov’s method can also be used with
approximate Riemann solvers. In Chaps. 9 to 12 we present several approx-
imate Riemann solvers for the Euler equations. Second and third order ex-
tensions of Godunov’s method are presented in Chap. 13 for scalar problems.
In Chaps. 14 and 16 we present second–order TVD schemes for non–linear
systems.
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Fig. 6.8. Godunov’s method applied to Test 1, with x0 = 0.3. Numerical (symbol)
and exact (line) solutions are compared at the output time 0.2 units
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Fig. 6.9. Godunov’s method applied to Test 2, with x0 = 0.5. Numerical (symbol)
and exact (line) solutions are compared at the output time 0.15 units
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Fig. 6.10. Godunov’s method applied to Test 3, with x0 = 0.5. Numerical (symbol)
and exact (line) solutions are compared at the output time 0.012 units
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Fig. 6.11. Godunov’s method applied to Test 4, with x0 = 0.4. Numerical (symbol)
and exact (line) solutions are compared at the output time 0.035 units
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Fig. 6.12. Godunov’s method applied to Test 5, with x0 = 0.8 . Numerical (symbol)
and exact (line) solutions are compared at the output time 0.012



232 6 The Method of Godunov for Non–linear Systems

0

0.5

1

0 0.5 1

de
ns

ity

position

0

0.75

1.5

0 0.5 1

ve
lo

ci
ty

position

0

0.5

1

0 0.5 1

pr
es

su
re

position

1.8

3.6

0 0.5 1

in
te

rn
al

 e
ne

rg
y

position

Fig. 6.13. The Lax–Friedrichs method applied to Test 1, with x0 = 0.3. Numerical
(symbol) and exact (line) solutions are compared at the output time 0.2 units
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Fig. 6.14. The Lax–Friedrichs method applied to Test 2, with x0 = 0.5. Numerical
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Fig. 6.15. The Lax–Friedrichs method applied to Test 3, with x0 = 0.5. Numerical
(symbol) and exact (line) solutions are compared at the output time 0.012 units
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Fig. 6.16. The Lax–Friedrichs method applied to Test 4, with x0 = 0.4. Numerical
(symbol) and exact (line) solutions are compared at the output time 0.035 units
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Fig. 6.17. The Lax–Friedrichs method applied to Test 5, with x0 = 0.8. Numerical
(symbol) and exact (line) solutions are compared at the output time 0.012
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Fig. 6.18. The Richtmyer method applied to Test 1, with x0 = 0.3. Numerical
(symbol) and exact (line) solutions are compared at the output time 0.2 units
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Fig. 6.19. Godunov’s method applied to Test 1 with fine mesh, M = 500. Numerical
(symbol) and exact (line) solutions are compared at time 0.2 units



7

Random Choice and Related Methods

7.1 Introduction

In 1965, Glimm [212] introduced the Random Choice Method (RCM) as
part of a constructive proof of existence of solutions to a class of non–linear
systems of hyperbolic conservation laws. In 1976, Chorin [110] successfully
implemented a modified version of the method, as a computational technique,
to solve the Euler equations of Gas Dynamics. In essence, to implement the
RCM one requires (i) exact solutions of local Riemann problems and (ii) a
random sampling procedure to pick up states to be assigned to the next time
level. As we shall see, there is a great deal of commonality between the RCM
and the Godunov method presented in Chap. 6. Both schemes use the exact
solution of the Riemann problem, although Godunov’s method can also be
implemented using approximate Riemann solvers, as we shall see in Chaps. 9
to 12. The two methods differ in the way the local Riemann problem solutions
are utilised to march to the next time level: the Godunov method takes an
integral average of local solutions of Riemann problems, while the RCM picks a
single state, contained in the local solutions, at random. The random sampling
procedure is carried out by employing a sequence of random numbers. The
statistical properties of these random numbers have a significant effect on the
accuracy of the Random Choice Method.

Since the introduction of the RCM as a computational scheme by Chorin,
there have been many contributions to the development of the method. Chorin
himself [111] extended the RCM to combustion problems; Sod [452] applied
the RCM to the one–dimensional Euler equations for cylindrically and spher-
ically symmetric flows, thereby introducing a way of dealing with algebraic
source terms. Concus [138] applied the RCM to a non–linear scalar equation
governing the two–phase flow of petroleum in underground reservoirs. Major
contributions to the method were presented by Colella [131], [132]; these in-
clude a better understanding of the method, its strengths and limitations, and
improved random sampling techniques. Marshall and Mendez [339] applied
the RCM to the one–dimensional shallow water equations. Li and Holt [317]

E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 237
c© Springer-Verlag Berlin Heidelberg 2009DOI 10.1007/b7976-1 7,
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applied the RCM to the study of underwater explosions. Marshall and Plohr
[340] applied the RCM to solve the steady supersonic Euler equations, see also
Shi and Gottlieb [443], and to the study of shock wave diffraction phenom-
ena. Gottlieb [221] compared the implementation of the RCM on staggered
and non–staggered grids and introduced an effective way of using irregular
meshes. Toro [498] applied the RCM to covolume gases with moving bound-
aries. Applications of the RCM to the study of reactive flows were performed
by Saito and Glass [422], Takano [476], Singh and Clarke [449] and Dawes
[151]. Olivier and Grönig [364] applied the RCM to solve the two–dimensional
time dependent Euler equations to study shock focussing and diffraction phe-
nomena in water and air.

Essentially, the RCM is applicable to scalar problems in any number of
dimensions and to non–linear systems in two independent variables. Examples
of these systems are the one–dimensional, time dependent Euler equations, the
two–dimensional, steady supersonic Euler equations and the one–dimensional
shallow water equations. By using splitting schemes, see Chap. 15, one can
also solve extensions of these systems to include algebraic source terms or
even terms to model viscous diffusion; see Sod [455] and Honma and Glass
[256]. A fundamental limitation of the RCM is its inability to solve multi–
dimensional non–linear systems via splitting schemes, which usually work well
when extending other schemes to multi–dimensional problems; see Chap. 16.
An attraction of the RCM is its ability to handle complex wave interaction
involving discontinuities such as shock waves and material interfaces; these
are resolved as true discontinuities. Most other methods will smear disconti-
nuities over several computing cells, a problem that is particularly serious for
contact surfaces. Although computed discontinuities in the RCM have infinite
resolution, the position of these waves at any given time has an error, which
is random in character. The randomness of the RCM also shows in resolving
smooth waves, such as rarefactions. Such randomness is tolerable when solving
homogeneous systems, i.e. no source terms. In the presence of source terms
however, the randomness tends to be enhanced.

This chapter is primarily devoted to the conventional Random Choice
Method, but we also present what appears to be a new random choice method
[513] that is analogous to the Lax–Friedrichs (deterministic) scheme. In addi-
tion we present a, deterministic, first–order centred (force) scheme based on
a reinterpretation of the conventional RCM on a staggered grid. The presenta-
tion of the schemes is given in terms of the time–dependent, one dimensional
Euler equations. The reader is advised to review Chap. 4 before proceeding
with the study of the present chapter.

7.2 RCM on a Non–Staggered Grid

We consider the general Initial Boundary Value Problem (IBVP) for non–
linear systems of hyperbolic conservation laws, namely
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PDEs : Ut + F(U)x = 0 ,
ICs : U(x, 0) = U(0)(x) ,
BCs : U(0, t) = Ul(t) , U(L, t) = Ur(t) .

⎫
⎬
⎭ (7.1)

We assume a solution to this IBVP exists. Here U(x, t) is the vector of con-
served variables, F(U) is the vector of fluxes, U(0)(x) is the initial data at
time t = 0, [0, L] is the spatial domain and boundary conditions are, for the
moment, assumed to be represented by the boundary functions Ul(t) and
Ur(t).

In the RCM the only step in which one is required to work with the vector
of conserved variables is at the level of the Riemann problem, when enforcing
the Rankine–Hugoniot Conditions at shocks. All other steps of the method
are more conveniently performed in terms of the vector of primitive variables,
which for the Euler equations are W = (ρ, u, p)T ; ρ is density, u is velocity
and p is pressure.

7.2.1 The Scheme for Non–Linear Systems

As for the Godunov method studied in Chap. 6, we discretise the spatial
domain [0, L] into M computing cells Ii = [xi− 1

2
, xi+ 1

2
] of size Δx = xi+ 1

2
−

xi− 1
2

= L/M , with i = 1, . . . ,M . For a given cell Ii, the location of the cell
centre xi and the cell boundaries xi− 1

2
, xi+ 1

2
are given by

xi− 1
2

= (i − 1)Δx , xi = (i − 1
2
)Δx , xi+ 1

2
= iΔx . (7.2)

For convenience we choose cells of regular size Δx, but this is not a necessary
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Fig. 7.1. Discretisation of domain for the Random Choice Method on a non–
staggered grid

requirement for implementing the RCM. Fig. 7.1 illustrates the non–staggered
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grid arrangement for this version of the Random Choice Method. The solu-
tion is updated at the cell centres xi, every time step. Obviously, the time
step is, in general, of different size for every time step. Given general initial

kw

x

M1 i-1 i i+1

Fig. 7.2. Piece–wise constant distribution of data at time level n. Pairs of neigh-
bouring states define data for local Riemann problems

data W(x, tn) at time t = tn say, in order to evolve the solution to a time
tn+1 = tn + Δt, the Random Choice Method first assumes a piecewise con-
stant distribution of the data. Formally, this may be realised by defining cell
averages as in the Godunov method, see Sect. 6.1 of Chap. 6. For the RCM
this is not necessary and we assume that the given data at the cell centres xi

is constant throughout the respective cell Ii. We then have W(x, tn) = Wn
i

in each cell Ii. Fig. 7.2 shows the distribution of a typical variable wk at a
given time level n.

The pairs of neighbouring, constant, states Wn
i , Wn

i+1 define local Rie-
mann problems RP (Wn

i , Wn
i+1), which have similarity solutions Wi+ 1

2
(x/t).

In Chap. 4 we provided the complete exact solution to the Riemann prob-
lem for the Euler equations along with a deterministic sampling procedure
contained in the FORTRAN 77 program of Sect. 4.9. Given a time t∗, the
sampling routine SAMPLE evaluates Wi+ 1

2
(x/t∗) at any point x in an interval

[xl, xr] with xl ≤ 0 ≤ xr. A detailed understanding of the complete exact solu-
tion of the Riemann problem is essential for understanding and implementing
the RCM. Fig. 7.3 illustrates the structure of a typical Riemann problem solu-
tion and a typical sampling range of the solution at a given time t∗, across the
wave structure. In the Random Choice Method the particular point x = x∗ is
picked up at random within the sampling range [xl, xr]. The sampling routine
SAMPLE evaluates Wi+ 1

2
(x∗/t∗) automatically. See Sect. 4.9 of Chap. 4.

The Random Choice Method updates the solution from the data value
Wn

i in cell Ii at time level n, to the value Wn+1
i at time level n + 1, in two

steps as follows:
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Fig. 7.3. Spacial sampling range in the solution of the Riemann problem at a given
time t = t∗

Step I: Solve the Riemann problems RP (Wn
i−1, Wn

i ) and RP (Wn
i , Wn

i+1)
to find their respective solutions Wi− 1

2
(x/t) and Wi+ 1

2
(x/t). Fig. 7.4

shows typical wave patterns emerging from the intercell boundaries
xi− 1

2
and xi+ 1

2
.

Step II: Random sample these solutions at time Δt within cell Ii to pick up
a state and assign it to cell Ii. The random sampling range is shown
in Fig. 7.4 by a thick horizontal line. The picked up state depends
on a random, or quasi–random, number θn in the interval [0, 1]. The
updated solution is then

Wn+1
i =

⎧
⎨
⎩

Wi− 1
2
(θnΔx/Δt) , if 0 ≤ θn ≤ 1

2 ,

Wi+ 1
2
((θn − 1)Δx/Δt) , if 1

2 < θn ≤ 1 .
(7.3)

n

n+1

i-1

Ii

i-1/2 i+1/2

Random sampling along here

i i+1

Δt

Fig. 7.4. The RCM on non–staggered grid. Solution is updated to time level n by
random sampling solutions of Riemann problems within cell Ii at time Δt
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The case in which 0 ≤ θn ≤ 1
2 is illustrated in Fig. 7.5. Here the updated

solution depends on the random sampling procedure applied to the right side
of the left Riemann problem solution Wi− 1

2
(x/t). The particular randomly

chosen state is returned by the sampling routine SAMPLE, called with the
argument

S ≡ x/t =
θnΔx

Δt
.

The resulting state is then assigned to the grid point i, which is regarded as
the solution in cell Ii for the next time level. A similar procedure is applied
if 1

2 ≤ θn ≤ 1. In this case one samples the left side of the right Riemann
problem solution Wi+ 1

2
(x/t). When programming the non–staggered version

of the Random Choice Method there are many ways of organising the tasks
of (i) solving of Riemann problems and (ii) random sampling their solutions.

Concerning the use of random numbers in the scheme, Chorin [110] estab-
lished that one only requires a single random number θn for a complete time
level n. In Glimm’s proof [212] one may take one random number per time
step per cell. In Sect. 7.5 we discuss generation of random numbers and their
properties.

Finally, we note the relationship between the RCM scheme to obtain the
updated value Wn+1

i and the Godunov method, see Chap. 6. The Godunov
scheme, instead of random sampling the solution of the relevant Riemann
problems, will take the integral average of these local Riemann problem solu-
tions

Un+1
i =

1
Δx

∫ 1
2 Δx

0

Ui− 1
2

( x

Δt

)
dx +

1
Δx

∫ 0

− 1
2 Δx

Ui+ 1
2

( x

Δt

)
dx . (7.4)

In order to preserve the conservative character of the Godunov method, the

x

i2
xΔ

t
point
Sampled 

Riemann problem
range for left
Random sampling

i-1/2

Grid point i

Fig. 7.5. RCM sampling of the right–hand side of the left Riemann problem solu-
tion, when 0 ≤ θn ≤ 1

2
. Sampled state is assigned to the centre of cell Ii

averaging is performed in terms of the conserved variables. The RCM, on the
other hand, is not strictly conservative, although one may regard the scheme
as being conservative in a statistical sense.
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7.2.2 Boundary Conditions and the Time Step Size

The solution updating procedure just described is completely defined for
all cells Ii, except for those next to the boundaries, namely I1 and IM . In
order to update these two cells we apply boundary conditions. This is carried
out in exactly the same way as for the Godunov method, see Sects. 6.3.2 and
6.3.3 of Chap. 6. Fictitious states W0 and WM+1 adjacent to states W1 and
WM are defined. The otherwise missing Riemann problem solutions W 1

2
(x/t)

and WM+ 1
2
(x/t) at the boundaries are now defined and the random sampling

procedure can now be extended to the full computational domain. We consider
two types of boundary conditions, as for the one–dimensional time dependent
Euler equations.

(I) Transmissive Boundary Conditions. Here the fictitious states are given
as

ρn
0 = ρn

1 , un
0 = un

1 , pn
0 = pn

1 ,

ρn
M+1 = ρn

M , un
M+1 = un

M , pn
M+1 = pn

M .

⎫
⎬
⎭ (7.5)

(II) Reflective Boundary Conditions. Here we state the boundary conditions
that apply to reflective left and right boundaries moving with respective
speeds uwl and uwr. The fictitious states are given by

ρn
0 = ρn

1 , un
0 = −un

1 + 2uwl , pn
0 = pn

1 ,

ρn
M+1 = ρn

M , un
M+1 = −un

M + 2uwr , pn
M+1 = pn

M .

⎫
⎬
⎭ (7.6)

For a more complete discussion on boundary conditions see Sect. 6.3.3 of
Chap. 6.

The choice of the time step Δt is determined by a CFL condition. Note
first that in order to perform the random sampling described previously, we
need to make the assumption that no wave interaction takes place within
cell Ii, in the chosen time Δt, see Fig. 7.4. This is satisfied by imposing the
following restriction on the size of Δt, namely

Δt ≤
1
2Δx

Sn
max

, (7.7)

where Sn
max denotes the maximum wave velocity present throughout the do-

main at time tn. A consequence of this restriction is that only two Rie-
mann problem solutions affect cell Ii, namely the right travelling waves of
Wi− 1

2
(x/t) and the left travelling waves of Wi+ 1

2
(x/t). Condition (7.7) may

be expressed in the standard form

Δt =
CcflΔx

Sn
max

, (7.8)

where the CFL coefficient Ccfl satisfies
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0 < Ccfl ≤ 1
2

. (7.9)

Hence the Random Choice Method has a stability limit of 1
2 , which is only

half that of Godunov’s method.
Concerning the choice of the maximum wave speed Sn

max the reader is
referred to Sect. 6.3.2 of Chap. 6. Virtually all relevant remarks made there in
the context of the Godunov method apply. For the RCM we recommend the
use of the true waves arising from the solutions of local Riemann problems.
The collective experience in applying the RCM is that the scheme is not too
sensitive to underestimating Sn

max. If Sn
max is underestimated then the chosen

time step Δt will be too large and the likely consequence will not be signs
of instabilities, as one would expect, but computed waves will propagate at
obviously the wrong speed.

We have presented the Random Choice Method on a non–staggered grid
as applied to any time–dependent one dimensional non–linear systems of hy-
perbolic conservations laws. Details of boundary conditions for the time–
dependent one dimensional Euler equations have been given, for which nu-
merical results are presented in Sect. 7.6.

7.3 A Random Choice Scheme of the Lax–Friedrichs
Type

Here we present a Random Choice Method that arises from interpreting
the Lax–Friedrichs scheme as an integral average of solutions of Riemann
problems; see [513], [515]. If these averages are transformed by use of the
integral form of the conservation laws one recovers the usual Lax–Friedrichs
scheme for non–linear systems, thus eliminating the role of the Riemann prob-
lem. If the role of the Riemann problem solution is preserved and the integral
averages are interpreted in a stochastic sense one obtains a Random Choice
Method of the Lax–Friedrichs type.

7.3.1 Review of the Lax–Friedrichs Scheme

As seen in Sect. 5.3.4 of Chap. 5, the Lax–Friedrichs scheme as applied to
the linear advection equation

ut + f(u)x = 0 , f(u) = au (7.10)

reads

un+1
i =

(1 + c)
2

un
i−1 +

(1 − c)
2

un
i+1 . (7.11)

This is obviously identical to the integral average

un+1
i =

1
Δx

∫ x
i+ 1

2

x
i− 1

2

ûi(x,
1
2
Δt) dx (7.12)



7.3 A Random Choice Scheme of the Lax–Friedrichs Type 245

within cell i, in which ûi(x, t) is the solution of the Riemann problem
RP (un

i−1, u
n
i+1), that is

ûi(x/t) =
{

un
i−1 if x/t < a ,

un
i+1 if x/t > a .

(7.13)

See Fig. 7.6. The Lax–Friedrichs solution in cell i at time tn+1 = tn + Δt
is a weighted average of the solution of the Riemann problem with the left
un

i−1 and right un
i+1 neighbour states as data, at time t = 1

2Δt. Note the two
peculiarities of the scheme, (i) the data states do not include un

i and (ii) the
time for the averaging is half the full time step Δt.

x

x

t

along here
Average 

tΔ

i-1 i i+1

2

Fig. 7.6. Reinterpretation of the Lax–Friedrichs scheme for the linear advection
equation.

7.3.2 The Scheme

We first generalise interpretation (7.12) of the Lax–Friedrichs scheme to
non–linear systems of conservation laws

Ut + F(U)x = 0 . (7.14)

The scheme reads

Un+1
i =

1
Δx

∫ x
i+ 1

2

x
i− 1

2

Ûi(x,
1
2
Δt) dx , (7.15)

where Ûi(x, t) is the solution of the Riemann problem RP (Un
i−1,U

n
i+1). There

are now three possible routes to follow. These are

(i) Solve Riemann problems and find the updated solution by evaluating
(7.15) directly. Numerical results of this scheme are indistinguishable
from those obtained from the conventional, much simpler, Lax–Friedrichs
scheme. We therefore discard this as a useful scheme.
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(ii) Apply the integral form of the conservation laws to (7.15) to reproduce
the conventional Lax–Friedrichs scheme for non–linear systems, and thus
eliminate the role of the Riemann problem, see Sect. 5.3.4 of Chap. 5.

(iii) Keep the role of the Riemann problem and reinterpret (7.15) in a stochas-
tic sense. We obtain

Un+1
i =

1
Δx

∫ 1
2 Δx

− 1
2 Δx

Ûi(θnΔx,
1
2
Δt) dx , (7.16)

where θn is a random number satisfying

− 1
2
≤ θn ≤ 1

2
. (7.17)

A Random Choice Scheme for updating the solution to the new time level is
thus obtained, namely

Un+1
i = Ûi(θnΔx,

1
2
Δt) . (7.18)

The conventional RCM has stability restriction (7.9), while the random choice
scheme (7.18) has stability condition

0 < Ccfl ≤ 1 , (7.19)

which represents an improvement by a factor of 2.
Fig. 7.7 illustrates the Random Choice Method of the Lax–Friedrichs type

as applied to non–linear systems. The programming of the scheme is straight-
forward. Numerical results will be presented in Sect. 7.6.

x

x

along here
Random sampling

t/2Δ

t

i-1 i i+1

Fig. 7.7. Random choice scheme of the Lax–Friedrichs type for non–linear systems.
Updated solution in cell Ii at time Δt is obtained from random sampling solution
of Riemann problem RP (Un

i−1,U
n
i+1) at time 1

2
Δt
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7.4 The RCM on a Staggered Grid

As stated earlier the RCM can be implemented on a non–staggered grid
and on a staggered grid. The former version was described in Sect. 7.2. Here we
describe the RCM on a staggered grid and derive an associated deterministic
scheme that is conservative, first–order accurate and centred.

7.4.1 The Scheme for Non–Linear Systems

The staggered grid version of the RCM to solve (7.14) updates Un
i to a

new value Un+1
i in two steps, as illustrated in Fig. 7.8. The steps are:

Step (I) Solve the Riemann problems RP (Un
i−1,U

n
i ) and RP (Un

i ,Un
i+1) to

find respective solutions

Û
n+ 1

2
i− 1

2
(x, t) , Û

n+ 1
2

i+ 1
2

(x, t) . (7.20)

Random sample these solutions at a stable time Δtn+ 1
2 , that is

Un+ 1
2

i− 1
2

= Û
n+ 1

2
i− 1

2
(θnΔx,Δtn+ 1

2 ) , Un+ 1
2

i+ 1
2

= Û
n+ 1

2
i+ 1

2
(θnΔx,Δtn+ 1

2 ) .

(7.21)

Step (II) Solve RP (Un+ 1
2

i− 1
2

,Un+ 1
2

i+ 1
2

) to find solution Û
n+1

i (x, t) and random

sample it, at a stable time Δtn+1, to obtain Un+1
i , that is

Un+1
i = Û

n+1

i (θn+1Δx,Δtn+1) . (7.22)

The time steps Δtn+ 1
2 and Δtn+1 need not be the same but must be

chosen according to the usual stability restriction (7.8)–(7.9) for the RCM. As
for the case of the non–staggered RCM, one may use the primitive variables
to describe the staggered grid RCM. However, for the theme of the next
section we assume the vector U in (7.20)–(7.22) to be the vector of conserved
variables.

7.4.2 A Deterministic First–Order Centred Scheme (force)

Here we present a First–Order Centred deterministic scheme (force)
[513], [515], that is obtained by replacing the stochastic steps (7.21)–(7.22)
by deterministic versions, via integral averages of Riemann problem solutions.
We preserve the previous notation and assume

Δtn+ 1
2 = Δtn+1 =

1
2
Δt .

The stochastic integrals (7.21) are replaced by the deterministic integrals
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n

n+1/2 n+1/2

n

n+1

Δ

Δ

sampling

i-1/2 i+1/2i-1 i i+1

Random t

t

n+1

n+1/2

Random sampling

Random
sampling

Fig. 7.8. Illustration of the Random Choice Method, on a staggered grid

Un+ 1
2

i− 1
2

=
1

Δx

∫ 1
2 Δx

− 1
2 Δx

Û
n+ 1

2
i− 1

2
(x,

Δt

2
) dx (7.23)

and

Un+ 1
2

i+ 1
2

=
1

Δx

∫ 1
2 Δx

− 1
2 Δx

Ûi+ 1
2
(x,

Δt

2
) dx . (7.24)

Then we apply the integral form of the conservation laws, see Sect. 2.4.1 of
Chap. 2, to expressions (7.23) and (7.24). The result is

Un+ 1
2

i− 1
2

=
1
2
(
Un

i−1 + Un
i

)
+

Δt

2Δx

(
Fn

i−1 − Fn
i

)
, (7.25)

Un+ 1
2

i+ 1
2

=
1
2
(Un

i + Un
i+1) +

Δt

2Δx

(
Fn

i − Fn
i+1

)
. (7.26)

We denote by Ûi(x, t) the solution of the Riemann problem RP (Un+ 1
2

i− 1
2

,Un+ 1
2

i+ 1
2

)

and define an average Un+1
i at the complete time step Δt in terms of an

integral average of Ûi(x, t) at the (local) time t = 1
2Δt, namely

Un+1
i =

1
Δx

∫ 1
2 Δx

− 1
2 Δx

Ûi(x,
1
2
Δt) dx . (7.27)

This is the deterministic version of (7.22). Applying the integral form of the
conservation laws to the right–hand side of (7.27) gives

Un+1
i =

1
2

[
Un+ 1

2
i− 1

2
+ Un+ 1

2
i+ 1

2

]
+

Δt

2Δx

[
Fn+ 1

2
i− 1

2
− Fn+ 1

2
i+ 1

2

]
, (7.28)

where
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Fn+ 1
2

i+ 1
2

= F(Un+ 1
2

i+ 1
2

) ≡ FRI
i+ 1

2
(7.29)

and FRI
i+ 1

2
is the intercell numerical flux for the Richtmyer scheme; see Sect.

5.3.4 of Chap. 5.
Thus the deterministic version of the staggered–grid RCM scheme (7.21)–

(7.22) becomes (7.28). The scheme is obviously conservative and when written
in conservation form we have

Un+1
i = Un

i +
Δt

Δx

(
Fi− 1

2
− Fi+ 1

2

)
(7.30)

with intercell numerical flux

Fforce
i+ 1

2
=

1
2

[
Fn+ 1

2
i+ 1

2
+

1
2
(
Fn

i + Fn
i+1

)]
+

1
4

Δx

Δt

(
Un

i − Un
i+1

)
. (7.31)

A surprising outcome is that the intercell flux (7.31) is in fact the arith-
metic mean of the fluxes for the Richtmyer and Lax–Friedrichs schemes,
namely

Fforce
i+ 1

2
=

1
2

(
FRI

i+ 1
2

+ FLF
i+ 1

2

)
. (7.32)

7.4.3 Analysis of the force Scheme

For the linear advection equation (7.10) the conservative scheme (7.30),
(7.32) yields

un+1
i = b−1u

n
i−1 + b0u

n
i + b1u

n
i+1 , (7.33)

with coefficients given as

b−1 =
1
4
(1 + c)2 , b0 =

1
2
(1 − c2) , b1 =

1
4
(1 − c)2 . (7.34)

Proposition 7.1. The scheme (7.33)–(7.34) is

• stable, with stability condition

0 ≤| c |≤ 1 , (7.35)

where
c =

Δta

Δx
: Courant Number (7.36)

• monotone, and
• has modified equation

qt + aqx = αfoqxx , αfo =
1
4
aΔx

(
1 − c2

c

)
=

1
2
αlf , (7.37)

where αlf is the coefficient of artificial viscosity for the Lax–Friedrichs
scheme.
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Proof. The scheme can be shown to be stable with stability condition
(7.35) by using standard von Neumann analysis, or more directly by utilising
Billett’s result, which says [58] that a scheme of the form (7.33)–(7.34) is
stable if and only if

1. b0(b−1 + b1) ≥ 0
2. b0 (b−1 + b1) + 4b−1b1 ≡ B ≥ 0.

The first condition leads to (7.35) directly, while the second condition produces

B =
1
4

[(
1 − c2

) (
1 + c2

)
+ (1 + c)2 (1 − c)2

]
.

A sufficient condition for B ≥ 0 is again b0 ≥ 0, which confirms the sought sta-
bility restriction (7.35). Concerning monotonicity, by inspection, the scheme
is monotone for Courant numbers satisfying the stability condition, i.e. all
coefficients are non–negative, see Sect. 5.2.1 of Chap. 5. The result (7.37) is
obtained by using standard analysis.

Numerical results of the force scheme for the Euler equations are pre-
sented in Sect. 7.6. High–order extensions are presented in Chaps. 13 and 14;
these high–order schemes also extend to multi–dimensional problems following
the splitting techniques presented in Chap. 16.

7.5 Random Numbers

The quality of the computed RCM solution depends crucially on the ran-
dom numbers {θn}. Research in this area has produced some very effective
guidelines. For example, it has been established that the more random the
generation of {θn}, the worse the computed RCM results. Colella [131], [132]
introduced the use of pseudo–random numbers of the van der Corput type.

7.5.1 Van der Corput Pseudo–Random Numbers

A general van der Corput sequence {θn} depends on two parameters k1,
k2 with k1 > k2 > 0 both integer and relatively prime. The (k1, k2) van der
Corput sequence {θn} is formally defined [233] as

θn =
m∑

i=0

Aik
−(i+1)
1 , (7.38)

Ai = k2ai(mod k1) , (7.39)

n =
m∑

i=0

aik
i
1 . (7.40)
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To explain the definition of the pseudo–random number θn in (7.38) we start
from equation (7.40), which gives the non–negative integer n in scale of no-
tation with radix k1. If k1 = 2, (7.40) gives the binary expansion of n. For
example, the binary expansion of the integer 3 is

3 = 1 × 20 + 1 × 21

and m = 1.
The next stage is to find the coefficients Ai in (7.38) according to equation

(7.39); this says that Ai is the remainder when dividing the product k2ai by
k1 (Ai < k1). The simplest case is given by k2 = 1, for which Ai ≡ ai, ∀i.
Having found the number m and the modified coefficients Ai, the random
number θn corresponding to the integer n is completely determined by the
summation (7.38).

Exercise 7.2 (Van der Corput sequences). Find m, the coefficients
ai and Ai and the corresponding first 10 random numbers θn of the (2, 1) and
(5, 3) van der Corput sequences (n = 1, . . . , 10).

Solution 7.3. Results are shown in Table 7.1 for the (2, 1) (binary) van
der Corput sequence and in Table 7.2 for the (5, 3) van der Corput sequence.

n m a0 a1 a2 a3 A0 A1 A2 A3 θn

1 0 1 1 0.5000
2 1 0 1 0 1 0.2500
3 1 1 1 1 1 0.7500
4 2 0 0 1 0 0 1 0.1250
5 2 1 0 1 1 0 1 0.6250
6 2 0 1 1 0 1 1 0.3750
7 2 1 1 1 1 1 1 0.8750
8 3 0 0 0 1 0 0 0 1 0.0625
9 3 1 0 0 1 1 0 0 1 0.5625
10 3 0 1 0 1 0 1 0 1 0.3125

Table 7.1: Number m, coefficients ai, Ai and random numbers θn for the
(2, 1) van der Corput sequence, for n = 1, . . . , 10

7.5.2 Statistical Properties

A desirable statistical property of the sequence of numbers {θn} is that
{θn} be uniformly distributed over [0, 1]. Following Olivier and Grönig [364]
we study three statistical quantities that help to characterise the sequence of
random numbers {θn}. These are: the arithmetic mean, the standard deviation
and the so called chi–square statistics.
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n m a0 a1 A0 A1 θn

1 0 1 3 0.6000
2 0 2 1 0.2000
3 0 3 4 0.8000
4 0 4 2 0.4000
5 1 0 1 0 3 0.1200
6 1 1 1 3 3 0.7200
7 1 2 1 1 3 0.3200
8 1 3 1 4 3 0.9200
9 1 4 1 2 3 0.5200
10 1 0 2 0 1 0.0400

Table 7.2: Number m, coefficients ai, Ai and random numbers θn for the
(5, 3) van der Corput sequence, for n = 1, . . . , 10.

The arithmetic mean xar of the set {θn}N
n=1 is defined as

xar =
1
N

N∑
n=1

θn . (7.41)

For an optimally equidistributed sequence {θn} in [0, 1] we expect xar to be
close to 1

2 .
The standard deviation is

xsd =

[
1

(N − 1)

N∑
n=1

(θn − xar)2
] 1

2

. (7.42)

The chi–square statistic xsq is computed as follows: the interval [0, 1] is
subdivided into D equally spaced subintervals Ri. Then we consider a total
of N random numbers θn and count the number c(Ri) of random numbers θn

that fall inside Ri, for i = 1, . . . , D. We denote by pi = pi(θn) the probability
that the number θn falls inside the subinterval Ri. The expected number of
random numbers in the interval Ri is thus Npi. As an illustrative example
we subdivide [0, 1] into D = 2 subintervals and choose N = 4 random num-
bers {θ1, θ2, θ3, θ4}. For a uniformly distributed sequence one would expect
p1(θn) = 1

2 and so the expected number of random numbers θn falling into
subinterval R1 ≡ [0, 1

2 ) is Np1 = 4 × 1
2 = 2. The same holds for subinterval

R2 ≡ [ 12 , 1]. Then the chi–square statistic is defined as

x2
sq =

N∑
i=1

(c(Ri) − Npi)2

Npi
. (7.43)

For a uniformly distributed sequence {θn} we expect xsq to be small. Better
RCM numerical results are obtained with pseudo–random sequences {θn} for
which x2

sq is small.
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As in [364], we analyse the quantities xar, xsd and xsq for 6 van der Corput
sequences. Table 7.3 shows the statistical properties of N = 200 random
numbers. For the chi–square test the interval [0, 1] was subdivided into D = 20
equally spaced subintervals.

(k1, k2) (2,1) (3,2) (3,1) (5,1) (7,3) (5,3)
xar 0.49459 0.49673 0.49457 0.49373 0.49965 0.49598
xsd 0.28885 0.28780 0.28799 0.28914 0.28842 0.28907
x2

sq 1.00000 1.00000 1.00000 1.40000 1.00000 0.20000

Table 7.3: Statistical properties of 6 van de Corput sequences (k1, k2)

Our results agree well with those of Olivier and Grönig for the arithmetic
mean xar; for x2

sq our results are similar but not identical. Our values for the
standard deviation xsd are much smaller that those quoted in [364]. Olivier
and Grönig also analysed the quantities xar, xsd and xsq for other sequences
of random numbers, including the modified random numbers suggested by
Chorin [110]. They observed that in all cases xar was close to 1

2 ; they also ob-
served that all sequences tested had similar values for the standard deviation
xsd. The quantity that was different was xsq, which led them to conclude that
this was the statistical property of significance. Van der Corput sequences
have a small value for xsq, as compared with other sequences, and are known
to produce very good computational results when used in the Random Choice
Method. Anderson and Gottlieb [8] suggested a sequence of pseudo–random
numbers of similar qualities to the van der Corput sequences. See [8] for de-
tails. Our tests for the Anderson and Gottlieb numbers give xar = 0.4981,
xsd = 0.2891 and x2

sq = 0.6. Compare with results of Table 7.3.

7.5.3 Propagation of a Single Shock

Here we consider a single shock wave of positive speed S connecting two
constant states UL and UR. We solve the time–dependent Euler equations
with initial data

U(x, 0) =

⎧
⎨
⎩

UL if x < 0 ,

UR if x > 0 .
(7.44)

The exact solution is

U(x, t) =

⎧
⎨
⎩

UL if x/t < S ,

UR if x/t > S .
(7.45)

On applying the Random Choice Method on a non–staggered grid with
Courant number c ≤ 1

2 , based on the shock speed S, the shock wave propagates



254 7 Random Choice and Related Methods
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Fig. 7.9. Propagation of a single shock by the Random Choice Method, on a non–
staggered grid. Shock propagates by comparing θn with c

to the right as a true discontinuity. The situation at any time level is illustrated
in Fig. 7.9, where the shock wave is assumed located at the interface xi− 1

2
.

The shock wave crosses the line t = Δt at cΔx and by virtue of the CFL
condition this point lies to the left of the middle of cell Ii, namely 1

2Δx. A
random position inside cell Ii is given by θnΔx, with θn a random number
in the interval [0, 1]. If θnΔx ≤ cΔx then the randomly selected state is the
post shock state UL, which is then assigned to the whole of the cell Ii for the
next time level. This means that the shock moves to the right by a complete
distance Δx. If θnΔx > cΔx then the shock does not move at all. The position
Xs of the shock after n time steps is given by

Xs =
n∑

i=1

ΔxPi , (7.46)

where

Pi =

⎧
⎨
⎩

1 , if θi ≤ c ,

0 , if θi > c .
(7.47)

Table 7.4 shows calculations by hand of the shock position error, nor-
malised by the mesh size Δx, of the RCM solution for 10 time steps. We use
two Courant numbers for each of the van der Corput sequences (2, 1) and
(5, 3). For instance, if the RCM is used with the (2, 1) van der Corput se-
quence and a CFL number c = 1

4 , then at the time step n = 5 the error in
the shock position is 3

4Δx. In the first 10 time steps the largest error takes
place at n = 8 and is equal to Δx. For the (2, 1) van der Corput sequence
and a CFL number c = 1

2 the maximum position error is also Δx. The results
for the (5, 3) van der Corput sequence are more accurate than those for the
(2, 1) sequence. For c = 1

4 the maximum error observed is also 3
4Δx but there

are two time levels at which the solution is exact. For the case c = 1
2 the

maximum position error is 1
2Δx and the solution is exact every other time

step.
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n (2, 1), c = 1
4 (2, 1), c = 1

2 (5, 3), c = 1
4 (5, 3), c = 1

2

1 1
4

1
2

1
4

1
2

2 1
2 1 1

2 0
3 1

4
1
2

1
4

1
2

4 1 1 0 0
5 3

4
1
2

3
4

1
2

6 1
2 1 1

2 0
7 1

4
1
2

1
4

1
2

8 1 1 0 0
9 3

4
1
2

1
4

1
2

10 1
2 1 1

2 0

Table 7. 4: Position error of shock computed by the RCM. Two van der
Corput sequences and two values of the Courant number c are used

Exercise 7.4. Verify the results of Table 4 and find the shock position
error for the van der Corput sequences (3, 2) and (7, 3) for Courant numbers
1
4 and 1

3 .

Solution 7.5. (Left to the reader).

7.6 Numerical Results

In this section we show some numerical results for three methods, namely
the conventional Random Choice Method on a non–staggered grid associated
with the Godunov Method (denoted by RCMG), the Lax–Friedrichs type Ran-
dom Choice Method (7.18) (denoted by RCMLF) and the First–Order Centred
(force) scheme (7.30), (7.32). We solve five test problems with exact solu-
tion for the one–dimensional time dependent Euler equations. The initial data
consists of two constant states WL = [ρL, uL, pL]T and WR = [ρR, uR, pR]T .
These are given in Table 7.5. For a discussion on the exact solution of these
test problems see Sect. 6.4, Chapt. 6. Codes of the library NUMERICA [519]
were used to obtain the displayed results. The exact solutions were found by
running the code HE-E1RPEXACT, the numerical solutions using RCMG
were obtained by running the code HE-E1RCM and the numerical solutions
using force were obtained by running the code HE-E1FOCENT.

Test ρL uL pL ρR uR pR

1 1.0 0.75 1.0 0.125 0.0 0.1
2 1.0 -2.0 0.4 1.0 2.0 0.4
3 1.0 0.0 1000.0 1.0 0.0 0.01
4 5.99924 19.5975 460.894 5.99242 -6.19633 46.0950
5 1.0 -19.59745 1000.0 1.0 -19.59745 0.01

Table 7.5. Data for five test problems with exact solution.
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We discretise the domain [0, 1] into M = 100 computing cells. For the
random choice methods we use a Courant number coefficient Ccfl = 0.45 and
for the force method we use Ccfl = 0.9.

Figs. 7.10 to 7.13 show results for RCMG applied to Tests 1 to 4. The
corresponding results for the RCMLF are shown in Figs. 7.14 to 7.17 and
those for the force scheme are shown in Figs. 7.18 to 7.22. All these results
are to be compared with those of Chap. 6.

The RCMG results of Fig. 7.10 are, by any standards, very accurate. Jump
discontinuities such as shock waves and contacts are resolved as true discon-
tinuities. Also, discontinuities in derivative, such as those along the head and
tail of rarefaction waves, are also very well resolved. The complexity of the
RCM is comparable to that of the Godunov method, and thus it is fair to
compare Fig. 7.10 with Fig. 6.8 of Chap. 6. The entropy glitch inside the
sonic rarefaction for the RCM result is smaller than that for the Godunov
method. The RCM results for Test 2 are shown in Fig. 7.11; this problem
does not contain jump discontinuities and exposes a weakness of the RCM,
namely the random noise in smooth parts of the flow. The results of Figs.
7.12 and 7.13 exhibit the true merits of the RCM for computing solutions
containing multiple jump discontinuities; compare with the Godunov results
of Figs. 6.10 and 6.11.

The computational results for the Lax–Friedrichs type random choice
method (RCMLF) are shown in Figs. 7.14 to 7.17. These are somewhat infe-
rior to those of the conventional RCM. However RCMLF has the advantage of
having twice the stability range of the conventional RCM. Notice the pairing of
neighbouring states, which is also a feature of the conventional Lax–Friedrichs
scheme; compare Fig. 7.16 with Fig. 6.12.

Figs. 7.18 to 7.22 show the results for the First–Order Centred scheme
force as applied to Tests 1 to 5. Compare with the corresponding results
for the Godunov and Lax–Friedrichs methods in Chap. 6. In general, the
results for the force scheme look inferior to those of the Godunov method,
particularly for Test 5; the former scheme is however significantly simpler and
more efficient than the latter. The numerical results of the force scheme are
superior to those of the Lax–Friedrichs scheme (see results of Chap. 6), with
both schemes being comparable in complexity and efficiency.

7.7 Concluding Remarks

We have presented random choice and related methods to solve time–
dependent one dimensional hyperbolic conservation laws. Details have been
given for the Euler equations, for which numerical results have been presented.
It is well known that the conventional RCM, on staggered and non–staggered
grids, is only directly applicable to hyperbolic systems in two independent
variables. For the time–dependent one dimensional Euler equations these are
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time t and space x. For the steady supersonic Euler equations the two inde-
pendent variables are the flow direction x, which is a time–like variable, and
space y.

The great merit of the RCM is its ability to resolve discontinuities with
infinite resolution, as true discontinuities. The main disadvantage of the RCM
is the randomness in the smooth parts of the flow. One way of eliminating
this unwanted randomness is by resorting to hybrid approaches, whereby the
RCM is used at discontinuities only; elsewhere in the flow one may use some
other scheme, see Toro and Roe [539], [540] for instance. A crucial question
is this: can the RCM be extended to in–homogeneous (sources) systems or to
systems with more that two independent variables ?

By applying splitting schemes, see Chap. 15, random choice methods can
be extended to solve in–homogeneous systems

Ut + F(U)x = S(U) . (7.48)

The source term vector S(U) may be an algebraic function of the flow vari-
ables, such as in cylindrically or spherically symmetric flow [453]. S(U) may
also involve higher order spatial derivatives such as in viscous terms; this
means that the RCM can be applied to parabolic equations, e.g. the time–
dependent, one dimensional Navier–Stokes equations [256]. The inclusion of
algebraic source terms retains the infinite resolution of discontinuities but may
enhance the randomness in smooth parts of the flow, present in the homoge-
neous part of the problem. In some special cases, see Glimm et. al. [214], the
source term vector S(U) may be incorporated into the solution of the Riemann
problem. This significantly alleviates the problem of enhanced randomness.

Efforts to extend the RCM, retaining its distinctive feature, to solve prob-
lems in more that two independent variables, such as the time–dependent,
two dimensional Euler equations and the three dimensional steady supersonic
Euler equations, have so far proved unsuccessful. For details on how the use of
splitting techniques to carry out the extensions fail, were reported by Colella
[131]. If resolving shocks with infinite resolution is abandoned then splitting
techniques applied to the RCM work reasonably well. Colella [131] introduced
artificial viscosity, as in conventional finite different methods. Toro [500] pro-
posed a hybrid approach to extend the RCM to solve the time–dependent, two
dimensional Euler equations (three independent variables); here the RCM
is used at contacts and shear waves and a high–resolution shock capturing
method is used elsewhere. This approach gives up the infinite resolution of
shocks but retains infinite resolution of shear waves and material interfaces,
features that are exceedingly difficult to resolve by most methods. Recently,
Loh et.al. [332] have reported their work to extend the RCM to solve the three–
dimensional steady supersonic Euler equations (three independent variables).
They also give up infinite resolution of shocks but retain infinite resolution of
slip surfaces by virtue of a Lagrangian approach.
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At the present time the RCM offers an accurate numerical method for
solving non–linear systems of the form (7.48) in conjunction with operator
splitting techniques, as presented in Chap. 15.
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Fig. 7.10. Random Choice Method applied to Test 1, with x0 = 0.3. Numerical
(symbol) and exact (line) solutions are compared at the output time 0.2 units
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Fig. 7.11. Random Choice Method applied to Test 2, with x0 = 0.5. Numerical
(symbol) and exact (line) solutions are compared at the output time 0.15 units
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Fig. 7.12. Random Choice Method applied to Test 3, with x0 = 0.5. Numerical
(symbol) and exact (line) solutions are compared at the output time 0.012 units
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Fig. 7.13. Random Choice Method applied to Test 4, with x0 = 0.4. Numerical
(symbol) and exact (line) solutions are compared at the output time 0.035 units
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Fig. 7.14. Lax–Friedrichs Random Choice scheme applied to Test 1, with x0 = 0.3.
Numerical (symbol) and exact (line) solutions are compared at time 0.2 units
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Fig. 7.15. Lax–Friedrichs Random Choice scheme applied to Test 2, with x0 = 0.5.
Numerical (symbol) and exact (line) solutions are compared at time 0.15 units
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Fig. 7.16. Lax–Friedrichs Random Choice scheme applied to Test 3, with x0 = 0.5.
Numerical (symbol) and exact (line) solutions are compared at time 0.012 units
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Fig. 7.17. Lax–Friedrichs Random Choice scheme applied to Test 4, with x0 = 0.4.
Numerical (symbol) and exact (line) solutions are compared at time 0.035 units
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Fig. 7.18. force scheme applied to Test 1, with x0 = 0.3. Numerical (symbol) and
exact (line) solutions are compared at the output time 0.2 units
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Fig. 7.19. force scheme applied to Test 2, with x0 = 0.5. Numerical (symbol) and
exact (line) solutions are compared at the output time 0.15 units
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Fig. 7.20. force scheme applied to Test 3, with x0 = 0.5. Numerical (symbol) and
exact (line) solutions are compared at the output time 0.012 units
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Fig. 7.21. force scheme applied to Test 4, with x0 = 0.4. Numerical (symbol) and
exact (line) solutions are compared at the output time 0.035 units
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Fig. 7.22. force scheme applied to Test 5, with x0 = 0.8. Numerical (symbol) and
exact (line) solutions are compared at the output time 0.012 units
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Flux Vector Splitting Methods

8.1 Introduction

A distinguishing feature of upwind numerical methods is this: the dis-
cretisation of the equations on a mesh is performed according to the direction
of propagation of information on that mesh. In this way, salient features of
the physical phenomena modelled by the equations are incorporated into the
discretisation schemes. There are essentially two approaches for identifying
upwind directions, namely the Godunov approach [216] studied in Chap. 6,
and the Flux Vector Splitting (FVS) approach [424], [463], [560], [561] to be
studied in this chapter. These two approaches are often referred to as the
Riemann approach and the Boltzmann approach [244]. The respective numer-
ical methods derived from these two approaches are often referred to as Flux
Difference Splitting Methods and Flux Vector Splitting Methods . For a review
on both of these approaches the paper by Harten, Lax and van Leer [244] is
highly recommended. Closely related schemes to FVS, not studied here, are
the KFVS or kinetic schemes, see for example Pullin [389], Perthame [380],
[381], Mandal and Desphande [336], Xu and Prendergast [587], Xu et. al. [586],
Xu [585] and Yang et. al [591].

The identification of upwind directions in Flux Vector Splitting Methods
is achieved with less effort than in Godunov–type methods, leading to simpler
and somewhat more efficient schemes. These two features are very attractive
and have made FVS schemes very popular within a large community of prac-
titioners. The Flux Vector Splitting approach is particularly well suited for
implicit methods; these are popular in Aerodynamics, where the computation
of steady solutions is of great practical value. The reduced sophistication of
FVS schemes however, as compared with Godunov–type schemes, results in
poorer resolution of discontinuities, particularly stationary contact and shear
waves. In applications to the Navier–Stokes equations, it is reported by van
Leer, Thomas and Roe [565] that their FVS scheme is considerably less accu-
rate than Godunov’s method with Roe’s approximate Riemann solver [407].
A key feature of the FVS approach is its reliance on a special property of the

E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 265
c© Springer-Verlag Berlin Heidelberg 2009DOI 10.1007/b7976-1 8,
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equations, namely the homogeneity property. As seen in Sect. 3.1.1 of Chap.
3, the Euler equations satisfy this property but there are important examples,
such as the shallow water equations, that do not. The homogeneity property
may however be circumvented so as to be able to apply the FVS approach,
see Vázquez–Cendón [568].

The pioneering works of Sanders and Prendergast [424], Steger and Warm-
ing [463] and van Leer [560], [561] has been followed by numerous applications
as well as by increased research efforts to improve further the technique. See
for example the papers [12], [13], [166], [328], [578] and [387], amongst many
others.

The purpose of this chapter is to give an elementary introduction to Flux
Vector Splitting methods. Sects. 8.2 and 8.3 are devoted to a simple intro-
duction to the FVS approach. In Sect. 8.4 we derive FVS methods for the
time–dependent Euler equations following the methodologies of Steger and
Warming [463], that of van Leer [560], [561] and the recently proposed ap-
proach of Liou and Steffen [328]. Numerical results are presented in Sect. 8.5.
Techniques to construct high–order schemes based on FVS are found in Chaps.
13 and 14. In Chap. 15 we show how to solve systems with source terms and
in Chap. 16 we deal with approaches to construct multidimensional schemes.
Essential background material for reading this chapter is found in Chaps. 2,
3 and 5.

8.2 The Flux Vector Splitting Approach

In this section we introduce the flux vector splitting approach in the simple
setting of model hyperbolic systems, namely the small perturbation steady
supersonic equations and the isothermal equations of Gas Dynamics; see Sect.
1.6.2 of Chap. 1 and Sects. 2.1 and 2.4.1 of Chap. 2 for details on these systems.

8.2.1 Upwind Differencing

Consider the small perturbation steady supersonic equations

ux − a2vy = 0 , vx − uy = 0 , (8.1)

where u = u(x, y), v = v(x, y),

a =

√
1

M2
∞ − 1

(8.2)

is the sound speed and M∞ is the free–stream Mach number, assumed to be
greater than unity. Equations (8.1) may be rewritten as

Ux + AUy = 0 , (8.3)
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with

U =
[

u
v

]
, A =

[
0 −a2

−1 0

]
. (8.4)

The eigenvalues of the coefficient matrix A are

λ1 = −a , λ2 = +a , (8.5)

with corresponding right eigenvectors

K(1) =
[

a
1

]
, K(2) =

[
a
−1

]
. (8.6)

Given the mixed character of the eigenvalues (λ1 = −a is negative and λ2 =
+a is positive), a finite difference discretisation of (8.3) has limited choices for
the spatial derivative, if upwind bias is to be applied. Consider, for instance,
the one–sided difference schemes

Un+1
i = Un

i − Δx

Δy
A[Un

i − Un
i−1] , (8.7)

Un+1
i = Un

i − Δx

Δy
A[Un

i+1 − Un
i ] . (8.8)

Clearly scheme (8.7) is upwind relative to the eigenvalue λ2 = a > 0 but is
downwind, and thus unstable, relative to the eigenvalue λ1 = −a < 0. A sim-
ilar observation applies to scheme (8.8). For the case in which all eigenvalues
have the same sign the difficulty of choosing the upwind direction does not
arise.

As seen in Sect. 5.4 of Chap. 5, general linear hyperbolic systems with
constant coefficients may be solved by the CIR first–order upwind method by
decomposing the coefficient matrix A into a positive component A+ and a
negative component A−, such that

A = A+ + A− , (8.9)

where A+ has positive or zero eigenvalues and A− has negative or zero eigen-
values. One then has the upwind scheme

Un+1
i = Un

i − Δx

Δy
A+[Un

i − Un
i−1] −

Δx

Δy
A−[Un

i+1 − Un
i ] . (8.10)

The Split–Coefficient Matrix Scheme of Chakravarthy et. al. [97], [251]
is an extension of this procedure to non–linear systems, in non–conservative
form.

The CIR upwind scheme, when applied to general linear hyperbolic sys-
tems with constant coefficients, may be written in conservative form by defin-
ing the flux vector

F = AU . (8.11)
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Then the splitting (8.9) of the coefficient matrix A results in a natural splitting
of the flux vector F, namely

F = F+ + F− . (8.12)

In this way the CIR upwind scheme can be written in conservative form

Un+1
i = Un

i − Δt

Δx
[Fi+ 1

2
− Fi− 1

2
] , (8.13)

where the intercell numerical flux

Fi+ 1
2

= F+
i (Un

i ) + F−
i (Un

i+1) (8.14)

is identical to the Godunov intercell flux. See Sect. 5.4 of Chap. 5 for details.
The Flux Vector Splitting Method is a generalisation of this to non–linear
systems in conservation form.

8.2.2 The FVS Approach

Here we consider a general system of m non–linear hyperbolic conservation
laws

Ut + F(U)x = 0 . (8.15)

From the assumption of hyperbolicity the Jacobian matrix

A(U) =
∂F
∂U

(8.16)

may be expressed as
A = KΛK−1 , (8.17)

where Λ is the diagonal matrix formed by the eigenvalues of A, namely

Λ =

⎡
⎢⎣

λ1 0
. . .

0 λm

⎤
⎥⎦ . (8.18)

The matrix K is
K = [K(1),K(2), . . . ,K(m)] , (8.19)

where the column K(i) is the right eigenvector of A corresponding to λi and
K−1 is the inverse of K. Recall our usual convention of ordering the eigenval-
ues in increasing order.

As anticipated in the previous section, the Flux Vector Splitting method
aims at generalising (8.14) to non–linear systems (8.15). That is, FVS requires
a splitting of the flux vector F into two component F+ and F− such that

F(U) = F+(U) + F−(U) , (8.20)
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under the restriction that the eigenvalues λ̂+
i and λ̂−

i of the Jacobian matrices

Â
+

=
∂F+

∂U
, Â

−
=

∂F−

∂U
(8.21)

satisfy the condition
λ̂+

i ≥ 0 , λ̂−
i ≤ 0 . (8.22)

The splitting is also required to reproduce regular upwinding when all eigen-
values λi of the coefficient matrix A are one–sided, that is, all positive or zero,
or all negative or zero. That is to say

F+ = F , F− = 0 if λi ≥ 0 for i = 1, . . . ,m ,

F+ = 0 , F− = F if λi ≤ 0 for i = 1, . . . ,m .

⎫
⎬
⎭ (8.23)

If in addition to hyperbolicity, the system (8.15) satisfies the homogeneity
property

F(U) = A(U)U , (8.24)

just as in the linear constant coefficient case, then the sought splitting is easily
accomplished by identifying a suitable splitting of the Jacobian matrix A. As
seen in Sect. 3.1.1 of Chap. 3, the time–dependent Euler equations satisfy the
homogeneity property.

From the diagonalisation of A given by (8.17), a splitting of A may be
accomplished by an appropriate splitting of the diagonal matrix Λ. This in
turn, may be split by identifying a splitting of the eigenvalues λi, i = 1, . . . , m
of A. Suppose we may split the eigenvalues λi as

λi = λ+
i + λ−

i , (8.25)

such that λ+
i ≥ 0 and λ−

i ≤ 0. Then Λ may be split as

Λ = Λ+ + Λ− , (8.26)

where

Λ+ =

⎡
⎢⎣

λ+
1 0

. . .
0 λ+

m

⎤
⎥⎦ , Λ− =

⎡
⎢⎣

λ−
1 0

. . .
0 λ−

m

⎤
⎥⎦ . (8.27)

A natural splitting of A results, namely

A = A+ + A− , (8.28)

with
A+ = KΛ+K−1 , A− = KΛ−K−1 . (8.29)

Then, if (8.24) is satisfied, we can split F(U) as

F = F+ + F− , (8.30)
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where
F+ = A+U , F− = A−U . (8.31)

Steger and Warming [463] proposed a splitting of the eigenvalues λi as in
(8.25) with definitions

λ+
i =

1
2
(λi+ | λi |) , λ−

i =
1
2
(λi− | λi |) , (8.32)

where | λi | is the absolute value of λi namely,

| λi |=
{

λi if λi ≥ 0 ,
−λi if λi ≤ 0 .

(8.33)

Clearly
λ+

i ≥ 0 , λ−
i ≤ 0 , for i = 1, . . . ,m. (8.34)

Exercise 8.1. Verify that the following properties are satisfied

λi = λ+
i + λ−

i ; | λi | = λ+
i − λ−

i ,
Λ = Λ+ + Λ− ; | Λ | = Λ+ − Λ− ,
A = A+ + A− ; | A | = A+ − A− .

⎫
⎬
⎭ (8.35)

Solution 8.2. (Left to the reader).

8.3 FVS for the Isothermal Equations

In order to illustrate the FVS approach we consider the isothermal equa-
tions of Gas Dynamics

Ut + F(U)x = 0 , (8.36)

U =
[

ρ
ρu

]
, F(U) =

[
ρu

ρu2 + ρa2

]
, (8.37)

where the sound speed a is a positive constant. For details on the eigenstruc-
ture of this system see Sect. 2.4 of Chap. 2. The Jacobian matrix is

A =
∂F
∂U

=
[

0 1
a2 − u2 2u

]
. (8.38)

The eigenvalues of A are

λ1 = u − a , λ2 = u + a (8.39)

and the matrix K of corresponding right eigenvectors is

K =
[

1 1
u − a u + a

]
. (8.40)

Exercise 8.3. Verify that system (8.36)–(8.37) satisfy the homogeneity
property (8.24).

Solution 8.4. (Left to the reader).
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8.3.1 Split Fluxes

Given any splitting (8.25) with

Λ+ =
[

λ+
1 0
0 λ+

2

]
, Λ− =

[
λ−

1 0
0 λ−

2

]
, (8.41)

we require the computation of the matrices A+ and A− as given by (8.29).
One then requires the determination of the inverse K−1 of the matrix K, the
products of three matrices as in (8.29) and finally the products (8.31) to find
the flux components. For large systems this may be a rather tedious algebraic
task. For the isothermal equations we have

K−1 =
1
2a

[
u + a −1
a − u 1

]
. (8.42)

Now, given any of the two components (8.27) of Λ, Aα, say, we compute

Aα = KΛαK−1 .

The result is

Aα =
1
2a

[
λα

1 (u + a) − λα
2 (u − a) λα

2 − λα
1

(u2 − a2)(λα
1 − λα

2 ) λα
2 (u + a) − λα

1 (u − a)

]
. (8.43)

Application of (8.31) gives the flux vector component

Fα = AαU ,

that is

Fα =
ρ

2

[
λα

1 + λα
2

λα
1 (u − a) + λα

2 (u + a)

]
. (8.44)

Note that the expression for the component Fα given by (8.44) is general. For
α = + and α = − the flux components F+ and F− are

F+ =
ρ

2

[
λ+

1 + λ+
2

λ+
1 (u − a) + λ+

2 (u + a)

]
, (8.45)

and

F− =
ρ

2

[
λ−

1 + λ−
2

λ−
1 (u − a) + λ−

2 (u + a)

]
. (8.46)

Exercise 8.5. For the split fluxes (8.45)–(8.46), for the case of subsonic
flow,

– (i) Find the Jacobian matrices

Â
+

=
∂F+

∂U
, Â

−
=

∂F−

∂U
.
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– (ii) Find the eigenvalues λ̂+
i and λ̂−

i .

Solution 8.6. For the positive flux component F+ the Jacobian matrix is

Â
+

=
∂F+

∂U
=
[

1
2a 1

2
1
2 (a2 − u2) u + a

]
.

The eigenvalues are the roots of the characteristic polynomial

λ2 − (
3
2
a + u)λ +

1
4
(u + a)2 = 0 ,

namely,

λ̂+
1 =

1
4
a
[
2M + 3 −

√
4M + 5

]
, λ̂+

2 =
1
4
a
[
2M + 3 +

√
4M + 5

]
.

Remark 8.7. Note that
Â

+ �= A+

and that
λ̂+

i �= λ+
i .

Note also that λ̂+
i > 0, that is, none of the eigenvalues vanish. Numerically,

this particular property is not desirable, and which unfortunately also carries
over to the Euler equations. As we shall see in the next section, there are
other splitting schemes that remove this difficulty.

8.3.2 FVS Numerical Schemes

The FVS approach can be used to solve (8.36) using the explicit conser-
vative scheme

Un+1
i = Un

i − Δt

Δx
[Fi+ 1

2
− Fi− 1

2
] , (8.47)

where the FVS numerical flux is given by

Fi+ 1
2

= F+
i (Un

i ) + F−
i+1(U

n
i+1) . (8.48)

Fig. 8.1 provides a physical interpretation of (8.48). The intercell numerical
flux Fi+ 1

2
is made out from two contributions; one comes from the forward

component F+
i in the left cell Ii and the other comes from the backward

component F−
i+1 in the right cell Ii+1.

The Steger and Warming [463] splitting (8.32) in a computational set up
is as follows: we consider a computing cell Ii at time level n, where Un

i is the
vector of conserved variables and Fn

i ≡ F(Un
i ) is the vector of fluxes. The

three cases to consider are illustrated in Fig. 8.2 and are
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Fig. 8.1. Splitting of the flux function within each computing cell Ii at time level n

– Case (a) Left supersonic flow: λ2 = un
i +an

i ≤ 0. Fig. 8.2a illustrates
the situation in a cell Ii at time level n. Clearly

λ+
1 = 0 , λ−

1 = λ1 = un
i − an

i ,
λ+

2 = 0 , λ−
2 = λ2 = un

i + an
i ,

F+
i = 0 , F−

i = Fn
i .

⎫
⎬
⎭ (8.49)

– Case (b) Right supersonic flow: λ1 = un
i − an

i ≥ 0. See Fig. 8.2b.
Obviously

λ+
1 = λ1 = un

i − an
i , λ−

1 = 0 ,
λ+

2 = λ2 = un
i + an

i , λ−
2 = 0 ,

F+
i = Fn

i , F−
i = 0 .

⎫
⎬
⎭ (8.50)

– Case (c) Subsonic flow: λ1 = un
i − an

i ≤ 0 ≤ λ2 = un
i + an

i . See Fig.
8.2c. Evidently

λ+
1 = 0 , λ−

1 = λ1 = un
i − an

i ,
λ+

2 = λ2 = un
i + an

i , λ−
2 = 0 .

}
(8.51)

According to (8.45)–(8.46) the fluxes F+
i and F−

i for the subsonic
case are given by

F+
i =

ρn
i

2

[
un

i + an
i

(un
i + an

i )2

]
, F−

i =
ρn

i

2

[
un

i − an
i

(un
i − an

i )2

]
. (8.52)

8.4 FVS Applied to the Euler Equations

Here we present three Flux Vector Splitting schemes applied to the time
dependent Euler equations.
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Fig. 8.2. Possible flow patterns in cell Ii at time n: (a) supersonic flow to the left
(b) supersonic flow to the right (c) subsonic flow

8.4.1 Recalling the Equations

The one–dimensional Euler Equations in conservation–law form are given
by

Ut + F(U)x = 0 , (8.53)

U =

⎡
⎣

ρ
ρu
E

⎤
⎦ , F(U) =

⎡
⎣

ρu
ρu2 + p
u(E + p)

⎤
⎦ . (8.54)

As seen in Sect. 3.1.1 of Chap. 3, the Jacobian matrix A is given by

A =

⎡
⎣

0 1 0
1
2 (γ − 3)u2 (3 − γ)u γ − 1

1
2 (γ − 2)u3 − a2u

γ−1
3−2γ

2 u2 + a2

γ−1 γu

⎤
⎦ (8.55)

and the system is hyperbolic with real eigenvalues

λ1 = u − a , λ2 = u , λ3 = u + a . (8.56)

The matrix K of corresponding right eigenvectors is

K =

⎡
⎣

0 1 0
u − a u u + a

H − ua 1
2u2 H + ua

⎤
⎦ . (8.57)

Here H is the enthalpy

H = (E + p)/ρ =
1
2
u2 +

a2

(γ − 1)
. (8.58)

As explained in Sect. 3.2.4 of Chap. 3, the three–dimensional Euler equa-
tions may be dealt with by only considering the flux component normal to
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the computing cell interface, see also Sect. 16.2 of Chap. 16. In constructing
numerical methods for Cartesian geometries it is sufficient to consider the flux
in any of the coordinate directions. For general geometries this is modified by
use of rotation matrices; see Sect. 3.2 of Chap. 3. We thus state the schemes
for the x–split three dimensional Euler equations

Ut + F(U)x = 0 , (8.59)

U =

⎡
⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
E

⎤
⎥⎥⎥⎥⎦

, F(U) =

⎡
⎢⎢⎢⎢⎣

ρu
ρu2 + p

ρuv
ρuw

u(E + p)

⎤
⎥⎥⎥⎥⎦

. (8.60)

The Jacobian matrix A, see Sect. 3.2.2 of Chap. 3, is given by

A =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
γ̂H − u2 − a2 (3 − γ)u −γ̂v −γ̂w γ̂

−uv v u 0 0
−uw w 0 u 0

1
2u[(γ − 3)H − a2] H − γ̂u2 −γ̂uv −γ̂uw γu

⎤
⎥⎥⎥⎥⎦

, (8.61)

where

H = (E + p)/ρ =
1
2
V2 +

a2

(γ − 1)
, V2 = u2 + v2 + w2 , γ̂ = γ − 1 . (8.62)

This system is hyperbolic with real eigenvalues

λ1 = u − a , λ2 = λ3 = λ4 = u , λ5 = u + a . (8.63)

The matrix of corresponding right eigenvectors is

K =

⎡
⎢⎢⎢⎢⎣

1 1 0 0 1
u − a u 0 0 u + a

v v 1 0 v
w w 0 1 w

H − ua 1
2V

2 v w H + ua

⎤
⎥⎥⎥⎥⎦

(8.64)

As seen in Chap. 3 the one–dimensional Euler equations satisfy the homo-
geneity property

F(U) = A(U)U . (8.65)

Exercise 8.8. Verify that the split three–dimensional Euler equations
(8.59)–(8.60) also satisfy the homogeneity property (8.65).

Solution 8.9. (Left to the reader).
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8.4.2 The Steger–Warming Splitting

For a splitting (8.25)–(8.27) we require an expression for the inverse K−1

of the matrix K, in order to find the split Jacobians (8.29).

The One–Dimensional Case

For the one–dimensional Euler equations we have

K−1 =
(γ − 1)

2a2

⎡
⎢⎣

1
2u2 + ua

γ−1 −u − a
γ−1 1

2a2

γ−1 − u2 2u −2
1
2u2 − ua

γ−1
a

γ−1 − u 1

⎤
⎥⎦ . (8.66)

Then, for any component Λα of the two components of Λ in (8.26) the corre-
sponding Jacobian component is

Aα = KΛαK−1 .

The associated split flux component Fα = AαU is

Fα =
ρ

2γ

⎡
⎣

λα
1 + 2(γ − 1)λα

2 + λα
3

(u − a)λα
1 + 2(γ − 1)uλα

2 + (u + a)λα
3

(H − ua)λα
1 + (γ − 1)u2λα

2 + (H + ua)λα
3

⎤
⎦ , (8.67)

where the eigenvalues λα
k are given by (8.32), for α = +,−.

The Three–Dimensional Case

For the three–dimensional case we have

K−1 =
(γ − 1)

2a2

⎡
⎢⎢⎢⎢⎢⎣

H + a
γ̂ (u − a) −(u + a

γ̂ ) −v −w 1
−2H + 4

γ̂ a2 2u 2v 2w −2
− 2va2

γ̂ 0 2a2

γ̂ 0 0
− 2wa2

γ̂ 0 0 2a2

γ̂ 0
H − a

γ̂ (u + a) −u + a
γ̂ −v −w 1

⎤
⎥⎥⎥⎥⎥⎦

(8.68)

and the resulting split flux component Fα = AαU is found to be

Fα =
ρ

2γ

⎡
⎢⎢⎢⎢⎣

λα
1 + 2(γ − 1)λα

2 + λα
5

(u − a)λα
1 + 2(γ − 1)uλα

2 + (u + a)λα
5

vλα
1 + 2(γ − 1)vλα

2 + vλα
5

wλα
1 + 2(γ − 1)wλα

2 + wλα
5

(H − ua)λα
1 + (γ − 1)V2λα

2 + (H + ua)λα
5

⎤
⎥⎥⎥⎥⎦

. (8.69)

Exercise 8.10. Verify expressions (8.68) and (8.69) above.

Solution 8.11. (Left to the reader).
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8.4.3 The van Leer Splitting

Van Leer [560], [561] constructed a splitting for the Euler equations that
has some extra desirable properties, namely

– (I) The split Jacobian matrices

Â
+

=
∂F+

∂U
, Â

−
=

∂F−

∂U

are required to be continuous.
– (II) The split fluxes are degenerate for subsonic flow, that is Â

+
, Â

−

have a zero eigenvalue.

Van Leer expresses the flux vector F as a function of density, sound speed
and Mach number M = u

a , that is

F = F(ρ, a,M) =

⎡
⎣

ρaM
ρa2(M2 + 1

γ )
ρa3M( 1

2M2 + 1
γ−1 )

⎤
⎦ ≡

⎡
⎣

fmas

fmom

fene

⎤
⎦ . (8.70)

For the mass flux
fmas = ρaM

one requires quadratics in M and the split mass fluxes are

f+
mas =

1
4
ρa(1 + M)2 , f−

mas = −1
4
ρa(1 − M)2 . (8.71)

The momentum split fluxes are

f+
mom = f+

mas

2a

γ
[
(γ − 1)

2
M + 1] , f−

mom = f−
mas

2a

γ
[
(γ − 1)

2
M − 1] (8.72)

and the energy split fluxes are

f+
ene =

γ2

2(γ2 − 1)
[f+

mom]2

f+
mas

, f−
ene =

γ2

2(γ2 − 1)
[f−

mom]2

f−
mas

. (8.73)

In vector form we have

F+ =
1
4
ρa(1 + M)2

⎡
⎢⎣

1
2a
γ (γ−1

2 M + 1)
2a2

γ2−1 (γ−1
2 M + 1)2

⎤
⎥⎦ , (8.74)

F− = −1
4
ρa(1 − M)2

⎡
⎢⎣

1
2a
γ (γ−1

2 M − 1)
2a2

γ2−1 (γ−1
2 M − 1)2

⎤
⎥⎦ . (8.75)
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For the x–split three dimensional Euler equations the split flux formulae are

F+ =
1
4
ρa(1 + M)2

⎡
⎢⎢⎢⎢⎣

1
2a
γ (γ−1

2 M + 1)
v
w

2a2

γ2−1 (γ−1
2 M + 1)2 + 1

2 (v2 + w2)

⎤
⎥⎥⎥⎥⎦

, (8.76)

and

F− = −1
4
ρa(1 − M)2

⎡
⎢⎢⎢⎢⎣

1
2a
γ (γ−1

2 M − 1)
v
w

2a2

γ2−1 (γ−1
2 M − 1)2 + 1

2 (v2 + w2)

⎤
⎥⎥⎥⎥⎦

, (8.77)

where the Mach number is still M = u
a .

Concerning stability, van Leer [560] gives the following practical stability
condition

Ccfl ≡ Δt

Δx
(| u | +a) ≤ 2γ+ | M | (3 − γ)

γ + 3
. (8.78)

Note that Ccfl = Ccfl(M) and that when γ = 1.4 we have

Cmax
cfl = 1 for | M |= 1 , Cmin

cfl =
2γ

γ + 3
≈ 0.636 . . . , for | M |= 0 . (8.79)

Remark 8.12. The CFL condition for the explicit FVS scheme is more
restrictive than that for the Godunov method, for which Ccfl is close to unity.
See Sect. 6.3.2 of Chap. 6 for a discussion on the CFL condition.

8.4.4 The Liou–Steffen Scheme

A recent scheme that attempts to combine features from the Flux Vec-
tor Splitting and Godunov approaches is due to Liou and Steffen [328]. The
scheme has been formulated in terms of the time–dependent Euler equations
and relies on splitting the flux vector F into a convective component F(c) and
a pressure component F(p). For the x–split three dimensional flux we have

F(U) =

⎡
⎢⎢⎢⎢⎣

ρu
ρu2 + p

ρuv
ρuw

u(E + p)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

ρu
ρu2

ρuv
ρuw
ρuH

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

0
p
0
0
0

⎤
⎥⎥⎥⎥⎦
≡ F(c) + F(p) , (8.80)

with the obvious definitions for the convective component F(c) and the pres-
sure component F(p). By introducing the Mach number and enthalpy
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M =
u

a
, H =

E + p

ρ

we write

F(c) = M

⎡
⎢⎢⎢⎢⎣

ρa
ρau
ρav
ρaw
ρaH

⎤
⎥⎥⎥⎥⎦
≡ M F̂

(c)
, (8.81)

with the obvious notation for the vector F̂
(c)

. In defining the intercell numer-
ical flux Fi+ 1

2
, Liou and Steffen take

Fi+ 1
2

= F(c)

i+ 1
2

+ F(p)

i+ 1
2

, (8.82)

where the convective flux component is given by

F(c)

i+ 1
2

= Mi+ 1
2

[
F̂

(c)
]

i+ 1
2

(8.83)

with definition

[•]i+ 1
2

=
{

[•]i if Mi+ 1
2
≥ 0 ,

[•]i+1 if Mi+ 1
2
≤ 0 .

(8.84)

Note that the flux vector in (8.83) is upwinded according to the sign of the
convection, or advection, speed implied in the intercell Mach number Mi+ 1

2
.

For this reason Liou and Steffen call their scheme AUSM, which stands for
Advection Upstream Splitting Method.

The cell–interface Mach number is given by the splitting

Mi+ 1
2

= M+
i + M−

i+1 (8.85)

with the positive and negative components yet to be defined. The splitting of
the pressure flux component depends on the splitting of the pressure itself,
namely

pi+ 1
2

= p+
i + p−i+1 . (8.86)

For the splitting of the Mach number Liou and Steffen follow van Leer and
set

M± =
{
± 1

4 (M±1)2 if | M | ≤ 1 ,
1
2 (M± | M |) if | M | > 1 .

(8.87)

For splitting the pressure they suggest two choices, namely

p± =
{ 1

2p(1±M) if | M | ≤ 1
1
2p (M±|M |)

M if | M | > 1
(8.88)

and

p± =
{ 1

4p(M±1)2(2 ∓ M) if | M | ≤ 1 ,
1
2p (M±|M |)

M if | M | > 1 .
(8.89)

For more details see the original paper by Liou and Steffen [328] and the more
recent publication of Liou [327].
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8.5 Numerical Results

Here we illustrate the performance of three FVS–type schemes on the one–
dimensional, time dependent Euler equations for ideal gases with γ = 1.4,
namely the Steger–Warming FVS scheme, the van Leer FVS scheme and the
AUSM scheme of Liou and Steffen. Numerical results are compared with
the exact solution. The respective results are obtained from running two
codes of NUMERICA [519], namely HE–E1FVS (FVS schemes) and HE–
E1RPEXACT (exact Riemann solver).

8.5.1 Tests

We use five test problems with exact solution. Data consists of two con-
stant states WL = [ρL, uL, pL]T and WR = [ρR, uR, pR]T , separated by a
discontinuity at a position x = x0, and are given in Table 8.1. The exact and
numerical solutions are found in the spatial domain 0 ≤ x ≤ 1. The numerical
solution is computed with M = 100 cells. The Courant number coefficient
is taken as Ccfl = 0.9, except for the van Leer scheme, for which we took
Ccfl = 0.6. In implementing the CFL condition we use the simple formula
given by equation 6.20 of Chap. 6 to estimate the maximum wave speed.
Therefore, for all methods, we reduce the CFL number further to 0.2 of that
given by the CFL condition, for the first 5 time steps. Boundary conditions
are transmissive. For each test problem we select a convenient position x0 of
the initial discontinuity and the output time; these are stated in the legend
of each figure displaying computational results. All numerical results should
be compared with those from Godunov’s method, Figs. 6.8 to 6.12 of Chap.
6. For more details on the exact solutions of the test problems see Sect. 4.3.3
of Chap. 4.

Test ρL uL pL ρR uR pR

1 1.0 0.75 1.0 0.125 0.0 0.1
2 1.0 -2.0 0.4 1.0 2.0 0.4
3 1.0 0.0 1000.0 1.0 0.0 0.01
4 5.99924 19.5975 460.894 5.99242 -6.19633 46.0950
5 1.0 -19.59745 1000.0 1.0 -19.59745 0.01

Table 8.1. Data for five test problems with exact solution. Test 5 is like Test
3 with negative uniform background speed

8.5.2 Results for Test 1

Test 1 is a modified version of the popular Sod’s test [453]; the solution
consists of a right shock wave, a right travelling contact wave and a left sonic
rarefaction wave; this test is very useful in assessing the entropy satisfaction
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property of numerical methods. Figs. 8.3 to 8.5 show the results for the three
FVS schemes.

In the results from the Steger–Warming scheme, shown in Fig. 8.3, the
resolution of the shock and the right travelling contact is comparable with
that of Godunov’s method, Fig. 6.8 of Chap. 6. The resolution of the left
rarefaction is less satisfactory; the head and tail are visibly smeared and the
sonic point, as expected, is not handled correctly. The results from the van
Leer scheme, shown in Fig. 8.4, are virtually identical to those of Godunov’s
method of Fig. 6.8 for the rarefaction and contact, but the shock is broader.
The performance at the sonic point is comparable with that of Godunov’s
method and better than that of the Steger–Warming scheme. The results
from the Liou and Steffen scheme are shown in Fig. 8.5. In comparison with
Godunov’s method, the shock wave is more sharply resolved and the contact
wave is similar but the resolution of the rarefaction is not as good, particularly
near the sonic point.

8.5.3 Results for Test 2

The exact solution of Test 2 consists of two symmetric rarefaction waves
and a trivial contact wave of zero speed; the Star Region between the non–
linear waves is close to vacuum, which makes this problem a suitable test for
assessing the performance of numerical methods for low–density flows [182];
this is the so called 123 problem introduced in Sect. 4.3.3 of Chap. 4. Figs. 8.6
to 8.8 show the results for the three FVS schemes.

The results from the Steger–Warming scheme, shown in Fig. 8.6, are vir-
tually identical to those of the Godunov method, Fig. 6.9 of Chap. 6. The
results from the van Leer scheme, shown in Fig. 8.7, are also comparable with
those from the Godunov method. The heads of the rarefactions are slightly
more diffused. The Liou and Steffen scheme, Fig. 8.8, gives results that are
comparable with those of Godunov’s method and slightly more accurate than
those from van Leer’s scheme; in the vicinity of the trivial contact, where both
density and pressure are close to zero, the results are somewhat erratic, see
velocity and internal energy plots.

In view of the fact that Godunov–type methods with linearised Riemann
solvers will fail for this test problem [182], it is quite remarkable to note that
all three FVS–type schemes described in this chapter actually run and give,
overall, good results.

8.5.4 Results for Test 3

Test 3 is designed to assess the robustness and accuracy of numerical
methods; its solution consists of a strong right travelling shock wave of shock
Mach number 198, a contact surface and a left rarefaction wave. Figs. 8.9 and
8.10 show the results for two FVS schemes.
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The Steger–Warming result, shown in Fig. 8.9, is seen to be overall less
accurate than the corresponding result from the Godunov method, shown in
Fig. 6.10 of Chap. 6; the numerical solution has an unphysical dip behind the
shock wave, which is more clearly seen in the velocity and pressure plots. The
results from the van Leer scheme, shown in Fig. 8.10, are also less accurate
than those from the Godunov method, but they are more accurate than the
results from the Steger–Warming scheme. The Liou and Steffen scheme, as
coded by the author, failed to give a solution at all for this very severe test
problem, even when reducing the CFL number to a value as low as 0.1.

8.5.5 Results for Test 4

Test 4, as Test 3, is also designed to assess the robustness of numerical
methods; data originates from two very strong shock waves travelling towards
each other and the solution consists of three strong discontinuities travelling
to the right; the left shock wave moves to the right very slowly, which adds
another difficulty [406] to numerical methods. Figs. 8.11 to 8.13 show the
results for the three FVS schemes.

The results from the Steger and Warming scheme, shown in Fig. 8.11,
are overall comparable with those of Godunov’s method shown in Fig. 6.11 of
Chapter 6. The only visible difference is seen near the left slowly moving shock,
and as expected, this is more diffused in the Steger–Warming result; however,
it appears as if the low frequency oscillations seen in the Godunov results
are significantly reduced in the Steger–Warming scheme. The results from the
van Leer scheme, shown in Fig. 8.12, are comparable with those of Godunov’s
method and are more accurate than those from the Steger–Warming scheme.
The slowly–moving shock is resolved with two interior cells, instead of one in
the Godunov’s method, but low–frequency spurious oscillations are just about
visible. The results from the Liou and Steffen scheme, shown in Fig. 8.13, are
comparable with the Godunov and van Leer results for this test; the fast right
shock is more sharply resolved than with the other methods, but at the cost
of an overshoot; the slowly moving left shock is slightly more smeared than
in the van Leer result.

8.5.6 Results for Test 5

Test 5 is effectively Test 3, with a negative uniform background speed
so as to obtain a stationary contact discontinuity. Test 5 is also designed to
test the robustness of numerical methods but the main reason for devising
this test is for assessing the ability of numerical methods to resolve slowly–
moving contact discontinuities. The exact solution of Test 5 consists of a left
rarefaction wave, a right–travelling shock wave (slow) and a stationary contact
discontinuity. Figs. 8.14 to 8.16 show the results for the three FVS schemes
and Fig. 8.17 shows the respective results obtained from the Godunov method
used in conjunction with the exact Riemann solver, code HE–E1GODSTATE
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of NUMERICA [519]. We note that at the chosen output time, the right
travelling shock wave has propagated only 5 cells, in 81 time steps. For this
test problem the results from the Steger/Warming and van Leer FVS schemes
are similar, in that the contact discontinuity is heavily smeared, even for
a relatively short evolution time. The Liou and Steffen FVS scheme, Fig.
8.16, differs from the other two FVS schemes in that it resolves the contact
discontinuity more sharply; note however the unphysical oscillations in the
vicinity of the shock wave, the contact discontinuity and even near the tail of
the rarefaction. For comparison, the results from the Godunov method used
in conjuction with the exact Riemann solver are displayed in Fig. 8.17. These
are obviously superior to any of the FVS schemes, for this test problem.

The numerical experiments presented suggest that Flux Vector Splitting
Schemes give, generally, results of similar quality to those obtained by the
Godunov method. The difference between these two upwind approaches is
evident when slowly or stationary contact waves are present. For multidimen-
sional problems this has important implications for the accurate resolution
of shear layers, material interfaces and vortical flows. The Liou and Steffen
FVS–type scheme is an exception, as it does resolve contacts more accurately
than the Warming–Beam and van Leer schemes, although there are questions
marks about its robustness. For Test 3 the Liou and Steffen scheme crashed
and for Test 5 produced large unphysical oscillations. It is worth remarking
that the Godunov method was used in conjunction with the exact Riemann
solver, to obtain the numerical results of Fig. 8.17. If the Godunov scheme is
used with linearised Riemann solvers, then it would fail for low–density flows,
such as Test 2 for example, whereas the FVS–type schemes appear to be much
less sensitive; they all produced acceptable results for Test 2. In addition, if
the Godunov method is used in conjunction with incomplete Riemann solvers,
such as those that ignore the presence of linear waves in the structure of the
solution of the Riemann problem, then the resolution of contacts will be as
poor as that of FVS–type schemes, such as the Warming–Beam and van Leer
schemes. The selection of the Riemann solver is crucial to the performance of
the Godunov method. See Chaps. 9 to 12.

For details on how to extend FVS–type schemes to higher order of accuracy
for one–dimensional homogeneous problems the reader is referred to Chapts.
13 and 14. Methods for treating source terms are given in Chapt. 15 and
techniques to extend the methods to solve multidimensional problems are
given in Chapt. 16. For multidimensional, steady state, applications of Flux
Vector Splitting methods, readers are encouraged to consult, amongst many
others, the following references: [12], [13], [600], [166], [578].
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Fig. 8.3. Steger and Warming FVS scheme applied to Test 1, with x0 = 0.3.
Numerical (symbol) and exact (line) solutions are compared at time 0.2 units
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Fig. 8.4. Van Leer FVS scheme applied to Test 1, with x0 = 0.3. Numerical (symbol)
and exact (line) solutions are compared at time 0.2 units
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Fig. 8.5. Liou and Steffen scheme applied to Test 1, with x0 = 0.3. Numerical
(symbol) and exact (line) solutions are compared at time 0.2 units
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Fig. 8.6. Steger and Warming FVS scheme applied to Test 2, with x0 = 0.5.
Numerical (symbol) and exact (line) solutions are compared at time 0.15 units
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Fig. 8.7. Van Leer FVS scheme applied to Test 2, with x0 = 0.5. Numerical (symbol)
and exact (line) solutions are compared at time 0.15 units
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Fig. 8.8. Liou and Steffen scheme applied to Test 2, with x0 = 0.5. Numerical
(symbol) and exact (line) solutions are compared at time 0.15 units
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Fig. 8.9. Steger and Warming FVS scheme applied applied to Test 3, with x0 = 0.5.
Numerical (symbol) and exact (line) solutions are compared at time 0.012 units
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Fig. 8.10. Van Leer FVS scheme applied applied to Test 3, with x0 = 0.5. Numerical
(symbol) and exact (line) solutions are compared at time 0.012 units
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Fig. 8.11. Steger and Warming FVS scheme applied to Test 4, with x0 = 0.4.
Numerical (symbol) and exact (line) solutions are compared at time 0.035 units
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Fig. 8.12. Van Leer FVS scheme applied to Test 4, with x0 = 0.4. Numerical
(symbol) and exact (line) solutions are compared at time 0.035 units
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Fig. 8.13. Liou and Steffen scheme applied to Test 4, with x0 = 0.4. Numerical
(symbol) and exact (line) solutions are compared at time 0.035 units
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Fig. 8.14. Steger and Warming FVS scheme applied to Test 5, with x0 = 0.8.
Numerical (symbol) and exact (line) solutions are compared at time 0.012 units
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Fig. 8.15. Van Leer FVS scheme applied to Test 5, with x0 = 0.8. Numerical
(symbol) and exact (line) solutions are compared at time 0.012 units
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Fig. 8.16. Liou and Steffen scheme applied to Test 5, with x0 = 0.8. Numerical
(symbol) and exact (line) solutions are compared at time 0.012 units
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Fig. 8.17. Godunov scheme applied to Test 5, with x0 = 0.8. Numerical (symbol)
and exact (line) solutions are compared at time 0.012 units
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Approximate–State Riemann Solvers

9.1 Introduction

The method of Godunov [216] and its high–order extensions require the
solution of the Riemann problem. In a practical computation this is solved bil-
lions of times, making the Riemann problem solution process the single most
demanding task in the numerical method. In Chap. 4 we provided exact Rie-
mann solvers for the Euler equations for ideal and covolume gases. An iterative
procedure is always involved and the associated computational effort may not
always be justified. This effort may increase dramatically by equations of state
of complicated algebraic form or by the complexity of the particular system
of equations being solved, or both. Approximate, non–iterative solutions have
the potential to provide the necessary items of information for numerical pur-
poses. There are essentially two ways of extracting approximate information
from the solution of the Riemann problem to be used in Godunov–type meth-
ods: one approach is to find an approximation to the numerical flux employed
in the numerical method, directly, see Chaps. 10, 11 and 12; the other ap-
proach is to find an approximation to a state and then evaluate the physical
flux function at this state. It is the latter route the one we follow in this
chapter.

We present, approximate, Riemann solvers that do not need an iteration
process. We provide an approximate solution for the state required to evaluate
the Godunov flux. The approximations can be used directly in the first–oder
Godunov method and its high–order extensions. Some of the approximations
presented are exceedingly simple but not accurate enough to produce robust
numerical methods. This difficulty is resolved by designing hybrid schemes that
combine various approximate solvers in and adaptive fashion. There are other
uses of the explicit approximate solutions presented here. For instance, the
simplest solutions can be used in the characteristic limiting of high–order Go-
dunov type methods based on the MUSCL approach; see Sect. 13.4 of Chap.
13. They also provide valuable information of use in other well known approxi-
mate Riemann solvers. For instance, Roe’s approximate Riemann solver, [407]

E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 293
c© Springer-Verlag Berlin Heidelberg 2009DOI 10.1007/b7976-1 9,
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to be studied in Chap. 11, requires an entropy fix; the results of this chapter
may be used to provide the state values in the Harten–Hyman entropy fix
[243]. The approximate Riemann solver of Osher [372], to be studied in Chap.
12, requires intersection points for the integration paths; the approximations
of this chapter can be used directly. The HLL approach of Harten, Lax and
van Leer [244] for deriving approximate solutions to the Riemann problem,
to be studied in Chap. 10, requires estimates for the smallest and largest sig-
nal velocities in the Riemann problem; again, the pressure–velocity approx-
imation of this chapter can directly lead to estimates for wave speeds. The
approximate solutions presented in this chapter may also be of use in other
computational approaches, such as in front tracking schemes [468], [403]. The
techniques discussed here can easily be extended to other systems, such as the
shallow water equations, the steady supersonic Euler equations, the artificial
compressibility equations (see Sect. 1.6.3 of Chap. 1) and the Euler equations
with general equation of state.

Useful background for studying this chapter is found in Chaps. 2, 3, 4, and
6. The rest of this chapter is organised as follows: in Sect. 9.2 we recall the
Godunov flux and the Riemann problem solution, in Sect. 9.3 we present very
simple Riemann solvers based on primitive variable formulations of the Euler
equations. In Sect. 9.4 we study approximations based on the exact function
for pressure, namely the two–rarefaction approximation and the two–shock
approximation. Hybrid schemes are dealt with in Sect. 9.5 and numerical
results are presented in Sect. 9.6.

9.2 The Riemann Problem and the Godunov Flux

We want to solve numerically the general Initial Boundary Value Problem
(IBVP)

PDEs : Ut + F(U)x = 0 ,
ICs : U(x, 0) = U(0)(x) ,
BCs : U(0, t) = Ul(t) , U(L, t) = Ur(t) ,

⎫
⎬
⎭ (9.1)

utilising the explicit conservative formula

Un+1
i = Un

i +
Δt

Δx
[Fi− 1

2
− Fi+ 1

2
] , (9.2)

along with the Godunov intercell numerical flux

Fi+ 1
2

= F(Ui+ 1
2
(0)) . (9.3)

We assume that the solution of IBVP (9.1) exists. Here Ui+ 1
2
(0) is the simi-

larity solution Ui+ 1
2
(x/t) of the Riemann problem

Ut + F(U)x = 0 ,

U(x, 0) =
{

UL if x < 0 ,
UR if x > 0 ,

⎫
⎬
⎭ (9.4)
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evaluated at x/t = 0. Fig. 9.1 shows the structure of the exact solution of
the Riemann problem for the x–split three–dimensional Euler equations, for
which the vectors of conserved variables and fluxes are

U =

⎡
⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
E

⎤
⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎣

ρu
ρu2 + p

ρuv
ρuw

u(E + p)

⎤
⎥⎥⎥⎥⎦

. (9.5)

The value x/t = 0 for the Godunov flux corresponds to the t–axis. See Chap. 6
for details. The piece–wise constant initial data, in terms of primitive variables,
is

WL =

⎡
⎢⎢⎢⎢⎣

ρL

uL

vL

wL

pL

⎤
⎥⎥⎥⎥⎦

, WR =

⎡
⎢⎢⎢⎢⎣

ρR

uR

vR

wR

pR

⎤
⎥⎥⎥⎥⎦

. (9.6)
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Fig. 9.1. Structure of the solution of the Riemann problem for the x–split, three
dimensional Euler equations. Data and solution are given in terms of primitive vari-
ables

The purpose of this chapter is to find approximate solutions to the Rie-
mann problem in order to evaluate the Godunov flux. As seen in Chap. 6,
the evaluation of the flux requires the identification of the appropriate wave
pattern in the Riemann problem solution; as depicted in Fig. 9.2, there are
ten possibilities to be considered.

In our solution procedure we split the task of solving the complete Riemann
problem into three subproblems, namely

(I) The star values
p∗ , u∗ , ρ∗L , ρ∗R (9.7)

in the Star Region between the non–linear waves, see Fig. 9.1.
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(II) The solution for the tangential velocity components v and w throughout
the wave structure, and

(III) The solution for ρ, u and p inside sonic rarefactions.

Cases (II) and (III) are dealt with in the rest of this section, while case (I)
is the subject of the rest of the chapter.

9.2.1 Tangential Velocity Components

Recall that in the exact solution, the values of the tangential velocity
components v and w do not change across the non–linear waves but do change,
discontinuously, across the middle wave. Thus, given an approximate solution
u∗ for the normal velocity component in the Star Region, the solution for the
tangential velocity components v and w is

v(x, t) , w(x, t) =

⎧
⎨
⎩

vL , wL if x
t ≤ u∗ ,

vR , wR if x
t > u∗ .

(9.8)

In this way, the solution for the tangential velocity components is, in a sense,
exact; the only approximation being that for u∗. As a matter of fact, any
passive scalar quantity q(x, y, z, t) advected with the fluid will have this prop-
erty. In the study of multi–component flow, this quantity could be a species
concentration; in practical applications there can be many of such quantities.
Hence, it is very important that the approximate solution of the Riemann
problem preserves the correct behaviour, as in (9.8).

9.2.2 Sonic Rarefactions

Assuming the solution for the star values (9.7) is available, we then need to
identify the correct values along the t–axis, in order to evaluate the Godunov
flux. The cases (a1) to (a4) and (b1) to (b4) of Fig. 9.2 can be dealt with
once solutions for (9.7) and (9.8) are available. The sonic flow cases (a5) and
(b5) must be treated separately. For these two cases we recommend the use
of the exact solution, which, as seen in Sect. 4.4 of Chap. 4 for ideal gases, is
non–iterative.

The solution along the t–axis inside a left sonic rarefaction is obtained by
setting x/t = 0 in

WLfan =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ = ρL

[
2

(γ+1) + (γ−1)
(γ+1)aL

(
uL − x

t

)] 2
γ−1

,

u = 2
(γ+1)

[
aL + (γ−1)

2 uL + x
t

]
,

p = pL

[
2

(γ+1) + (γ−1)
(γ+1)aL

(
uL − x

t

)] 2γ
γ−1

.

(9.9)
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(a5) (b5)
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(b2)

(b1)

Fig. 9.2. Possible wave patterns in evaluating the Godunov flux for the Euler
equations:(a) positive particle speed in the Star Region (b) negative particle speed
in the Star Region

The solution along the t–axis inside a right sonic rarefaction is obtained by
setting x/t = 0 in

WRfan =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ = ρR

[
2

(γ+1) −
(γ−1)

(γ+1)aR

(
uR − x

t

)] 2
γ−1

,

u = 2
(γ+1)

[
−aR + (γ−1)

2 uR + x
t

]
,

p = pR

[
2

(γ+1) −
(γ−1)

(γ+1)aR

(
uR − x

t

)] 2γ
γ−1

.

(9.10)

The rest of this chapter is devoted to providing approximate solutions
for the star values (9.7). We study four approaches as well as two adaptive
schemes that combine various approximations.

9.3 Primitive Variable Riemann Solvers (PVRS)

A very simple linearised solution to the Riemann problem [502] for the
x–split, three dimensional time dependent Euler equations (9.4)–(9.5) can be
obtained in terms of the primitive variables ρ, u, v, w, p. The corresponding
governing equations, see Sect. 3.2.3 of Chap. 3, are
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Wt + A(W)Wx = 0 , (9.11)

where the coefficient matrix A(W) is given by

A =

⎡
⎢⎢⎢⎢⎣

u ρ 0 0 0
0 u 0 0 1/ρ
0 0 u 0 0
0 0 0 u 0
0 ρa2 0 0 u

⎤
⎥⎥⎥⎥⎦

. (9.12)

The eigenvalues of A(W) are

λ1 = u − a , λ2 = λ3 = λ4 = u , λ5 = u + a (9.13)

and the matrix of corresponding right eigenvectors is

K =

⎡
⎢⎢⎢⎢⎣

ρ 1 ρ ρ ρ
−a 0 0 0 a
0 v 1 v 0
0 w w 1 0

ρa2 0 0 0 ρa2

⎤
⎥⎥⎥⎥⎦

. (9.14)

The difficulty in solving (9.11) is due to the fact that the coefficient matrix
A(W) depends on the solution vector W itself. If A(W) were to be constant,
then we could apply, directly, the various techniques studied in Sect. 2.3.3 of
Chap. 2 for solving linear hyperbolic systems with constant coefficients.

Assume that the initial data WL, WR and the solution W(x/t) are close
to a constant state W̄. Then, by setting

Ā ≡ A(W̄) (9.15)

we approximate the Riemann problem for (9.11) by the Riemann problem for
the linear hyperbolic systems with constant coefficients

Wt + ĀWx = 0 . (9.16)

We now solve this approximate problem, with initial data (9.6), exactly. In Sect.
2.3.3 of Chap. 2 we studied various techniques that are directly applicable to
this problem. One possibility is to apply Rankine–Hugoniot Conditions across
each wave of speed λ̄i. Thus we treat (9.16) as the system in conservative form

Wt + F(W)x = 0 , F(W) ≡ ĀW . (9.17)

Then, across a wave of speed λ̄i we have

ΔF ≡ ĀΔW = λ̄iΔW . (9.18)

Direct application of (9.18) to the λ̄1 and λ̄5 waves gives four useful relations,
namely
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(u∗ − uL)ρ̄ + ā(ρ∗L − ρL) = 0 ,
(p∗ − pL)/ρ̄ + ā(u∗ − uL) = 0 ,
(uR − u∗)ρ̄ − ā(ρR − ρ∗R) = 0 ,
(pR − p∗)/ρ̄ − ā(uR − u∗) = 0 .

⎫
⎪⎪⎬
⎪⎪⎭

(9.19)

The complete solution for the unknowns (9.7) is then given by

p∗ = 1
2 (pL + pR) + 1

2 (uL − uR)(ρ̄ā) ,

u∗ = 1
2 (uL + uR) + 1

2 (pL − pR)/(ρ̄ā) ,

ρ∗L = ρL + (uL − u∗)(ρ̄/ā) ,

ρ∗R = ρR + (u∗ − uR)(ρ̄/ā) .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.20)

Notice that in this linearised solution we only need to specify constant
values for ρ̄ and ā. There is some freedom in making the choice. Selecting some
average of the data values ρL, ρR, aL, aR appears sensible. The choice may
be constrained to satisfy some desirable properties of the Riemann problem
solution, such as exact recognition of particular flow features. Here we suggest
to select the simple arithmetic means

ρ̄ =
1
2
(ρL + ρR) , ā =

1
2
(aL + aR). (9.21)

Note that if the data states WL and WR are connected by a single iso-
lated contact discontinuity or shear wave, then the solution is actually exact,
regardless of the particular choice for the averages ρ̄ and ā. This is in fact a
very important property; contacts and shear waves turn out to be some of the
most challenging flow features to resolve correctly by any numerical method.

Another way of obtaining approximate solutions for the star values is to
use the characteristic equations, see Sect. 3.1.2 of Chap. 3,

dp − ρadu = 0 along dx/dt = u − a , (9.22)

dp − a2 dρ = 0 along dx/dt = u , (9.23)

dp + ρadu = 0 along dx/dt = u + a . (9.24)

These differential relations hold true along characteristic directions. First we
set

C = ρa. (9.25)

Then, in order to find the star values we connect the state W∗L to the data
state WL, see Fig. 9.1, by integrating (9.24) along the characteristic of speed
u + a, where C is evaluated at the foot of the characteristic. See Fig. 9.3 The
results is

p∗ + CLu∗ = pL + CLuL . (9.26)
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Fig. 9.3. Solution for star values using characteristic equations

Similarly, we connect W∗R to the data state WR by integrating (9.22) along
the characteristic of speed u − a, with C is evaluated at the foot of the char-
acteristic. We obtain

p∗ − CRu∗ = pR − CRuR . (9.27)

The values ρ∗L and ρ∗R are obtained by connecting W∗L to WL and W∗R

to WR via (9.23). The complete solution is

p∗ = 1
CL+CR

[CRpL + CLpR + CLCR(uL − uR)] ,

u∗ = 1
CL+CR

[CLuL + CRuR + (pL − pR)] ,

ρ∗L = ρL + (p∗ − pL)/a2
L ,

ρ∗R = ρR + (p∗ − pR)/a2
R .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.28)

In this approximation we do not need to make a choice for the averages ρ̄
and ā; their values are replaced by data values at the foot of the corresponding
characteristics. If CL = CR = ρ̄ā, then the two approximations (9.20) and
(9.28) are identical.

The two linearised approximations (9.20) and (9.28) for the star values are
exceedingly simple and may be useful in a variety of ways. The approaches
might prove very useful in solving the Riemann problem for complicated sets
of equations.

We have now given the complete approximate solution to the sub–problems
(9.7)–(9.10). In order to evaluate the Godunov flux (9.3) we need to sample the
solution to find the value Wi+ 1

2
(0) along the t–axis. This sampling procedure

is virtually identical, although simpler, to the sampling procedure for the ex-
act Riemann problem solution presented in Chap. 4. The reader is made aware
that the numerical schemes associated with the simple linearised solutions just
derived may not be robust enough to be used with absolute confidence under
all flow conditions. In Sect. 9.5 we study hybrid Riemann solvers, which com-
bine simple and sophisticated solvers to provide schemes that have effectively
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the computational cost of the simplest Riemann solvers and the robustness of
the sophisticated Riemann solvers.

9.4 Approximations Based on the Exact Solver

In Chap. 4 we presented an exact Riemann solver based on the pressure
equation

f(p) ≡ fL(p,WL) + fR(p,WR) + Δu = 0 , Δu = uR − uL , (9.29)

with

fK(p) =

⎧
⎪⎪⎨
⎪⎪⎩

(p − pK)
[

AK

p+BK

] 1
2

if p > pK (shock) ,

2aK

(γ−1)

[(
p

pK

)z

− 1
]
if p ≤ pK (rarefaction) ,

(9.30)

z =
γ − 1
2γ

, AK =
2

(γ + 1)ρK
, BK =

(
γ − 1
γ + 1

)
pK , K = L,R . (9.31)

Various approximations based on f(p) = 0 can be obtained, including
curve–fitting procedures [509]. Here we give approximations based on the rar-
efaction and shock branches (9.30) of f(p).

9.4.1 A Two–Rarefaction Riemann Solver (TRRS)

Recall that the non–linear waves in the Riemann problem solution are
either shock or rarefaction waves and finding their type is part of the solution
procedure. If one assumes a–priori that both non–linear waves are rarefactions
then (9.29), with the appropriate choice of fL and fR in (9.30), becomes

2aL

(γ − 1)

[(
p

pL

)z

− 1
]

+
2aR

(γ − 1)

[(
p

pR

)z

− 1
]

+ uR − uL = 0 .

Solving this equation for pressure p∗ gives the approximation

p∗ =

[
aL + aR − γ−1

2 (uR − uL)
aL/pz

L + aR/pz
R

] 1
z

. (9.32)

Having found p∗ one can obtain the particle velocity u∗ from any of the
rarefaction wave relations

u∗ = uL − 2aL

(γ − 1)

[(
p∗
pL

)z

− 1
]

(9.33)

or
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u∗ = uR +
2aR

(γ − 1)

[(
p∗
pR

)z

− 1
]

. (9.34)

Alternatively, one can eliminate p∗ from (9.33) and (9.34) to obtain a closed–
form solution for the particle velocity

u∗ =
PLRuL/aL + uR/aR + 2(PLR − 1)/(γ − 1)

PLR/aL + 1/aR
, PLR =

(
pL

pR

)z

. (9.35)

Computing p∗ from (9.32) requires the evaluation of 3 fractional powers. A
more efficient approach is to calculate u∗ from (9.35), which only requires one
fractional power, and then evaluate p∗ from (9.33) or (9.34), or from a mean
value as

p∗ =
1
2

{
pL

[
1 +

(γ − 1)
2aL

(uL − u∗)
] 1

z

+ pR

[
1 +

(γ − 1)
2aR

(u∗ − uR)
] 1

z

}
.

(9.36)
Being consistent with the assumption that the two nonlinear waves are

rarefaction waves, the computation of the densities ρ∗L and ρ∗R on either side
of the contact discontinuity is obtained from the isentropic law, see Sect. 3.1.2
of Chap. 3. The result is

ρ∗L = ρL

(
p∗
pL

) 1
γ

, ρ∗R = ρR

(
p∗
pR

) 1
γ

. (9.37)

An improved version of the two–rarefaction solution is obtained by using exact
relations, for given p∗ or u∗. For instance, suppose p∗ is given by (9.32) say,
then u∗ can be found from

u∗ =
1
2
(uL + uR) +

1
2

[fR(p∗) − fL(p∗)] , (9.38)

where the functions fL and fR are evaluated according to the exact relations
(9.30) by comparing p∗ with pL and pR. The densities ρ∗L and ρ∗R can be
found from the isentropic law if the K wave is a rarefaction (p∗ ≤ pK) or from
the shock relation if the K wave is a shock wave (p∗ > pK).

The two–rarefaction approximation is generally quite robust; it is more
accurate, although more expensive, than the simple PVRS solutions (9.20) or
(9.28) of the previous section. The TRRS is in fact exact when both non–
linear waves are actually rarefaction waves. This can be detected a–priori by
the condition

f(pmin) ≥ 0 with pmin = min(pL, pR) . (9.39)

See Sect. 4.3 of Chap. 4 for details on the behaviour of the pressure function.
We have now given another approximate solution to the problem (9.7).

The solution for (9.9)–(9.10) follows. The evaluation of the Godunov flux (9.3)
requires sampling the solution to find the value Wi+ 1

2
(0) along the t–axis, in

the usual way. See Sect. 4.5 of Chap. 4.
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9.4.2 A Two–Shock Riemann Solver (TSRS)

By assuming that both non–linear waves are shock waves in (9.29)–(9.30)
one can derive the two–shock approximation

f(p) = (p − pL)gL(p) + (p − pR)gR(p) + uR − uL = 0 , (9.40)

with

gK(p) =
[

AK

p + BK

] 1
2

(9.41)

and AK , BK given by (9.31). Unfortunately, this approximation does not lead
to a closed–form solution. Further approximations must be constructed [168],
[384], [509]. Obvious approximations to the two–shock approximation involve
quadratic equations. These do not generally lead to robust schemes. One dif-
ficulty is the non–uniqueness of solutions and making the correct choice; the
exact solution, as seen in Chap. 4, is unique. The other problem is the case of
complex roots (non–existence) even for data for which the exact problem has
a solution; in our experience these can occur very often and is therefore the
most serious difficulty of the two–shock approach.

An alternative approach [509] is as follows. First we assume an estimate
p0 for the solution for pressure. Then we insert this estimate in the functions
(9.41), which in turn are substituted into equation (9.40). We obtain

(p − pL)gL(p0) + (p − pR)gR(p0) + uR − uL = 0 .

The solution of this equation is immediate:

p∗ =
gL(p0)pL + gR(p0)pR − (uR − uL)

gL(p0) + gR(p0)
. (9.42)

Being consistent with the two–shock assumption we derive a solution for the
velocity u∗ as

u∗ =
1
2
(uL + uR) +

1
2

[(p∗ − pR)gR(p0) − (p∗ − pL)gL(p0)] . (9.43)

Solution values for ρ∗Landρ∗R obtained from shock relations, see Sect. 3.1.3
of Chap. 3, namely

ρ∗L = ρL

⎡
⎣

p∗
pL

+ (γ−1)
(γ+1)

(γ−1)
(γ+1)

p∗
pL

+ 1

⎤
⎦ , ρ∗R = ρR

⎡
⎣

p∗
pR

+ (γ−1)
(γ+1)

(γ−1)
(γ+1)

p∗
pR

+ 1

⎤
⎦ . (9.44)

As to the choice for the pressure estimate p0 we propose

p0 = max(0, ppvrs) , (9.45)

where ppvrs is the solution (9.20) for pressure given by the PVRS solver of
Sect. 9.3.
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We have just presented another approximate solution to the problem (9.7).
As before, the solution for (9.8)–(9.10) follows. The evaluation of the Godunov
flux (9.3) requires sampling the solution to find the value Wi+ 1

2
(0) along the

t– axis, in the usual way. See Sect. 4.5 of Chap. 4.
The approximation (9.42)–(9.44) to the star values (9.7) is more efficient

than the TRRS and only slightly more expensive than the PVRS approxima-
tions. Also TSRS is more accurate than TRRS and PVRS for a wider range
of flow conditions, except for near vacuum conditions, where TRRS is very
accurate or indeed exact. As for the case of the TRRS approximation, we can
improve the TSRS by using the true wave relations whenever possible. For in-
stance, for given p∗ as computed from (9.42), one can obtain u∗, ρ∗L and ρ∗R

from exact wave relations. This is bound to improve the accuracy of the de-
rived quantities.

9.5 Adaptive Riemann Solvers

In a typical flow field the overwhelming majority of local Riemann prob-
lems are a representation for smooth flow. Large gradients occur only near
shock waves, contact surfaces, shear waves or some other sharp flow features.
Large gradients generate Riemann problems with widely different data states
WL,WR. Generally, it is in this kind of situations where approximate Rie-
mann solvers can be fatally inaccurate, leading to failure of the numerical
method being used. The rationale behind the use of hybrid schemes is the
use of simple Riemann solvers in regions of smooth flow and near isolated
contacts and shear waves, and more sophisticated Riemann solvers elsewhere,
in an adaptive fashion.

Successful implementations of adaptive schemes involving the PVRS and
the exact Riemann solvers were presented in [502] for the two–dimensional,
time dependent Euler equations. Toro and Chou [533] extended the idea to
the case of the steady supersonic Euler equations. Quirk [400] implemented
this Riemann–solver adaptation approach in a MUSCL–type scheme, used in
conjunction with adaptive mesh refinement techniques.

Here we present two hybrid schemes to compute the star values (9.7).
Problems (9.8)–(9.10) are solved as before and the sampling is handled as
described in Sect. 4.5 of Chap. 4.

9.5.1 An Adaptive Iterative Riemann Solver (AIRS)

This adaptive scheme makes use of two Riemann solvers: any of the
primitive–variable Riemann solvers PVRS of Sect. 9.3 and the exact Riemann
solver of Chap. 4. The PVRS scheme is used if the following two conditions
are met:

Q = pmax/pmin < Quser (9.46)
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and
pmin < p∗ < pmax , (9.47)

where

pmin ≡ min(pL, pR) , pmax ≡ max(pL, pR) , p∗ ≡ ppvrs . (9.48)

Otherwise, the exact Riemann solver is used.
Some remarks on the switching conditions (9.46)–(9.47) are in order. Con-

dition (9.46) ensures that the pressure data values pL, pR are not widely
different. Condition (9.47) imposes an extra restriction on the use of PVRS.
The pressure restriction (9.46) is not sufficient; in fact for Q ≈ 1, (pL ≈ pR)
and Δu = uR − uL negative and large in absolute value, strong shock waves
are present in the solution of the Riemann problem, that is p∗ > pmax. For Δu
large and positive p∗ < pmin and strong rarefactions are present in the exact
solution of the Riemann problem. Condition (9.47) is effectively a condition
on Δu and excludes the two–rarefaction and the two–shock cases; both of
these cases occur naturally at reflected boundaries, where it would be unwise
to employ unreliable approximations. Also, these two cases are inconsistent
with condition (9.46) on pressure ratios.

A choice of the switching parameter Quser is to be made. Extensive testing
suggests that the value Quser = 2 is perfectly adequate to give both very robust
and efficient schemes. Even much larger values of Quser can give accurate
solutions, but the gains are not significant and thus the cautious choice of
Quser = 2 is recommended. For typical flow conditions and meshes, over 90%
of all Riemann problems are handled by the cheap linearised Riemann solver.
Effectively, the resulting schemes have the efficiency of the cheapest Riemann
solvers and the robustness of the exact Riemann solver. A disadvantage of
this hybrid PVRS–EXACT scheme is the iterative character of the robust
component of the scheme, namely the exact Riemann solver. This may be
inconvenient for some computer architectures. One possibility here is to fix
the number of iterations in the exact Riemann solver. In our experience, one
iteration leads to very accurate values for pressure and subsequent quantities
derived. This is due in part to the provision of a sophisticated starting value
for the iteration procedure.

9.5.2 An Adaptive Noniterative Riemann Solver (ANRS)

Here we propose to combine a PVRS scheme, as the cheap component,
together with the non–iterative TRRS and TSRS solvers of Sects. 9.4.1 and
9.4.2 to provide the robust component of the adaptive scheme. The use of
PVRS is again restricted by conditions (9.46)–(9.47) of the previous scheme.
If any of conditions (9.46) or (9.47) are not met we use either TRRS or TSRS.
The switching between TRRS and TSRS is motivated by the behaviour of the
exact function for pressure, see Sect. 4.3.1 of Chap. 4, and is as follows. If
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; p
* = ppvrs

Q < Quser

Q
p

=
minp

max

< p
yes no

noyes

Sample  W(0)

TSRSTRRSPVRS

min

* < ppmin

< p
*

p

max

Fig. 9.4. Flow chart for Adaptive Noniterative Riemann Solver (ANRS) involving
PVRS, TRRS and TSRS

ppvrs ≤ pmin , (9.49)

then we use TRRS, otherwise we use TSRS. The flow chart of Fig. 9.4 illus-
trates the implementation of this adaptive scheme. The problems of comput-
ing the tangential velocity components, handling sonic flow and the sampling
procedure to find the Godunov flux are dealt with as described in the previ-
ous sections. This adaptive noniterative Riemann solver is recommended for
practical applications.

9.6 Numerical Results

Here we assess the performance of Godunov’s first–order upwind method
used in conjunction with the approximate Riemann solvers presented in this
chapter. We select five test problems for the one–dimensional, time dependent
Euler equations for ideal gases with γ = 1.4; these have exact solutions, which
are evaluated by running the code HE–E1RPEXACT of NUMERICA [519].

In all chosen tests, data consists of two constant states WL = [ρL, uL, pL]T

and WR = [ρR, uR, pR]T , separated by a discontinuity at a position x = x0.
The states WL and WR are given in Table 9.1. The ratio of specific heats is
chosen to be γ = 1.4. For all test problems the spatial domain is the interval
[0, 1] which is discretised with M = 100 computing cells. The Courant number
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coefficient is Ccfl = 0.9; boundary conditions are transmissive and Sn
max is

found using the simplified formula (6.20) of Chapt. 6. But given that this
formula is somewhat unreliable, see discussion of Sect. 6.3.2 of Chapter 6,
in all computations presented here we take, for the the first 5 time steps, a
Courant number coefficient Ccfl reduced by a factor of 0.2.

Test ρL uL pL ρR uR pR

1 1.0 0.75 1.0 0.125 0.0 0.1
2 1.0 -2.0 0.4 1.0 2.0 0.4
3 1.0 0.0 1000.0 1.0 0.0 0.01
4 5.99924 19.5975 460.894 5.99242 -6.19633 46.0950
5 1.0 -19.59745 1000.0 1.0 -19.59745 0.01

Table 9.1. Data for five test problems with exact solution. Test 5 is like Test
3 with negative uniform background speed

Test 1 is a modified version of the popular Sod’s test [453]; the solution
consists of a right shock wave, a right travelling contact wave and a left sonic
rarefaction wave; this test is very useful in assessing the entropy satisfaction
property of numerical methods. Test 2 has solution consisting of two sym-
metric rarefaction waves and a trivial contact wave of zero speed; the Star
Region between the non–linear waves is close to vacuum, which makes this
problem a suitable test for assessing the performance of numerical methods
for low–density flows; this is the so called 123 problem introduced in chapter
Chap. 4. Test 3 is designed to assess the robustness and accuracy of numerical
methods; its solution consists of a strong shock wave, a contact surface and
a left rarefaction wave. Test 4 is also designed to test robustness of numeri-
cal methods; the solution consists of three strong discontinuities travelling to
the right. See Sect. 4.3.3 of Chap. 4 for more details on the exact solution of
these test problems. Test 5 is also designed to test the robustness of numerical
methods but the main reason for devising this test is to assess the ability of
the numerical methods to resolve slowly– moving contact discontinuities. The
exact solution of Test 5 consists of a left rarefaction wave, a right–travelling
shock wave and a stationary contact discontinuity. For each test we select a
convenient position x0 of the initial discontinuity and an output time. These
are stated in the legend of each figure displaying computational results.

We present numerical results for two of the approximate Riemann solvers
presented in this chapter, namely the Two–Shock Riemann solver (TSRS) and
the Adaptive Noniterative Riemann Solver (ANRS). The numerical solutions
are obtained by running the code HE–E1GODSTATE of NUMERICA [519].
The results from TSRS are shown in Figs. 9.5 to 9.9 and those of ANRS
are shown in Figs. 9.10 to 9.14. All of these results are to be compared with
those obtained from the Godunov scheme used in conjunction with the exact
Riemann solver, see Figs. 6.8 to 6.12, Chapt. 6; to plotting accuracy, there is
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no difference in the computed results. The two approximate Riemann solvers
TSRS and ANRS are recommended for practical applications.

The Godunov–type methods based on the approximate–state Riemann
solvers of this chapter are extended to second–order of accuracy using the
techniques of Chaps. 13 and 14, for one–dimensional problems. Approaches for
including source terms are given in Chapt. 15 and for solving multidimensional
problems in Chap. 16.

0

0.5

1

0 0.5 1

D
en

si
ty

Position

0

0.8

1.6

0 0.5 1

V
el

oc
ity

Position

0

0.5

1

0 0.5 1

Pr
es

su
re

Position

1.8

3.8

0 0.5 1

In
te

rn
al

 e
ne

rg
y

Position

Fig. 9.5. Two–Shock Riemann Solver applied to Test 1, with x0 = 0.3. Numerical
(symbol) and exact (line) solutions are compared at time 0.2 units
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Fig. 9.6. Two–Shock Riemann Solver applied to Test 2, with x0 = 0.5. Numerical
(symbol) and exact (line) solutions are compared at time 0.15 units
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Fig. 9.7. Two–Shock Riemann Solver applied to Test 3, with x0 = 0.5. Numerical
(symbol) and exact (line) solutions are compared at time 0.012 units
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Fig. 9.8. Two–Shock Riemann Solver applied to Test 4, with x0 = 0.4. Numerical
(symbol) and exact (line) solutions are compared at time 0.035 units
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Fig. 9.9. Two–Shock Riemann Solver applied to Test 5, with x0 = 0.8. Numerical
(symbol) and exact (line) solutions are compared at time 0.012 units
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Fig. 9.10. Adaptive Noniterative Riemann Solver applied to Test 1, with x0 = 0.3.
Numerical (symbol) and exact (line) solutions are compared at time 0.2 units
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Fig. 9.11. Adaptive Noniterative Riemann Solver applied to Test 2, with x0 = 0.5.
Numerical (symbol) and exact (line) solutions are compared at time 0.15 units
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Fig. 9.12. Adaptive Noniterative Riemann Solver applied to Test 3, with x0 = 0.5.
Numerical (symbol) and exact (line) solutions are compared at time 0.012 units
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Fig. 9.13. Adaptive Noniterative Riemann Solver applied to Test 4, with x0 = 0.4.
Numerical (symbol) and exact (line) solutions are compared at time 0.035 units
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Fig. 9.14. Adaptive Noniterative Riemann Solver applied to Test 5, with x0 = 0.8.
Numerical (symbol) and exact (line) solutions are compared at time 0.012 units
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The HLL and HLLC Riemann Solvers

The approximate Riemann solver proposed by Harten Lax and van Leer
(HLL) in 1983 requires estimates for the fastest signal velocities emerging
from the initial discontinuity at the interface, resulting in a two–wave model
for the structure of the exact solution. A more accurate method is the HLLC,
introduced by Toro and collaborators in 1992. This method assumes a three–
wave model, resulting in better resolution of intermediate waves.

10.1 Introduction

For the purpose of computing a Godunov flux, Harten, Lax and van Leer
[244] presented a novel approach for solving the Riemann problem approxi-
mately. The resulting Riemann solvers have become known as HLL Riemann
solvers. In this approach an approximation for the intercell numerical flux is
obtained directly, unlike the Riemann solvers presented previously in Chaps.
4 and 9. The central idea is to assume, for the solution, a wave configuration
that consists of two waves separating three constant states. Assuming that
the wave speeds are given by some algorithm, application of the integral form
of the conservation laws gives a closed–form, approximate expression for the
flux. The approach produced practical schemes after the contributions of Davis
[150] and Einfeldt [181], who independently proposed various ways of comput-
ing the wave speeds required to completely determine the intercell flux. The
two–wave HLL approach, along with the wave speed estimates proposed by
Einfeldt [181] is known as the HLLE solver. The resulting HLL-type Riemann
solvers form the bases of very efficient and robust approximate Godunov–type
methods.

One difficulty with these schemes, however, is the assumption of a two–
wave configuration. This is correct only for hyperbolic systems of two equa-
tions, such as the one–dimensional shallow water equations. For larger sys-
tems, such as the Euler equations or the split two–dimensional shallow wa-
ter equations for example, the two–wave assumption is incorrect. As a con-

E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 315
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sequence the resolution of physical features such as contact surfaces, shear
waves and material interfaces, can be very inaccurate. For the limiting case
in which these features are stationary relative to the mesh, the resulting nu-
merical smearing is unacceptable. In view of this situation Einfeldt proposed
[181] a modification to the HLLE scheme, called HLLM, in which the single
intermediate state in the HLL approach is modified by means of a linear distri-
bution. The modification involves some parameters that control the amount
of excessive dissipation for intermediate waves. Particular choices of these
parameters and of the wave speed estimates reduce the HLLM scheme to a
modified version of the Roe solver. See [182] for further details on both HLLE
and HLLEM.

A different approach to remedy the problem of intermediate waves in the
HLL approach waves was taken by Toro, Spruce and Speares in 1992 [541],
[542]. They proposed the HLLC Riemann solver (C standing for Contact), as
applied to the time–dependent Euler equations. HLLC is a three–wave model,
resulting two–star states for the intermediate region of the Riemann–problem
solution fan. A precursor to HLLC was also anticipated in [505]. Early appli-
cations of HLLC include the steady supersonic two–dimensional Euler equa-
tions [532] and the time–dependent two dimensional shallow water equations
[193], [194]. Batten and collaborators [32] analyzed the HLLC scheme and
proposed new ways of estimating the wave speeds. See also the work of Bat-
ten, Leschziner and Goldberg [33], in which they proposed implicit versions of
the HLLC Riemann solver, with application to turbulent flows. In later work
by Linde and others [324], [325] modifications to the HLL two–wave approach
were also explored, in order to reduce numerical dissipation of contact waves.

In the last decade or so we have seen further developments of the HLLC
method as well as ambitious applications. A quick electronic search, by typing
for example HLLC solver, will give hundreds of useful entries on the subject.
Recall that the Euler equations have three distinct characteristic fields in one,
two and three space dimensions, see Chapter 3, section 3.2. This is why HLLC
as proposed in [541], [542], [96] is a complete Riemann solver, for the Euler
equations; that is the approximate wave structure of HLLC contains all the
characteristic fields of the exact problem. However, for systems with eigen-
structure containing more than three distinct characteristic fields, the HLLC
becomes incomplete, tending to behave like HLL for the one–dimensional Euler
equations. The incomplete character of a Riemann solver affects the resolu-
tion of intermediate waves, particularly when these move slowly relative to
the mesh. Therefore, the obvious way of improving the HLLC approach is to
admit the correct number of characteristic fields for the system of interest.
Works along these lines include [230], [474] and [75]. Other interesting devel-
opments and ambitious applications are found in the following works, to name
but a few, [24], [553], [54], [54], [74], [360], [580], [318], [397], [351], [334], [572],
[6], [53], [285], [199], [255], [237], [382], [361], [86], [425], [602].

In this Chapter we present the HLL and HLLC Riemann solvers as applied
to the three–dimensional, time dependent Euler equations. The principles can
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easily be extended to solve other hyperbolic systems. Useful background read-
ing is found in Chaps. 3, 4, 6 and 9. The rest of this chapter is organised as
follows: Sect. 10.1 recalls the Riemann problem. In Sect. 10.3 we present the
original approach of Harten, Lax and van Leer. In Sect. 10.4 we present the
HLLC Riemann solver and in Sect. 10.5 we give various algorithms for comput-
ing the required wave speeds. A summary of the HLLC schemes is presented in
Sect. 10.6. In Sect. 10.7 we analyse the behaviour of the approximate Riemann
solvers in the presence of contacts and passive scalars. Numerical results are
shown in Sect. 10.8 and in Sect. 10.9 contains some concluding remarks.

10.2 The Riemann Problem

We are concerned with solving numerically the general Initial Boundary
Value Problem (IBVP)

PDEs : Ut + F(U)x = 0 ,
ICs : U(x, 0) = U(0)(x) ,
BCs : U(0, t) = Ul(t) , U(L, t) = Ur(t) ,

⎫
⎬
⎭ (10.1)

in a domain 0 ≤ x ≤ L, with appropriate boundary conditions. We use the
explicit conservative formula

Un+1
i = Un

i − Δt

Δx
[Fi+ 1

2
− Fi− 1

2
] , (10.2)

with the numerical flux Fi+ 1
2

yet to be defined.

10.2.1 The Godunov Flux

In Chap. 6 we defined the Godunov intercell numerical flux as

Fi+ 1
2

= F(Ui+ 1
2
(0)) , (10.3)

in which Ui+ 1
2
(0) is the exact similarity solution Ui+ 1

2
(x/t) of the Riemann

problem
Ut + F(U)x = 0 ,

U(x, 0) =
{

UL if x < 0 ,
UR if x > 0 ,

⎫
⎬
⎭ (10.4)

evaluated at x/t = 0. Fig. 10.1 shows the structure of the exact solution of
the Riemann problem for the x–split, three dimensional Euler equations, for
which the vectors of conserved variables and fluxes are

U =

⎡
⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
E

⎤
⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎣

ρu
ρu2 + p

ρuv
ρuw

u(E + p)

⎤
⎥⎥⎥⎥⎦

. (10.5)
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The value x/t = 0 for the Godunov flux corresponds to the t–axis. See Chaps.
4 and 6 for details. The piece–wise constant initial data, in terms of primitive
variables, is

WL =

⎡
⎢⎢⎢⎢⎣

ρL

uL

vL

wL

pL

⎤
⎥⎥⎥⎥⎦

, WR =

⎡
⎢⎢⎢⎢⎣

ρR

uR

vR

wR

pR

⎤
⎥⎥⎥⎥⎦

. (10.6)

In Chap. 9 we provided approximations to the state Ui+ 1
2
(x/t) and obtained
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Fig. 10.1. Structure of the exact solution of the Riemann problem for the x–split
three dimensional Euler equations. There are five wave families associated with the
eigenvalues u − a, u (of multiplicity 3) and u + a.

a corresponding approximate Godunov method by evaluating the physical flux
function F at this approximate state; see (10.3). The purpose of this chapter
is to find direct approximations to the flux function Fi+ 1

2
following the novel

approach proposed by Harten, Lax and van Leer [238].

10.2.2 Integral Relations

Consider Fig. 10.2, in which the whole of the wave structure arising from
the exact solution of the Riemann problem is contained in the control volume
[xL, xR] × [0, T ], that is

xL ≤ TSL , xR ≥ TSR , (10.7)

where SL and SR are the fastest signal velocities perturbing the initial data
states UL and UR respectively, and T is a chosen time. The integral form of
the conservation laws in (10.4), in the control volume [xL, xR] × [0, T ] reads
∫ xR

xL

U(x, T )dx =
∫ xR

xL

U(x, 0)dx +
∫ T

0

F(U(xL, t))dt −
∫ T

0

F(U(xR, t))dt .

(10.8)
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See Sect. 2.4.1 of Chap. 2 for details on integral forms of conservation laws.
Evaluation of the right–hand side of this expression gives

∫ xR

xL

U(x, T )dx = xRUR − xLUL + T (FL − FR) , (10.9)

where FL = F(UL) and FR = F(UR). We call the integral relation (10.9)
the consistency condition. Now we split the integral on the left–hand side of
(10.8) into three integrals, namely
∫ xR

xL

U(x, T )dx =
∫ TSL

xL

U(x, T )dx +
∫ TSR

TSL

U(x, T )dx +
∫ xR

TSR

U(x, T )dx

and evaluate the first and third terms on the right–hand side. We obtain
∫ xR

xL

U(x, T )dx =
∫ TSR

TSL

U(x, T )dx + (TSL − xL)UL + (xR − TSR)UR .

(10.10)
Comparing (10.10) with (10.9) gives

S

xx TSTS

T

S

RL L R

L R

t

x

Fig. 10.2. Control volume [xL, xR]× [0, T ] on x–t plane. SL and SR are the fastest
signal velocities arising from the solution of the Riemann problem.

∫ TSR

TSL

U(x, T )dx = T (SRUR − SLUL + FL − FR) . (10.11)

On division through by the length T (SR − SL), which is the width of the
wave system of the solution of the Riemann problem between the slowest and
fastest signals at time T , we have

1
T (SR − SL)

∫ TSR

TSL

U(x, T )dx =
SRUR − SLUL + FL − FR

SR − SL
. (10.12)

Thus, the integral average of the exact solution of the Riemann problem be-
tween the slowest and fastest signals at time T is a known constant, provided
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that the signal speeds SL and SR are known; such constant is the right–hand
side of (10.12) and we denote it by

Uhll =
SRUR − SLUL + FL − FR

SR − SL
. (10.13)

We now apply the integral form of the conservation laws to the left portion
of Fig. 10.2, that is the control volume [xL, 0] × [0, T ]. We obtain

∫ 0

TSL

U(x, T )dx = −TSLUL + T (FL − F0L) , (10.14)

where F0L is the flux F(U) along the t–axis. Solving for F0L we find

F0L = FL − SLUL − 1
T

∫ 0

TSL

U(x, T )dx . (10.15)

Evaluation of the integral form of the conservation laws on the control volume
[0, xR] × [0, T ] yields

F0R = FR − SRUR +
1
T

∫ TSR

0

U(x, T )dx . (10.16)

The reader can easily verify that the equality

F0L = F0R

results in the consistency condition (10.9). All relations so far are exact, as
we are assuming the exact solution of the Riemann problem.

10.3 The HLL Approximate Riemann Solver

Harten, Lax and van Leer [244] put forward the following approximate
Riemann solver

Ũ(x, t) =

⎧
⎨
⎩

UL if x
t ≤ SL ,

Uhll if SL ≤ x
t ≤ SR ,

UR if x
t ≥ SR ,

(10.17)

where Uhll is the constant state vector given by (10.13) and the speeds SL and
SR are assumed to be known. Fig. 10.3 shows the structure of this approximate
solution of the Riemann problem, called the HLL Riemann solver. Note that
this approximation consists of just three constant states separated by two
waves. The Star Region consists of a single constant state; all intermediate
states separated by intermediate waves are lumped into the single state Uhll.
The corresponding flux Fhll along the t–axis is found from the relations (10.15)
or (10.16), with the exact integrand replaced by the approximate solution
(10.17). Note that we do not take Fhll = F(Uhll). The non–trivial case of
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Fig. 10.3. Approximate HLL Riemann solver. Solution in the Star Region consists
of a single state Uhll separated from data states by two waves of speeds SL and SR.

interest is the subsonic case SL ≤ 0 ≤ SR. Substitution of the integrand in
(10.15) or (10.16) by Uhll in (10.13) gives

Fhll = FL + SL(Uhll − UL) , (10.18)

or
Fhll = FR + SR(Uhll − UR) . (10.19)

Note that relations (10.18) and (10.19) are also obtained from applying
Rankine–Hugoniot conditions across the left and right waves respectively; see
Sect. 2.4.2 of Chap. 2 and Sect. 3.1.3 of Chap. 3 for details on the Rankine–
Hugoniot conditions. Use of (10.13) in (10.18) or (10.19) gives the HLL flux

Fhll =
SRFL − SLFR + SLSR(UR − UL)

SR − SL
. (10.20)

The corresponding HLL intercell flux for the approximate Godunov method
is then given by

Fhll
i+ 1

2
=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

FL if 0 ≤ SL ,

SRFL − SLFR + SLSR(UR − UL)
SR − SL

, if SL ≤ 0 ≤ SR ,

FR if 0 ≥ SR .

(10.21)

Given an algorithm to compute the speeds SL and SR we have an approximate
intercell flux (10.21) to be used in the conservative formula (10.2) to produce
an approximate Godunov method. Procedures to estimate the wave speeds SL

and SR are given in Sect. 10.5. Harten, Lax and van Leer [244] showed that the
Godunov scheme (10.2), (10.21), if convergent, converges to the weak solution
of the conservation laws. In fact they proved that the converged solution is
also the physical, entropy satisfying, solution of the conservation laws. Their
results actually apply to a larger class of approximate Riemann solvers. One of
the requirements is consistency with the integral form of the conservation laws.
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That is, an approximate solution Ũ(x, t) is consistent with the integral form
of the conservation laws if, when substituted for the exact solution U(x, t) in
the consistency condition (10.9), the right–hand side remains unaltered.

A shortcoming of the HLL scheme is exposed by contact discontinuities,
shear waves and material interfaces, or any type of intermediate waves. For
the Euler equations these waves are associated with the multiple eigenvalue
λ2 = λ3 = λ4 = u. See Fig. 10.1. Note that in the integral (10.12), all
that matters is the average across the wave structure, without regard for the
spatial variations of the solution of the Riemann problem in the Star Region.
As pointed out by Harten, Lax and van Leer themselves [244], this defect of the
HLL scheme may be corrected by restoring the missing waves. Accordingly,
Toro, Spruce and Speares [541], [542] proposed the so called HLLC scheme,
where C stands for Contact. In this scheme the missing middle waves are put
back into the structure of the approximate Riemann solver.

10.4 The HLLC Approximate Riemann Solver

The HLLC scheme is a modification of the HLL scheme described in the
previous section, whereby the missing contact and shear waves in the Euler
equations are restored. The scheme was first presented in terms of the time–
dependent, two dimensional Euler equations [541], [542]. Early applications
include the steady supersonic two–dimensional Euler equations [532] and the
time–dependent two dimensional shallow water equations [193], [194].

10.4.1 Useful Relations

Consider Fig. 10.2, in which the complete structure of the solution of
the Riemann problem is contained in a sufficiently large control volume
[xL, xR] × [0, T ]. Now, in addition to the slowest and fastest signal speeds
SL and SR we include a middle wave of speed S∗; for the Euler equations
this corresponds to the multiple eigenvalue λ2 = λ3 = λ4 = u. See Fig. 10.4.
Evaluation of the integral form of the conservation laws in the control volume
reproduces the result of equation (10.12), even if variations of the integrand
across the wave of speed S∗ are allowed. Note that the consistency condition
(10.9) effectively becomes the condition (10.12). By splitting the left–hand
side of integral (10.12) into two terms we obtain

1
T (SR − SL)

∫ TSR

TSL

U(x, T )dx =
1

T (SR − SL)

∫ TS∗

TSL

U(x, T )dx

+
1

T (SR − SL)

∫ TSR

TS∗

U(x, T )dx .

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(10.22)
We define the integral averages
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Fig. 10.4. HLLC approximate Riemann solver. Solution in the Star Region consists
of two constant states separated from each other by a middle wave of speed S∗.

U∗L =
1

T (S∗ − SL)

∫ TS∗

TSL

U(x, T )dx ,

U∗R =
1

T (SR − S∗)

∫ TSR

TS∗

U(x, T )dx .

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(10.23)

By substitution of (10.23) into (10.22) and use of (10.12), the consistency
condition (10.9) becomes

(
S∗ − SL

SR − SL

)
U∗L +

(
SR − S∗
SR − SL

)
U∗R = Uhll , (10.24)

where Uhll is given by (10.12)–(10.13). The HLLC approximate Riemann
solver is given as follows

Ũ(x, t) =

⎧
⎪⎪⎨
⎪⎪⎩

UL , if x
t ≤ SL ,

U∗L , if SL ≤ x
t ≤ S∗ ,

U∗R , if S∗ ≤ x
t ≤ SR ,

UR , if x
t ≥ SR .

(10.25)

We seek a corresponding HLLC numerical flux defined as

Fhllc
i+ 1

2
=

⎧
⎪⎪⎨
⎪⎪⎩

FL , if 0 ≤ SL ,
F∗L , if SL ≤ 0 ≤ S∗ ,
F∗R , if S∗ ≤ 0 ≤ SR ,
FR , if 0 ≥ SR ,

(10.26)

with the intermediate fluxes F∗L and F∗R still to be determined. Fig. 10.4
shows the structure of the HLLC approximate Riemann solver.

By integrating over appropriate control volumes, or more directly, by ap-
plying Rankine–Hugoniot Conditions across each of the waves of speeds SL,
S∗, SR, we obtain

F∗L = FL + SL(U∗L − UL) , (10.27)
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F∗R = F∗L + S∗(U∗R − U∗L) , (10.28)

F∗R = FR + SR(U∗R − UR) . (10.29)

Compare relations (10.27) and (10.29) for the HLLC scheme with (10.18) and
(10.19) for the HLL scheme. Substitution of F∗L from (10.27) and F∗R from
(10.29) into (10.28) gives identically the consistency condition (10.24). Hence
conditions (10.27)–(10.29) are sufficient for ensuring consistency; these are
three equations for the four unknowns vectors U∗L, F∗L, U∗R, F∗R.

10.4.2 The HLLC Flux for the Euler Equations

We seek the solution for the two unknown intermediate fluxes F∗L and
F∗R. From (10.27)–(10.29) we see that it is sufficient to find solutions for the
two intermediate state vectors U∗L and U∗R. There are more unknowns than
equations and some extra conditions need to be imposed, in order to solve the
algebraic problem. Obvious conditions to impose are those satisfied by the
exact solution; for pressure and normal component of velocity we have

p∗L = p∗R = p∗ ,
u∗L = u∗R = u∗ ,

}
(10.30)

and for tangential velocity components we have

v∗L = vL , v∗R = vR ,
w∗L = wL , w∗R = wR .

}
(10.31)

See Chap. 4. In addition, it is entirely justified, and convenient, to set

S∗ = u∗ (10.32)

and thus if an estimate for S∗ is known, the normal velocity component u∗
in the Star Region is known. Now equations (10.27) and (10.29) can be re–
arranged as

SLU∗L − F∗L = SLUL − FL , (10.33)

and
SRU∗R − F∗R = SRUR − FR , (10.34)

where the right–hand sides of (10.33) and (10.34) are known constant vectors.
We also note the useful relation between U and F, namely

F(U) = uU + pD , D = [0, 1, 0, 0, u]T . (10.35)

Assuming that the wave speeds SL and SR are known and performing alge-
braic manipulations of the first and second components of equations (10.33)–
(10.34) one obtains the following solutions for pressure in the two Star Regions

p∗L = pL + ρL(SL − uL)(S∗ − uL) , p∗R = pR + ρR(SR − uR)(S∗ − uR) .
(10.36)
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From (10.30) p∗L = p∗R, which from (10.36) allows us to obtain an expression
for the speed S∗ purely in terms of the assumed speeds SL and SR, namely

S∗ =
pR − pL + ρLuL(SL − uL) − ρRuR(SR − uR)

ρL(SL − uL) − ρR(SR − uR)
. (10.37)

Thus, we only need to provide estimates for SL and SR, just as for the simpler
HLL solver.

Algebraic manipulation of (10.33) and (10.34) and using the corresponding
values p∗L and p∗R from (10.36) gives the intermediate fluxes F∗L and F∗R

as
F∗K = FK + SK(U∗K − UK) , (10.38)

for K=L and K=R, with the intermediate states given as

U∗K = ρK

(
SK − uK

SK − S∗

)

⎡
⎢⎢⎢⎢⎢⎢⎣

1
S∗
vK

wK

EK

ρK
+ (S∗ − uK)

[
S∗ +

pK

ρK(SK − uK)

]

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(10.39)
The final choice of the HLLC flux is made according to (10.26).

A variation in the formulation of the HLLC solver (10.38)–(10.39) is the
following. From equations (10.33) and (10.34) we may write the following
solutions for the state vectors U∗L and U∗R

U∗K =
SKUK − FK + p∗KD∗

SL − S∗
, D∗ = [0, 1, 0, 0, S∗] , (10.40)

with p∗L and p∗R as given by (10.36). Substitution of p∗K from (10.36) into
(10.40) followed by use of (10.27) and (10.29) gives direct expressions for the
intermediate fluxes as

F∗K =
S∗(SKUK − FK) + SK(pK + ρL(SK − uK)(S∗ − uK))D∗

SK − S∗
, (10.41)

with the final choice of the HLLC flux made again according to (10.26).
We remark here that the HLLC formulation (10.38)–(10.39) enforces the

condition p∗L = p∗R, which is satisfied by the exact solution. In the alterna-
tive HLLC formulation (10.41) we relax such condition, being more consistent
with the pressure approximations (10.36).

A different HLLC flux is obtained by assuming a single mean pressure
value in the Star Region, and given by the arithmetic average of the pressures
in (10.36), namely
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PLR =
1
2
[pL +pR +ρL(SL −uL)(S∗−uL)+ρR(SR −uR)(S∗−uR)] . (10.42)

Then the intermediate state vectors are given by

U∗K =
SKUK − FK + PLRD∗

SK − S∗
. (10.43)

Substitution of these into (10.27) and (10.29) gives the fluxes F∗L and F∗R

as

F∗K =
S∗(SKUK − FK) + SKPLRD∗

SK − S∗
. (10.44)

Again the final choice of HLLC flux is made according to (10.26).

Remark: general equation of state. All manipulations so far, assuming that
wave speed estimates for SL and SR are available, are valid for any equation
of state. The equation of state only enters in prescribing estimates for SL and
SR.

10.4.3 Multidimensional and Multicomponent Flow

Here we consider extensions of the HLLC solver to two areas of application,
namely multidimensional flow and multicomponent flow.

The presentation of the HLLC scheme has been made for the x–split three–
dimensional Euler equations, for which the corresponding eigenvalues are de-
noted here as λ1 = u − a, λ2 = u (multiplicity 3), λ3 = u + a, where u
is the normal velocity component and a is the speed of sound. In a general
multidimensional situation, see Chapt. 16, one usually requires the flux in the
direction normal to a volume (or element) interface, which is not necessarily
aligned with any of the Cartesian directions. In this case the form of the gov-
erning equations remains identical to the x–split system (10.4), (10.5). There
will be a normal and two tangential components of velocity as before, and all
the results obtained so far will be applicable.

In the study of multicomponent flow, one considers the advection of chemi-
cal species by the flow, the carrier fluid. For example, let us consider m species
of concentrations ql, for l = 1, . . . , m, advected with the normal fluid speed u.
This means that for each species we can write the following advection equation

∂tql + u∂xql = 0 ,

for l = 1, . . . , m. Note that these equations are written in non–conservative
form. However, by combining these with the continuity equation we obtain a
conservative form of these equations, namely

(ρql)t + (ρuql)x = 0 , for l = 1, . . . ,m .
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The eigenvalues of the enlarged system are as before, with the exception of
λ2 = u, which now, in three space dimensions, has multiplicity m + 3. These
conservation equations can then be added as new components to the conser-
vation equations in (10.1) or (10.4), with the enlarged vectors of conserved
variables and fluxes given as

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
E
ρq1

. . .
ρql

. . .
ρqm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρu
ρu2 + p

ρuv
ρuw

u(E + p)
ρuq1

. . .
ρuql

. . .
ρuqm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10.45)

The HLLC flux accommodates these new equations in a very natural way,
and nothing special needs to be done. If the HLLC flux (10.38) is used, with
F as in (10.45), then the intermediate state vectors are given by

U∗K = ρK

(
SK − uK

SK − S∗

)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
S∗
vK

wK

EK

ρK
+ (S∗ − uK)

[
S∗ +

pK

ρK(SK − uK)

]

(q1)K

. . .
(ql)K

. . .
(qm)K

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(10.46)
for K = L and K = R. In this manner the HLLC flux will resolve the
additional intermediate fields as the exact Riemann solver.

Note that the tangential velocity components v and w are special cases of
passive scalars; compare (10.46) with (10.39) for q = v and q = w.

10.5 Wave–Speed Estimates

In order to determine completely the numerical fluxes in both the HLL
and HLLC Riemann solvers we need to provide an algorithm for computing
the wave speeds SL and SR. For the HLLC scheme one requires in addition an
estimate for the speed of the middle wave S∗, but as seen in (10.37), this can
in fact be computed once SL and SR are known. Thus the pending task is to
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determine estimates for SL and SR. One approach is to estimate the speeds
directly; another approach relies on pressure estimates in the Star Region,
which are then utilised to obtain SL and SR using exact wave relations.

10.5.1 Direct Wave Speed Estimates

The most well known approach for estimating bounds for the minimum and
maximum signal velocities present in the solution of the Riemann problem is
to provide, directly, wave speeds SL and SR. Davis [150] suggested the simple
estimates

SL = uL − aL , SR = uR + aR (10.47)

and

SL = min {uL − aL, uR − aR} , SR = max {uL + aL, uR + aR} . (10.48)

These estimates make use of data values only, are exceedingly simple but are
not recommended for practical computations. Both Davis [150] and Einfeldt
[181], proposed to use the Roe [407] average eigenvalues for the left and right
non–linear waves, that is

SL = ũ − ã , SR = ũ + ã , (10.49)

where ũ and ã are the Roe–average particle and sound speeds respectively,
given as follows

ũ =
√

ρLuL +
√

ρRuR√
ρL +

√
ρR

, ã =
[
(γ − 1)(H̃ − 1

2
ũ2)

]1/2

, (10.50)

with the enthalpy H = (E + p)/ρ approximated as

H̃ =
√

ρLHL +
√

ρRHR√
ρL +

√
ρR

. (10.51)

Complete details of the Roe Riemann solver are given in Chap. 11.

Motivated by the Roe eigenvalues Einfeldt [181] proposed the estimates

SL = ū − d̄ , SR = ū + d̄ , (10.52)

for his HLLE solver, where

d̄2 =
√

ρLa2
L +

√
ρRa2

R√
ρL +

√
ρR

+ η2(uR − uL)2 (10.53)

and

η2 =
1
2

√
ρL

√
ρR

(
√

ρL +
√

ρR)2
. (10.54)
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These wave speed estimates are reported to lead to effective and robust
Godunov–type schemes. More details on the HLLE solver and its modification
HLLEM, are found in [182]. In this paper the authors also analyze the effect
of the choice of wave speed estimates on the Riemann solver and introduce
the concept of positively conservative Riemann solvers, for the Euler equa-
tions. These are solvers for which, for physically admissible data, density and
internal energy remain positive during the calculations. See Batten et al. [32]
for further discussion on direct wave speed estimates.

Davis made some observations regarding the relationship between the cho-
sen wave speeds and some well–known numerical methods. Suppose that for a
given Riemann problem we can identify a positive speed S+. Then by choos-
ing SL = −S+ and SR = S+ in the HLL flux (10.20) one obtains a Rusanov
flux [418]

Fi+1/2 =
1
2
(FL + FR) − 1

2
S+(UR − UL) . (10.55)

As to the choice of the speed S+, Davis [150] considered

S+ = max {| uL − aL |, | uR − aR |, | uL + aL | , | uR + aR |} .

Actually, the above speed is bounded by

S+ = max {| uL | +aL, | uR | +aR} . (10.56)

This choice is likely to produce a more robust scheme and is also simpler than
Davis’s choice.

Another possible choice is S+ = Sn
max, the maximum wave speed present

at the appropriate time found by imposing the Courant stability condition;
see Sect. 6.3.2 of Chap. 6. This speed is related to the time step Δt and the
grid spacing Δx via

Sn
max =

CcflΔx

Δt
, (10.57)

where Ccfl is the Courant number coefficient, usually chosen (empirically)
to be Ccfl ≈ 0.9, for a scheme of linear stability limit of unity. For Ccfl = 1
one has S+ = Δx

Δt , which results in the Lax–Friedrichs numerical flux

Fi+1/2 =
1
2
(FL + FR) − 1

2
Δx

Δt
(UR − UL) . (10.58)

See Sect. 5.3.4 of Chap. 5 and Sect. 7.3.1 of Chap. 7.
In the next section we propose a different way of finding wave–speed esti-

mates.

10.5.2 Pressure–Based Wave Speed Estimates

A different approach for finding wave speed estimates was proposed by
Toro et. al. [542], whereby one first finds an estimate for the pressure p∗ in
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the Star Region. Then, estimates for SL and SR are derived. This is a simple
task and several reliable choices are available. Suppose we have an estimate
p∗ for the pressure in the Star Region. Then we choose the following wave
speeds

SL = uL − aLqL , SR = uR + aRqR , (10.59)

where

qK =

⎧
⎪⎪⎨
⎪⎪⎩

1 if p∗ ≤ pK

[
1 +

γ + 1
2γ

(p∗/pK − 1)
]1/2

if p∗ > pK .

(10.60)

This choice of wave speeds discriminates between shock and rarefaction waves.
If the K wave (K = L or K = R) is a rarefaction then the speed SK corre-
sponds to the characteristic speed of the head of the rarefaction, which carries
the fastest signal. If the wave is a shock wave then the speed corresponds to
an approximation of the true shock speed; the wave relations used are exact
but the pressure ratio across the shock is approximated, because p∗ is an ap-
proximation to the pressure behind the shock wave. We propose to use the
state approximations of Chap. 9 to find p∗.

The PVRS approximate Riemann solver [502] presented in Sect. 9.3 of
Chap. 9 gives

ppvrs =
1
2
(pL + pR) − 1

2
(uR − uL)ρ̄ā , (10.61)

where
ρ̄ =

1
2
(ρL + ρR) , ā =

1
2
(aL + aR) . (10.62)

This approximation for pressure can be used directly into (10.59)–(10.60) to
obtain wave speed estimates for the HLL and HLLC schemes. See also Eq.
(9.28) of Chapt. 9 for alternative estimates for p∗.

Another choice is furnished by the Two–Rarefaction Riemann solver TRRS
of Sect. 9.4.1 of Chap. 9, namely

ptr =

[
aL + aR − γ−1

2 (uR − uL)
aL/pz

L + aR/pz
R

]1/z

, (10.63)

where

PLR =
(

pL

pR

)z

; z =
γ − 1
2γ

. (10.64)

The Two–Shock Riemann solver TSRS of Sect. 9.4.2 of Chap. 9 gives

pts =
gL(p0)pL + gR(p0)pR − Δu

gL(p0) + gR(p0)
, (10.65)

where
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gK(p) =
[

AK

p + BK

]1/2

, p0 = max(0, ppvrs) , (10.66)

for K = L and K = R.
In computational practice we could use the hybrid scheme of Sect. 9.5.2 of

Chap. 9 to determine p∗ See Chap. 9 for full details. The HLL approximate
Riemann solver with the hybrid pressure–based wave speed estimates has been
implemented in the NAG routine D03PXF [319] for Godunov–type methods to
solve the time–dependent, one dimensional Euler equations for ideal gases. For
ideal gases we find that the simplified PVRS scheme, with p∗ = max(0, ppvrs)
is very simple and also is found to be sufficiently robust.

10.6 Summary of HLLC Fluxes

Here we summarize the HLLC scheme, based on a particular choice of
wave speeds. To compute the HLLC flux one performs the following steps:

• Step I: pressure estimate. Compute estimate for the pressure p∗ in the Star
Region as

p∗ = max(0, ppvrs) , ppvrs = 1
2 (pL + pR) − 1

2 (uR − uL)ρ̄ā ,

ρ̄ = 1
2 (ρL + ρR) , ā = 1

2 (aL + aR) .

⎫
⎬
⎭ (10.67)

There are other possible choices for estimating the pressure p∗. See (10.63)
and (10.65).

• Step II: wave speed estimates. Compute the wave speed estimates for SL

and SR as
SL = uL − aLqL , SR = uR + aRqR , (10.68)

with

qK =

⎧
⎪⎪⎨
⎪⎪⎩

1 if p∗ ≤ pK

[
1 +

γ + 1
2γ

(p∗/pK − 1)
]1/2

if p∗ > pK .

(10.69)

Then compute the intermediate speed S∗ in terms of SL and SR as

S∗ =
pR − pL + ρLuL(SL − uL) − ρRuR(SR − uR)

ρL(SL − uL) − ρR(SR − uR)
. (10.70)

Other choices of SL and SR are possible. See for example (10.49) and
(10.52)
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• Step III: HLLC flux. Compute the HLLC flux, according to

Fhllc
i+ 1

2
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

FL if 0 ≤ SL ,

F∗L if SL ≤ 0 ≤ S∗ ,

F∗R if S∗ ≤ 0 ≤ SR ,

FR if 0 ≥ SR ,

(10.71)

with
F∗K = FK + SK(U∗K − UK) (10.72)

and

U∗K = ρK

(
SK − uK

SK − S∗

)

⎡
⎢⎢⎢⎢⎢⎢⎣

1
S∗
vK

wK

EK

ρK
+ (S∗ − uK)

[
S∗ +

pK

ρK(SK − uK)

]

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(10.73)

There are two variants of the HLLC flux in the third step, as seen below.

• Step III: HLLC flux, Variant 1. Compute the numerical fluxes as

F∗K =
S∗(SKUK − FK) + SK(pK + ρL(SK − uK)(S∗ − uK))D∗

SK − S∗
,

D∗ = [0, 1, 0, 0, S∗]T ,

⎫
⎪⎪⎬
⎪⎪⎭

(10.74)
and the final HLLC flux chosen according to (10.71).

• Step III: HLLC flux, Variant 2. Compute the numerical fluxes as

F∗K =
S∗(SKUK − FK) + SKPLRD∗

SK − S∗
, (10.75)

with D∗ as in (10.74) and

PLR =
1
2
[pL+pR+ρL(SL−uL)(S∗−uL)+ρR(SR−uR)(S∗−uR)] . (10.76)

The final HLLC flux is chosen according to (10.71).
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10.7 Contact Waves and Passive Scalars

Here we study the special case of a passive scalar q(x, t) transported with
the fluid speed u(x, t). The time–dependent, one dimensional Euler equations
are augmented by the extra conservation law

(ρq)t + (ρqu)x = 0 . (10.77)

Consider the special IVP in which p = constant, ρ = constant, u = constant
and

q(x, 0) = q0(x) =
{

qL if x ≤ 0 ,
qR if x > 0 .

(10.78)

Clearly, the non–trivial part of the exact solution is

q(x, t) = q0(x − ut) . (10.79)

Application of the HLL Riemann solver to this problem gives the following
expression for the numerical flux

fhll
i+ 1

2
=

1
2

(
1 +

1
M

)
fi +

1
2

(
1 − 1

M

)
fi+1 , (10.80)

where M = u
a is the Mach number and the wave speeds have been taken to

be
SL = u − a , SR = u + a .

Obviously, this flux applies only in the subsonic regime u−a ≤ 0 ≤ u+a. For
sonic flow, the flux (10.80) reduces identically to the Godunov flux computed
from the exact Riemann solver. For subsonic flow 1/M > 1 and the resulting
scheme is more diffusive than the Godunov method when used in conjunction
with the exact Riemann solver. For the special case

M =
uΔt

Δx

the HLL scheme reproduces the Lax–Friedrichs method, which is exceedingly
diffusive, see Chaps. 5 and 6. The limiting case of a stationary passive scalar
is the worst. Note that the analysis includes the important cases q = v and
q = w, the tangential velocity components in three–dimensional flow.

The analysis for an isolated contact can be carried out in a similar manner;
by using an appropriate choice of the wave speeds the resulting HLL flux is
identical to (10.80), and thus the same observations as for a passive scalar
apply. The HLLC solver, on the other hand, behaves as the exact Riemann
solver; for the limiting case in which the wave is stationary, the HLLC numer-
ical scheme gives infinite resolution; the reader can verify this algebraically. In
the next section on numerical results we compare the HLL and HLLC schemes
for this type of problems; see Fig. 10.9. The relevance of these observations is
that the HLL scheme, unlike the HLLC scheme, will add excessive numerical
dissipation to the resolution of special but important flow features such as
material interfaces, shear waves and vortices.
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10.8 Numerical Results

Here we assess the performance of Godunov’s first–order method used in
conjunction with the HLL and HLLC approximate Riemann solvers presented
in this chapter. The HLLC results shown correspond to the version (10.38)–
(10.39). For both HLL and HLLC, the wave speed estimates for SL and SR

are based on a pressure estimate obtained from the adaptive scheme of sec-
tion 9.5.2 of Chapter 9. For HLLC we note that, for the tests considered, all
three versions of HLLC give identical results when using the simple algorithm
(10.67)–(10.70).

We select seven test problems for the one–dimensional, time dependent
Euler equations for ideal gases with γ = 1.4; these have exact solutions. In
all chosen tests, data consists of two constant states WL = [ρL, uL, pL]T and
WR = [ρR, uR, pR]T , separated by a discontinuity at a position x = x0. The
states WL and WR are given in Table 10.1. The exact and numerical solutions
are found in the spatial domain 0 ≤ x ≤ 1. The numerical solution is computed
with M = 100 cells and the CFL condition is as for all previous computations,
see Chap. 6; the chosen Courant number coefficient is Ccfl = 0.9; boundary
conditions are transmissive.

The exact solutions were found by running the code HE-E1RPEXACT of
the library NUMERICA [518] and the numerical solutions were obtained by
running the code HE-E1GODFLUX of NUMERICA.

Test ρL uL pL ρR uR pR

1 1.0 0.75 1.0 0.125 0.0 0.1
2 1.0 -2.0 0.4 1.0 2.0 0.4
3 1.0 0.0 1000.0 1.0 0.0 0.01
4 5.99924 19.5975 460.894 5.99242 -6.19633 46.0950
5 1.0 -19.59745 1000.0 1.0 -19.59745 0.01
6 1.4 0.0 1.0 1.0 0.0 1.0
7 1.4 0.1 1.0 1.0 0.1 1.0

Table 10.1. Data for seven test problems with exact solution

Test 1 is a modified version of Sod’s problem [453]; the solution has a right
shock wave, a right travelling contact wave and a left sonic rarefaction wave;
this test is useful for assessing the entropy satisfaction property of numerical
methods. The solution of Test 2 consists of two symmetric rarefaction waves
and a trivial contact wave; the Star Region between the non–linear waves is
close to vacuum, which makes this problem a suitable test for assessing the
performance of numerical methods for low–density flows. Test 3 is designed to
assess the robustness and accuracy of numerical methods; its solution consists
of a strong shock wave of shock Mach number 198, a contact surface and a
left rarefaction wave. Test 4 is also a very severe test, its solution consists of
three strong discontinuities travelling to the right. A detailed discussion on the
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exact solution of Tests 1 to 4 is found in Sect. 4.3.3 of Chap. 4. Test 5 is also
designed to test the robustness of numerical methods but the main reason for
devising this test is to assess the ability of the numerical methods to resolve
slowly–moving contact discontinuities. The exact solution of Test 5 consists of
a left rarefaction wave, a right–travelling shock wave and a stationary contact
discontinuity. Test 6 corresponds to an isolated stationary contact wave and
Test 7 corresponds to an isolated contact moving slowly to the right. The
purpose of Tests 6 and 7 is to illustrate the likely performance of HLL and
HLLC for contacts, shear waves and vortices. For each test problem we select a
convenient position x0 of the initial discontinuity and the output time. These
are stated in the legend of each figure displaying computational results.

We compare computed results with the exact solution for three first–order
methods, namely the Godunov method used in conjunction with the HLL and
HLLC approximate Riemann solvers, and the Rusanov scheme. In all three
schemes we compute wave speed estimates by using the adaptive noniterative
scheme of Sect. 9.5.2 of Chapt. 9. Figs. 10.5 to 10.9 show results for Godunov’s
method with the HLLC Riemann solver. Figs. 10.10 to 10.14 show results
for the Godunov method with the HLL Riemann solver and Figs. 10.15 to
10.19 show results for Rusanov’s method. Fig. 10.20 shows results aimed at
comparing the performance of HLL and HLLC for isolated, stationary and
slowly moving contact discontinuities.

The numerical results obtained from the Godunov method in conjunction
with the HLL and HLLC approximate Riemann solvers are broadly similar
to those obtained from Godunov’s method in conjunction with the exact Rie-
mann solver. See results of Chapt. 6. Some points to note are the following: the
sonic rarefaction of Test 1 is better resolved by the HLL and HLLC approxi-
mate Riemann solvers than by the exact Riemann solver. The resolution of the
stationary contact (non–isolated) of Test 5 by the HLLC Riemann solver is
comparable with that of the exact Riemann solver. The HLL Riemann solver
however, as anticipated by the analysis of Sect. 10.7, diffuses the contact wave
to similar levels seen in the Flux Vector Splitting methods of Steger–Warming
and van Leer, see results of Chap. 8. The advantage of HLLC over HLL is
the resolution of slowly–moving contact discontinuities; this point is further
emphasised by the results of Tests 6 and 7 for an isolated contact wave. The
HLLC Riemann solver preserves the excellent entropy–satisfaction property
of the HLL Riemann solver. The Rusanov scheme is broadly similar to the
HLL Riemann solver in that it also diffuses slowly moving contacts. For Test 1
containing a sonic rarefaction however, the Rusanov scheme is clearly inferior
to the HLL scheme, compare Fig. 10.15 with Fig. 10.10.

The results of Tests 6 and 7 using both the HLL and the HLLC schemes
are shown in Fig. 10.20. As anticipated by the analysis of Sect. 10.7, the
HLL scheme will give unacceptably smeared results for stationary and slowly
moving contact waves. The HLLC behaves like the exact Riemann solver for
this type of problem; it has much less numerical dissipation for slowly moving
contacts and it gives infinite resolution for stationary contact waves. The
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same observations apply to augmented systems of equations containing species
equations, and to shear waves and vortices in multiple space dimensions.

10.9 Closing Remarks

We have first studied HLL and HLLC approximate Riemann solvers for
the split three–dimensional Euler equations. Then we have indicated the man-
ner in which these solvers can be extended to three–dimensional flow and to
multicomponent flow, noting that HLLC will perform as the exact Riemann
solver in these more general situations. This is due to the fact that tangential
velocity components and species concentrations are all represented by the in-
termediate characteristic field λ2 = u, where u is understood as the normal
velocity component. HLLC, unlike HLL, captures correctly this characteristic
field, which is enough to correctly capture contact discontinuities, shear waves
and contact discontinuities associated with all the species equations.

The approximate Riemann solvers of this chapter may be applied in con-
junction with the Godunov first–order upwind method presented in Chap. 6.
Second–order Total Variation Diminishing (TVD) extensions of the schemes
are presented in Chap. 13 for scalar problems and in Chap. 14 for non–linear
one dimensional systems. In Chap. 15 we present techniques that allow the ex-
tension of these schemes to solve problems with source terms. In Chap. 16 we
study techniques to extend the methods of this chapter to three–dimensional
problems. Implicit versions of the HLL and HLLC Riemann solvers have been
developed by Batten, Leschziner and Goldberg [33], who have also applied the
schemes to turbulent flows. The HLLC scheme can be used as the building
block for high–order methods, semi discrete, fully discrete, finite volume and
discontinuous Galerkin finite element methods, on structured and unstruc-
tured grids. See for example [6], [86], [237], [334], [361], [382], [553] and [572].
At this stage, two useful remarks on the HLLC flux are worth mentioning.
The first concerns the positivity/negativity of the momentum flux Safranov
[420]. The second (Dr V. A. Titarev, personal communication) concerns the
question of robustness of the choice of wave speeds in the HLL and HLLC
solvers for the case of very high speed flow inpinging on solid stationary walls;
some of the well known wave speed estimates may fail.

Perhaps the most significant advance of the HLLC approach concerns sys-
tems with more than three distinct characteristic fields, such as systems for
multiphase flow and the MHD equations, for example. A proper treatment
of these, following the HLLC approach, requires the construction of an ap-
propriate wave model that includes, ideally, all the characteristic fields of the
relevant system. Developments in this direction are found, for example, in
[230], [474] and [75].
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Fig. 10.5. Godunov’s method with HLLC Riemann solver applied to Test 1, with
x0 = 0.3. Numerical (symbol) and exact (line) solutions are compared at time 0.2.
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Fig. 10.6. Godunov’s method with HLLC Riemann solver applied to Test 2, with
x0 = 0.5. Numerical (symbol) and exact (line) solutions are compared at time 0.15.
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Fig. 10.7. Godunov’s method with HLLC Riemann solver applied to Test 3, with
x0 = 0.5. Numerical (symbol) and exact (line) solutions are compared at time 0.012.
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Fig. 10.8. Godunov’s method with HLLC Riemann solver applied to Test 4, with
x0 = 0.4. Numerical (symbol) and exact (line) solutions are compared at time 0.035.
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Fig. 10.9. Godunov’s method with HLLC Riemann solver applied to Test 5, with
x0 = 0.8. Numerical (symbol) and exact (line) solutions are compared at time 0.012.

0

0.5

1

0 0.5 1

D
en

si
ty

Position

0

0.8

1.6

0 0.5 1

V
el

oc
ity

Position

0

0.5

1

0 0.5 1

Pr
es

su
re

Position

1.8

3.8

0 0.5 1

In
te

rn
al

 e
ne

rg
y

Position

Fig. 10.10. Godunov’s method with HLL Riemann solver applied to Test 1, with
x0 = 0.3. Numerical (symbol) and exact (line) solutions are compared at time 0.2.
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Fig. 10.11. Godunov’s method with HLL Riemann solver applied to Test 2, with
x0 = 0.5. Numerical (symbol) and exact (line) solutions are compared at time 0.15.

0

3

6

0 0.5 1

D
en

si
ty

Position

0

12.5

25

0 0.5 1

V
el

oc
ity

Position

0

500

1000

0 0.5 1

Pr
es

su
re

Position

0

1250

2500

0 0.5 1

In
te

rn
al

 e
ne

rg
y

Position

Fig. 10.12. Godunov’s method with HLL Riemann solver applied to Test 3, with
x0 = 0.5. Numerical (symbol) and exact (line) solutions are compared at time 0.012.
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Fig. 10.13. Godunov’s method with HLL Riemann solver applied to Test 4, with
x0 = 0.4. Numerical (symbol) and exact (line) solutions are compared at time 0.035.
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Fig. 10.14. Godunov’s method with HLL Riemann solver applied to Test 5, with
x0 = 0.8. Numerical (symbol) and exact (line) solutions are compared at time 0.012.
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Fig. 10.15. Rusanov’s method applied to Test 1, with x0 = 0.3. Numerical (symbol)
and exact (line) solutions are compared at time 0.2.
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Fig. 10.16. Rusanov’s method applied to Test 2, with x0 = 0.5. Numerical (symbol)
and exact (line) solutions are compared at time 0.15.
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Fig. 10.17. Rusanov’s method applied to Test 3, with x0 = 0.5. Numerical (symbol)
and exact (line) solutions are compared at time 0.012.
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Fig. 10.18. Rusanov’s method applied to Test 4, with x0 = 0.4. Numerical (symbol)
and exact (line) solutions are compared at time 0.035.
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Fig. 10.19. Rusanov’s method applied to Test 5, with x0 = 0.8. Numerical (symbol)
and exact (line) solutions are compared at time 0.012.
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The Riemann Solver of Roe

Perhaps, the most well–known of all approximate Riemann solvers today,
is the one due to Roe, which was first presented in the open literature in 1981
[407]. Since then, the method has not only been refined, but it has also been
applied to a very large variety of physical problems. Refinements to the Roe
approach were introduced by Roe and Pike [416], whereby the computation
of the necessary items of information does not explicitly require the Roe av-
eraged Jacobian matrix. This second methodology appears to be simpler and
is thus useful in solving the Riemann problem for new, complicated sets of
hyperbolic conservations laws, or for conventional systems but for complex
media. Glaister exploited the Roe–Pike approach to extend Roe’s method to
the time–dependent Euler equations with a general equation of state [208],
[209]. The large body of experience accumulated by many workers over a con-
siderable period of time has led to various improvements of the scheme. As
originally presented the Roe scheme computes rarefaction shocks, thus vio-
lating the entropy condition. Harten and Hyman [243], Roe and Pike [416],
Roe [414], Dubois and Mehlman [167] and others, have produced appropri-
ate modifications to the scheme. Einfeldt et. al. [182] produced corrections
to the basic Roe scheme to avoid the so–called vacuum problem near low–
density flows; they also showed that in fact this anomaly afflicts all linearised
Riemann solvers.

Ambitious applications of the Roe scheme were presented by Brio and Wu
[80], who utilised Roe’s method to solve the Magneto–Hydrodynamic equa-
tions (MHD). Clarke et. al. [118] applied the method in conjunction with
adaptive gridding to the computation of two–dimensional unsteady detona-
tion waves in solid materials. Giraud and Manzini [206] produced parallel
implementions of the Roe scheme for two–dimensional Gas Dynamics. LeV-
eque and Shyue [313] have applied the Roe scheme in the context of front
tracking in two space dimensions. Marx has applied the Roe scheme to solve
the incompressible Navier–Stokes equations [345], [346] and the compressible
Navier–Stokes equations [344] using implicit versions of the scheme; see also
McNeil [348]. The method has also been applied to multiphase flows; Toro

E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 345
c© Springer-Verlag Berlin Heidelberg 2009DOI 10.1007/b7976-1 11,
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[501] solved reactive multi–phase problems in the context of propulsion sys-
tems via a phase–splitting procedure; recently, Sainsaulieu [421] has extended
the Roe scheme to a class of multiphase flow problems without phase splitting.

The purpose of this chapter is to present the approximate Riemann solver
of Roe as applied to the three–dimensional time dependent Euler equations.
For the numerical methods considered here, we only need to derive the Rie-
mann solver for the split three–dimensional equations. After a general intro-
duction to the method, we present both the methodology of Roe and that
of Roe and Pike. Both methodologies are suitably illustrated via the simpler
isothermal equations. Useful background reading is found in Chaps. 2 to 6.

11.1 Bases of the Roe Approach

In this section we describe the Roe approach for a general system of m hy-
perbolic conservation laws. Detailed application of the scheme to the isother-
mal and Euler equations are given in subsequent sections.

11.1.1 The Exact Riemann Problem and the Godunov Flux

We are concerned with solving numerically the general Initial Boundary
Value Problem (IBVP)

PDEs : Ut + F(U)x = 0 ,
ICs : U(x, 0) = U(0)(x) ,
BCs : U(0, t) = Ul(t) , U(L, t) = Ur(t) ,

⎫
⎬
⎭ (11.1)

in a domain xl ≤ x ≤ xr, utilising the explicit conservative formula

Un+1
i = Un

i +
Δt

Δx
[Fi− 1

2
− Fi+ 1

2
] . (11.2)

We assume the solution of IBVP (11.1) exists. In Chap. 6 we defined the
Godunov intercell numerical flux

Fi+ 1
2

= F(Ui+ 1
2
(0)) , (11.3)

in which Ui+ 1
2
(0) is the exact similarity solution Ui+ 1

2
(x/t) of the Riemann

problem
Ut + F(U)x = 0 ,

U(x, 0) =
{

UL if x < 0 ,
UR if x > 0

⎫
⎬
⎭ (11.4)

evaluated at x/t = 0. Fig. 11.1 shows the structure of the exact solution of
the Riemann problem for the x–split three dimensional Euler equations, for
which the vectors of conserved variables and fluxes are
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U =

⎡
⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
E

⎤
⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎣

ρu
ρu2 + p

ρuv
ρuw

u(E + p)

⎤
⎥⎥⎥⎥⎦

. (11.5)

The Star Region between the left and right waves contains the unknowns of
the problem. The particular value at x/t = 0 corresponds to the t–axis and is
the value required by the Godunov flux. See Chaps. 4 and 6 for details. The
piece–wise constant initial data, in terms of primitive variables, is

WL =

⎡
⎢⎢⎢⎢⎣

ρL

uL

vL

wL

pL

⎤
⎥⎥⎥⎥⎦

, WR =

⎡
⎢⎢⎢⎢⎣

ρR

uR

vR

wR

pR

⎤
⎥⎥⎥⎥⎦

. (11.6)
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Fig. 11.1. Structure of the solution of the Riemann problem for the x–split three
dimensional Euler equations

In Chap. 4 we provided an algorithm to compute the exact solution
Ui+ 1

2
(x/t) and in Chap. 6 we utilised this solution in the Godunov method.

In Chap. 9 we provided approximations to the state Ui+ 1
2
(x/t) and obtained

a corresponding approximate Godunov method by evaluating the physical
flux function F at this approximate state. The purpose of this chapter is to
find direct approximations to the flux function Fi+ 1

2
following the approach

proposed by Roe [407] and Roe and Pike [416].

11.1.2 Approximate Conservation Laws

Roe [407] solved the Riemann problem (11.4) approximately. By introduc-
ing the Jacobian matrix

A(U) =
∂F
∂U

(11.7)
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and using the chain rule the conservation laws

Ut + F(U)x = 0

in (11.4) may be written as

Ut + A(U)Ux = 0 . (11.8)

Roe’s approach replaces the Jacobian matrix A(U) in (11.8) by a constant
Jacobian matrix

Ã = Ã(UL,UR) , (11.9)

which is a function of the data states UL, UR. In this way the original PDEs
in (11.4) are replaced by

Ut + ÃUx = 0 . (11.10)

This is a linear system with constant coefficients. The original, Riemann prob-
lem (11.4) is then replaced by the approximate Riemann problem

Ut + ÃUx = 0

U(x, 0) =
{

UL , x < 0
UR , x > 0

⎫
⎬
⎭ , (11.11)

which is then solved exactly. The approximate problem results from replacing
the original non–linear conservation laws by a linearised system with constant
coefficients but the initial data of the exact problem is retained.

For a general hyperbolic system of m conservation laws, the Roe Jacobian
matrix Ã is required to satisfy the following properties:

Property (A): Hyperbolicity of the system. Ã is required to have real eigen-
values λ̃i = λ̃i(UL,UR), which we choose to order as

λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃m , (11.12)

and a complete set of linearly independent right eigenvectors

K̃
(1)

, K̃
(2)

, · · · , K̃
(m)

. (11.13)

Property (B): Consistency with the exact Jacobian

Ã(U,U) = A(U) . (11.14)

Property (C): Conservation across discontinuities

F(UR) − F(UL) = Ã (UR − UL) . (11.15)

Property (A) on hyperbolicity is an obvious requirement; the approximate
problem should at the very least preserve the mathematical character of the
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original non–linear system. Property (B) ensures consistency with the conser-
vation laws. Property (C) ensures conservation. It also ensures exact recogni-
tion of isolated discontinuities; that is, if the data UL, UR are connected by a
single, isolated discontinuity, then the approximate Riemann solver recognises
this wave exactly. Note however that this does not mean that the correspond-
ing, approximate, Godunov method with the Roe approximate numerical flux
will in general give exact solutions for isolated discontinuities.

The construction of matrices satisfying properties (A)–(C) for general hy-
perbolic systems can be very complicated and thus computationally unattrac-
tive. For the specific case of the Euler equations of Gas Dynamics Roe [407]
proposed a relatively simple way of constructing a matrix Ã. Later, Roe and
Pike [416] proposed a simpler approach, where the explicit construction of Ã
is actually avoided.

11.1.3 The Approximate Riemann Problem and the Intercell Flux

Once the matrix Ã(UL,UR), its eigenvalues λ̃i(UL,UR) and right eigen-

vectors K̃
(i)

(UL,UR) are available, one solves the Riemann problem (11.11)
by direct application of methods discussed in Sect. 2.3 of Chap. 2 and Sect.
5.4 of Chap. 5, for linear hyperbolic systems with constant coefficients. By
projecting the data difference

ΔU = UR − UL

onto the right eigenvectors we write

ΔU = UR − UL =
m∑

i=1

α̃iK̃
(i)

, (11.16)

from which one finds the wave strengths α̃i = α̃i(UL,UR). The solution
Ui+ 1

2
(x/t) evaluated along the t–axis, x/t = 0, is given by

Ui+ 1
2
(0) = UL +

∑

λ̃i≤0

α̃iK̃
(i)

, (11.17)

or
Ui+ 1

2
(0) = UR −

∑

λ̃i≥0

α̃iK̃
(i)

. (11.18)

We now find the corresponding numerical flux. Recall that we have replaced
the original set of conservation laws in (11.4) by the constant coefficient linear
system (11.10); this can be viewed as a modified system of conservation laws

Ut + F(U)x = 0 , (11.19)

with flux function
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F(U) = ÃU . (11.20)

The corresponding numerical flux, see (11.3), is not the obvious choice

Fi+ 1
2

= Ã Ui+ 1
2
(0) ,

where Ui+ 1
2
(0) is given by any of (11.17)–(11.18). That this would be incor-

rect becomes obvious when, for instance, assuming right supersonic flow in
(11.17) one would compute an intercell flux Fi+ 1

2
�= FL. Instead, the correct

expression for the corresponding numerical flux is obtained from any of the
integral relations

F0L = FL − SLUL − 1
T

∫ 0

TSL

U(x, T )dx , (11.21)

F0R = FR − SRUR +
1
T

∫ TSR

0

U(x, T )dx , (11.22)

derived in Sect. 10.2 of Chap. 10. Here SL, SR are the smallest and largest
signal speeds in the exact solution of the Riemann problem with data UL,UR

and T is a positive time. If the integrand U(x, t) in (11.21) or (11.22) is
replaced by some approximate solution, then equality of the fluxes F0L and
F0R requires the approximate solution to satisfy a Consistency Condition, see
Sect. 10.2 of Chap. 10.

If Ui+ 1
2
(x, t) is the solution of the Riemann problem for the modified

conservation laws (11.19) with data UL,UR, then the integrals in (11.21) and
(11.22) respectively, are

∫ 0

TSL

Ui+ 1
2
(x, T )dx = T [F(UL) − F(Ui+ 1

2
(0))] − TSLUL (11.23)

and
∫ TSR

0

Ui+ 1
2
(x, T )dx = T [F(Ui+ 1

2
(0)) − F(UR)] + TSRUR . (11.24)

Substitution of (11.23) and (11.24) into (11.21) and (11.22) gives

F0L = F(Ui+ 1
2
(0)) + F(UL) − F(UL) (11.25)

and
F0R = F(Ui+ 1

2
(0)) + F(UR) − F(UR) . (11.26)

Finally, by using Ui+ 1
2
(0) as given by (11.17) or (11.18) and the definition of

the flux F = Ã U we obtain the numerical flux as

Fi+ 1
2

= FL +
∑

λ̃i≤0

α̃iλ̃iK̃
(i)

, (11.27)
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or
Fi+ 1

2
= FR −

∑

λ̃i≥0

α̃iλ̃iK̃
(i)

. (11.28)

Alternatively, we may also write

Fi+ 1
2

=
1
2
(FL + FR) − 1

2

m∑
i=1

α̃i|λ̃i|K̃
(i)

. (11.29)

We remark that all previous relations (11.19)–(11.29) are valid for any
hyperbolic system and any linearisation of it. In order to compute Roe’s nu-
merical flux for a particular system of hyperbolic conservation laws, one re-
quires expressions for the wave strengths α̃i, the eigenvalues λ̃i and the right
eigenvectors K̃

(i)
in any of the flux expressions (11.27)–(11.29). Note that the

Jacobian matrix Ã(UL,UR) is not explicitly required by the numerical flux.
In the next two sections we give details on methodologies to find α̃i, λ̃i and
K̃

(i)
. There are two approaches, namely the original approach presented by

Roe in 1981 [407] and the Roe–Pike approach [416].

11.2 The Original Roe Method

In order for the approximate Godunov method based on (11.2) with the
Roe–type numerical flux (11.27)–(11.29) to be completely determined, we need
to find the average eigenvalues λ̃i, the corresponding averaged right eigenvec-
tors K̃

(i)
and averaged wave strengths α̃i. In his original paper [407] Roe finds

an averaged Jacobian matrix Ã, the Roe matrix, from which λ̃i, K̃
(i)

and α̃i

follow directly. In constructing a matrix Ã the properties (A)–(C), equations
(11.12)–(11.15), are enforced. It is not difficult to think of candidates Ã that
satisfy the first two properties. Property C is crucial and is the one that nar-
rows down the choices. Roe showed that the existence of a matrix Ã satisfying
Property C is assured by the mean value theorem. An early line of attack in
constructing a matrix Ã satisfying all desirable properties is reported by Sells
[440]. Roe identifies some disadvantages of this approach; it is argued, for in-
stance, that the construction is far from unique and that the resulting schemes
are too complicated.

A breakthrough in constructing Ã resulted from Roe’s ingenious idea of
introducing a parameter vector Q, such that both the vector of conserved
variables U and the flux vector F(U) could be expressed in terms of Q. That
is

U = U(Q) , F = F(Q) . (11.30)

Two important steps then follow. First, the changes

ΔU = UR − UL , ΔF = F(UR) − F(UL) (11.31)
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can be expressed in terms of the change ΔQ = QR −QL. Then, averages are
obtained in terms of simple arithmetic means of Q. Next, we illustrate the
technique as applied to a simple set of conservation laws.

11.2.1 The Isothermal Equations

Consider the isothermal equations

Ut + F(U)x = 0 ,

U ≡
[

u1

u2

]
≡
[

ρ
ρu

]
; F ≡

[
f1

f2

]
≡
[

ρu
ρu2 + a2ρ

]
,

⎫
⎪⎬
⎪⎭

(11.32)

where a is a constant sound speed. See Sect. 1.6.2 of Chap. 1. See also Sect.
2.4.1 of Chap. 2, where the eigenstructure of the equations is given. The exact
Jacobian, eigenvalues and corresponding right eigenvectors are

A(U) =
[

0 1
a2 − u2 2u

]
,

λ1 = u − a , λ2 = u + a ,

K(1) =
[

1
u − a

]
, K(2) =

[
1

u + a

]
.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.33)

Choose the parameter vector

Q ≡
[

q1

q2

]
≡ U

√
ρ

=
[ √

ρ√
ρu

]
. (11.34)

Then U and F can be expressed in terms of the components q1, q2 of Q,
namely

U ≡
[

u1

u2

]
≡ q1Q =

[
q2
1

q1q2

]
(11.35)

and

F ≡
[

f1

f2

]
≡
[

q1q2

q2
2 + a2q2

1

]
. (11.36)

One now looks for an averaged vector Q̃ = (q̃1, q̃2)T . This is found by simple
arithmetic averaging

Q̃ =
[

q̃1

q̃2

]
=

1
2
(QL + QR) =

1
2

[ √
ρL +

√
ρR√

ρLuL +
√

ρRuR

]
. (11.37)

Then two matrices B̃ = B̃(Q̃) and C̃ = C̃(Q̃) are found, such that the jumps
ΔU and ΔF in (11.31) can be expressed in terms of the jump ΔQ, namely

ΔU = B̃ΔQ ; ΔF = C̃ΔQ . (11.38)
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Use of these two expressions produces

ΔF = (C̃B̃
−1

)ΔU , (11.39)

which if compared with condition (C), equation (11.15), produces the Roe
averaged matrix

Ã = C̃B̃
−1

. (11.40)

Matrices B̃ and C̃ satisfying (11.38) are

B̃ =
[

2q̃1 0
q̃2 q̃1

]
; C̃ =

[
q̃2 q̃1

2a2q̃1 2q̃2
2

]
, (11.41)

which the reader can easily verify. The sought Roe matrix is then

Ã =
[

0 1
a2 − ũ2 2ũ

]
, (11.42)

where ũ is the Roe averaged velocity and is given by

ũ =
√

ρLuL +
√

ρRuR√
ρL +

√
ρR

. (11.43)

Compare (11.42) with the matrix in (11.33). As the sound speed a is constant,
no averaged ρ̃ is required.

Having found Ã one computes the averaged eigenvalues, eigenvectors and
wave strengths. The eigenvalues of Ã are

λ̃1 = ũ − a ; λ̃2 = ũ + a (11.44)

and are all real. The corresponding averaged right eigenvectors are

K̃
(1)

=
[

1
ũ − a

]
; K̃

(2)
=
[

1
ũ + a

]
(11.45)

and are easily seen to be linearly independent. Thus condition (A) is satisfied.
To find the wave strengths α̃i we solve the 2 × 2 linear system, see (11.16),

ΔU ≡
[

Δu1

Δu2

]
=

2∑
i=1

α̃iK̃
(i)

.

The solution is easily verified to be

α̃1 =
Δu1(ũ + a) − Δu2

2a
,

α̃2 =
−Δu1(ũ − a) + Δu2

2a
,

⎫
⎪⎪⎬
⎪⎪⎭

(11.46)

with the obvious definitions Δu1 ≡ ρR − ρL, Δu2 ≡ ρRuR − ρLuL. The
corresponding Roe numerical flux Fi+ 1

2
now follows from using (11.43)–(11.46)

into any of the expressions (11.27)–(11.29).
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11.2.2 The Euler Equations

Here we present the Roe Riemann solver as applied to the Riemann prob-
lem (11.4)–(11.5) for the x–split three dimensional time dependent Euler equa-
tions for ideal gases. Details of the Euler equations are found in Sect. 1.1 and
Sect. 1.2 of Chap. 1; mathematical properties of the Euler equations are stud-
ied in Chap. 3.

The exact, x–direction Jacobian matrix A(U) is

A =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
γ̂H − u2 − a2 (3 − γ)u −γ̂v −γ̂w γ̂

−uv v u 0 0
−uw w 0 u 0

1
2u[(γ − 3)H − a2] H − γ̂u2 −γ̂uv −γ̂uw γu

⎤
⎥⎥⎥⎥⎦

, (11.47)

where γ̂ = γ − 1. The eigenvalues are

λ1 = u − a , λ2 = λ3 = λ4 = u , λ5 = u + a , (11.48)

where a =
√

γp/ρ is the sound speed. The corresponding right eigenvectors
are

K(1) =

⎡
⎢⎢⎢⎢⎣

1
u − a

v
w

H − ua

⎤
⎥⎥⎥⎥⎦

; K(2) =

⎡
⎢⎢⎢⎢⎣

1
u
v
w

1
2V 2

⎤
⎥⎥⎥⎥⎦

; K(3) =

⎡
⎢⎢⎢⎢⎣

0
0
1
0
v

⎤
⎥⎥⎥⎥⎦

K(4) =

⎡
⎢⎢⎢⎢⎣

0
0
0
1
w

⎤
⎥⎥⎥⎥⎦

; K(5) =

⎡
⎢⎢⎢⎢⎣

1
u + a

v
w

H + ua

⎤
⎥⎥⎥⎥⎦

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.49)

Here H is the total enthalpy

H =
E + p

ρ
(11.50)

and E is the total energy per unit volume

E =
1
2
ρV2 + ρe , (11.51)

with
V2 = u2 + v2 + w2 (11.52)

and e denoting the specific internal energy, which for ideal gases, see Sect. 1.2
of Chap. 1, is
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e =
p

(γ − 1)ρ
. (11.53)

Roe chooses the parameter vector

Q ≡

⎡
⎢⎢⎢⎢⎣

q1

q2

q3

q4

q5

⎤
⎥⎥⎥⎥⎦
≡ √

ρ

⎡
⎢⎢⎢⎢⎣

1
u
v
w
H

⎤
⎥⎥⎥⎥⎦

, (11.54)

which has the property that every component ui of U and every component
fi of F(U) in (11.4)–(11.5) is a quadratic in the components qi of Q. For
instance u1 = q2

1 and f1 = q1q2, etc. Actually, the property is also valid for
the components of the G and H fluxes for the full three–dimensional Euler
equations.

As done for the isothermal equations, see equations (11.38), one can ex-
press the jumps ΔU and ΔF in terms of the jump ΔQ via two matrices B̃
and C̃. Roe [407] gives the following expressions

B̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2q̃1 0 0 0 0

q̃2 q̃1 0 0 0

q̃3 0 q̃1 0 0

q̃4 0 0 q̃1 0

q̃5

γ

γ − 1
γ

q̃2
γ − 1

γ
q̃3

γ − 1
γ

q̃4
q̃1

γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.55)

and

C̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q̃2 q̃1 0 0 0

γ − 1
γ

q̃5
γ + 1

γ
q̃2 −γ − 1

γ
q̃3 −γ − 1

γ
q̃4

γ − 1
γ

q̃1

0 q̃3 q̃2 0 0

0 q̃4 0 q̃2 0

0 q̃5 0 0 q̃2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11.56)

The sought Roe matrix is then given by

Ã = B̃C̃
−1

. (11.57)

The eigenvalues of Ã are

λ̃1 = ũ − ã , λ̃2 = λ̃3 = λ̃4 = ũ , λ̃5 = ũ + ã (11.58)
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and the corresponding right eigenvectors are

K̃
(1)

=

⎡
⎢⎢⎢⎢⎣

1
ũ − ã

ṽ
w̃

H̃ − ũã

⎤
⎥⎥⎥⎥⎦

; K̃
(2)

=

⎡
⎢⎢⎢⎢⎣

1
ũ
ṽ
w̃

1
2 Ṽ 2

⎤
⎥⎥⎥⎥⎦

; K̃
(3)

=

⎡
⎢⎢⎢⎢⎣

0
0
1
0
ṽ

⎤
⎥⎥⎥⎥⎦

K̃
(4)

=

⎡
⎢⎢⎢⎢⎣

0
0
0
1
w̃

⎤
⎥⎥⎥⎥⎦

; K̃
(5)

=

⎡
⎢⎢⎢⎢⎣

1
ũ + ã

ṽ
w̃

H̃ + ũã

⎤
⎥⎥⎥⎥⎦

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.59)

The symbol r̃ in (11.58), (11.59) denotes a Roe average for a variable r. The
relevant averages are given as follows

ũ =
√

ρLuL +
√

ρRuR√
ρL +

√
ρR

,

ṽ =
√

ρLvL +
√

ρRvR√
ρL +

√
ρR

,

w̃ =
√

ρLwL +
√

ρRwR√
ρL +

√
ρR

,

H̃ =
√

ρLHL +
√

ρRHR√
ρL +

√
ρR

,

ã =
(
(γ − 1)(H̃ − 1

2Ṽ
2
)
) 1

2
,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.60)

where Ṽ
2

= ũ2 + ṽ2 + w̃2.
In order to determine completely the Roe numerical flux Fi+ 1

2
we need, in

addition, the wave strengths α̃i. These are obtained by projecting the jump
ΔU onto the right, averaged eigenvectors (11.59), namely

ΔU =
5∑

i=1

α̃iK̃
(i)

. (11.61)

When written in full these equations read

α̃1 + α̃2 + α̃5 = Δu1 , (11.62)

α̃1(ũ − ã) + α̃2ũ + α̃5(ũ + ã) = Δu2 , (11.63)

α̃1ṽ + α̃2ṽ + α̃3 + α̃5ṽ = Δu3 , (11.64)

α̃1w̃ + α̃2w̃ + α̃4 + α̃5w̃ = Δu4 , (11.65)
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α̃1(H̃ − ũã) +
1
2
Ṽ

2
α̃2 + α̃3ṽ + α̃4w̃ + α̃5(H̃ + ũã) = Δu5 . (11.66)

Here the right–hand side terms of equations (11.62)–(11.66) are known: they
are jumps Δui in the conserved quantity ui, namely

Δui = (ui)R − (ui)L .

Before solving these equations we note that in the purely one–dimensional
case

ṽ = w̃ = 0 , α̃3 = α̃4 = 0 , K̃
(3)

= K̃
(4)

= 0 (11.67)

and the problem reduces to solving (11.62), (11.63) and (11.66) for α̃1, α̃2 and
α̃5, with terms involving α̃3 and α̃4 being absent.

For the x–split three dimensional problem the system (11.62)–(11.66) may
be viewed in exactly the same manner as for the one–dimensional case. Use
of equation (11.62) into (11.64) and (11.65) gives directly

α̃3 = Δu3 − ṽΔu1 ; α̃4 = Δu4 − w̃Δu1 . (11.68)

Then one solves (11.62), (11.63) and (11.66) for α̃1, α̃2, α̃5. Computationally,
it is convenient to arrange the solution as follows

α̃2 =
γ − 1
ã2

[
Δu1(H̃ − ũ2) + ũΔu2 − Δu5

]
,

α̃1 =
1
2ã

[Δu1(ũ + ã) − Δu2 − ãα̃2] ,

α̃5 = Δu1 − (α̃1 + α̃2) ,

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(11.69)

where

Δu5 = Δu5 − (Δu3 − ṽΔu1)ṽ − (Δu4 − w̃Δu1)w̃ . (11.70)

An Algorithm

To compute the Roe numerical flux Fi+ 1
2

according to any of the formulae
(11.27)–(11.29) we do the following:

(1) Compute the Roe average values for ũ, ṽ, w̃, H̃ and ã according to (11.60).
(2) Compute the averaged eigenvalues λ̃i according to (11.58).

(3) Compute the averaged right eigenvectors K̃
(i)

according to (11.59).
(4) Compute the wave strengths α̃i according to (11.68)–(11.70).
(5) Use all of the above quantities to compute Fi+ 1

2
, according to any of the

formulae (11.27)–(11.29).

For the pure one–dimensional case, virtually all the required information
for the application of the above algorithm is contained in this Chapter. An
entropy fix is given in Sect. 11.4. The remaining items such as choosing the
time step size and boundary conditions are found in Chap. 6. For two and
three dimensional applications the reader requires the additional information
provided in Chap. 16.
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11.3 The Roe–Pike Method

Recall that solving the Riemann problem (11.4) approximately using Roe’s

method means finding averaged eigenvalues λ̃i, right eigenvectors K̃
(i)

and
wave strengths α̃i, so that the Roe numerical flux may be evaluated by any
of the formulae (11.27)–(11.29). In the previous section this task was carried
out by following the original Roe approach, where the averaged Jacobian
matrix Ã is first sought. In this section we present a different approach, due
to Roe and Pike [416], whereby the construction of Ã is avoided; instead,
one seeks directly averages of a set of scalar quantities that can then be used
to evaluate the eigenvalues, right eigenvectors and wave strengths needed in
formulae (11.27)–(11.29).

11.3.1 The Approach

The approach assumes, of course, that the appropriate original system is
hyperbolic and that analytical expressions for the eigenvalues λi and the set of
linearly independent right eigenvectors K(i) are available. Analytical expres-
sions α̂i for the wave strengths require extra work via an extra linearisation.
One then selects a suitable vector of scalar quantities, typically the vector W
of primitive variables in (11.6) or variations of it, for which an average W̃ is

to be found. The values of λ̃i, K̃
(i)

and α̃i are then found by direct evaluation
of the analytical expressions for λi, K(i) and α̂i at the state W̃. There are
two distinct steps in the Roe–Pike approach.

Linearisation about a Reference State

To find analytical expressions for the wave strengths αi Roe and Pike
assume a linearised form of the governing equations based on the assumption
that the data states UL and UR are close to a reference state Û, to order
O(Δ2). Linearisation of the conservation laws in (11.4) about this state Û
gives

Ut + F(U)x ≡ Ut +
(

∂F
∂U

)
Ux ≈ Ut + ÂUx ,

where
Ut + ÂUx = 0 (11.71)

is an approximation to the original conservation laws. Here Â is the Jacobian
matrix, assumed available, computed at the reference state Û. Eigenvalues
and right eigenvectors follow. Analytical expressions for the wave strengths
α̂i in the solution of the linear Riemann problem

Ut + ÂUx = 0 ,

U(x, 0) =
{

UL if x < 0 ,
UR if x > 0 ,

⎫
⎬
⎭ (11.72)
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are found by decomposing the data jump ΔU onto the right eigenvectors, in
the usual way; see Sect. 2.3 of Chap. 2 and Sect. 5.4 of Chap. 5. That is we
solve

ΔU = UR − UL =
m∑

k=1

α̂kK̂
(k)

. (11.73)

Before proceeding, we note that this linearisation is not the Roe linearisation
resulting from the Roe matrix Ã; it is merely a step to find some sufficiently
simple analytical expressions for the wave strengths, which can then be eval-
uated at the unknown Roe–Pike average state W̃, yet to be found.

The Algebraic Problem for the Average State

The sought Roe–Pike average vector W̃ is then found by first setting

α̃i = α̂i(W̃) , λ̃i = λi(W̃) , K̃
(i)

= K(i)(W̃) ; (11.74)

the analytical expressions for λi, K(i) and α̂i are evaluated at the unknown
average state W̃. Then W̃ is found by solving the algebraic problem posed
by the following two sets of equations

ΔU = UR − UL =
m∑

k=1

α̃kK̃
(k)

(11.75)

and

ΔF = FR − FL =
m∑

k=1

α̃kλ̃kK̃
(k)

. (11.76)

In the following section we illustrate the Roe–Pike approach in terms of a
simple system of conservation laws.

11.3.2 The Isothermal Equations

We solve the Riemann problem

Ut + F(U)x = 0 ,

U(x, 0) =
{

UL if x < 0 ,
UR if x > 0 ,

⎫
⎬
⎭ (11.77)

for the isothermal equations using the Roe–Pike approach; the vectors U
and F are given in (11.32). The exact Jacobian matrix, eigenvalues and right
eigenvectors are

A(U) =
[

0 1
a2 − u2 2u

]
,

λ1 = u − a , λ2 = u + a ,

K(1) =
[

1
u − a

]
, K(2) =

[
1

u + a

]
.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.78)
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Linearisation about a Reference State

Assume that the data states UL and UR are close to a state Û to order
O(Δ2). Linearisation of the conservation laws in (11.77) about this state Û
gives linear Riemann problem

Ut + ÂUx = 0 ,

U(x, 0) =
{

UL if x < 0 ,
UR if x > 0 .

⎫
⎬
⎭ (11.79)

Here Â is the Jacobian A evaluated at the reference state Û, which in terms
of primitive variables is denoted by Ŵ = (ρ̂, û)T . The complete eigenstructure
is

A(U) =
[

0 1
a2 − û2 2û

]
,

λ̂1 = û − a , λ̂2 = û + a ,

K̂(1) =
[

1
û − a

]
, K̂(2) =

[
1

û + a

]
.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.80)

Recall that the sound speed a is constant. We look for solutions of (11.79).
The system is linear with constant coefficients. One can therefore deploy ap-
propriate techniques studied in Sect. 2.3 of Chap. 2 and Sect. 5.4 of Chap. 5.
We decompose the data jump ΔU onto the right eigenvectors as follows

ΔU = UR − UL =
2∑

k=1

α̂kK̂
(k)

= α̂1K̂
(1)

+ α̂2K̂
(2)

, (11.81)

where analytical expressions for the coefficients α̂1, α̂2 are to be found. Writing
(11.81) in full gives

Δρ = ρR − ρL = α̂1 + α̂2 , (11.82)

Δ(ρu) = (ρu)R − (ρu)L = α̂1(û − a) + α̂2(û + a) . (11.83)

It can easily be shown that

Δ(ρu) = ρ̂Δu + ûΔρ + O(Δ2) , (11.84)

where the leading term in O(Δ2) is

(ρR − ρ̂)(uR − û) − (ρL − ρ̂)(uL − û) .

By neglecting O(Δ2), (11.83) becomes

ρ̂Δu + ûΔρ = α̂1(û − a) + α̂2(û + a) . (11.85)

Solving equations (11.82) and (11.85) gives the sought analytical expressions
for α̂1 and α̂2, namely
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α̂1 =
1
2

[
Δρ − ρ̂

Δu

a

]
, α̂2 =

1
2

[
Δρ + ρ̂

Δu

a

]
. (11.86)

Compare these with expressions (11.46). The reader may easily verify that,
to within O(Δ2), the following two sets of equations are identically satisfied

ΔU = UR − UL =
2∑

k=1

α̂kK̂
(k)

, ΔF = FR − FL =
2∑

k=1

α̂kλ̂kK̂
(k)

. (11.87)

Here we give details for the second set. In full, these equations read

Δ(ρu) = α̂1λ̂1 + α̂2λ̂2 , (11.88)

Δ(ρu2 + ρa2) = α̂1λ̂1(û − a) + α̂2λ̂2(û + a) . (11.89)

Equation (11.88) may be written as

ρ̂Δu + ûΔρ = û(α̂1 + α̂2) + a(α̂2 − α̂1) ,

which after using (11.86) becomes an identity. To prove (11.89) we first expand
its left–hand side

Δ(ρu2 + ρa2) = 2ρ̂ûΔu + û2Δρ + a2Δρ .

The right–hand side of (11.89) can be expressed as

(α̂1 + α̂2)(û2 + a2) + 2ûa(α̂2 − α̂1) .

Therefore, after use of (11.86), equation (11.89) becomes an identity and thus
the second set of equations in (11.87), to order O(Δ2), is identically satisfied.

The Algebraic Problem for the Average State

For the general case in which the data states UL and UR are not necessar-
ily close, the Roe–Pike approach proposes the algebraic problem of finding the
Roe–Pike averages ρ̃ and ũ such that the two conditions (11.75) and (11.76)
are valid, namely

ΔU =
2∑

k=1

α̃kK̃
(k)

, ΔF =
2∑

k=1

α̃kλ̃kK̃
(k)

. (11.90)

Here, according to (11.74), α̃k, λ̃k and K̃
(k)

are obtained by evaluating the
available analytical expressions at the sought averages ρ̃, ũ. For the wave
strengths these are given by (11.86). For the eigenvalues and right eigenvectors
they are given by (11.78). We then set

α̃1 =
1
2

[
Δρ − ρ̃

Δu

a

]
, α̃2 =

1
2

[
Δρ + ρ̃

Δu

a

]
, (11.91)
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λ̃1 = ũ − a , λ̃2 = ũ + a , (11.92)

K̃
(1)

=
[

1
ũ − a

]
, K̃

(2)
=
[

1
ũ + a

]
. (11.93)

Writing conditions (11.90) in full produces

Δρ = α̃1 + α̃2 , (11.94)

Δ(ρu) = α̃1(ũ − a) + α̃2(ũ + a) , (11.95)

Δ(ρu) = λ̃1α̃1 + λ̃2α̃2 , (11.96)

Δ(ρu2 + a2ρ) = λ̃1α̃1(ũ − a) + λ̃2α̃2(ũ + a) . (11.97)

These are a set of four non–linear algebraic equations for the two unknowns ρ̃
and ũ. Note however that, by virtue of (11.91), (11.94) is an identity, for any
average value ρ̃. Also, (11.95) is identical to (11.96) and thus we work with
(11.96) and (11.97) only. From equation (11.96) one obtains

Δ(ρu) = ũ(α̃1 + α̃2) + a(α̃2 − α̃1).

Use of (11.91) here leads to

Δ(ρu) = ρ̃Δu + ũΔρ . (11.98)

From (11.97) we write

Δ(ρu2 + ρa2) = (α̃1 + α̃2)(ũ2 + a2) + 2aũ(α̃2 − α̃1) ,

which after using (11.91) and the exact relation

Δ(ρu2 + ρa2) = Δ(ρu2) + a2Δρ

leads to the result
Δ(ρu2) = 2ũρ̃Δu + ũ2Δρ . (11.99)

Elimination of ρ̃ from (11.98) and (11.99) leads to a quadratic equation for ũ,
namely

Δρũ2 − 2Δ(ρu)ũ + Δ(ρu2) = 0 . (11.100)

This equation has two solutions, namely

ũ =
Δ(ρu) ±

√
[Δ(ρu)]2 − ΔρΔ(ρu2)

Δρ
. (11.101)

After using the definition Δr = rR − rL the discriminant is found to be

ρLρR(Δu)2 ,

which simplifies (11.101) to
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ũ =
Δ(ρu) ± Δu

√
ρLρR

Δρ
. (11.102)

The root obtained by taking the negative sign in (11.102) produces the Roe–
averaged velocity

ũ =
√

ρLuL +
√

ρRuR√
ρL +

√
ρR

. (11.103)

Compare (11.103) with (11.43). From (11.98) we obtain

ρ̃ =
√

ρLρR . (11.104)

We have thus found algebraic expressions for the sought Roe–Pike averages ρ̃
and ũ. We observe that the second root obtained by taking the positive sign
in (11.102) leads to the spurious solution

ũ =
√

ρRuR −√
ρLuL√

ρR −√
ρL

. (11.105)

There is a very good reason for rejecting this as a useful solution; in the trivial
case ρL = ρR, uL �= uR the solution ũ is not even defined.

Having found the Roe–Pike averages ρ̃ and ũ we can then compute the wave
strengths α̃k, the eigenvalues λ̃k and the right eigenvectors K̃

(k)
according to

expressions (11.91)–(11.93). The Roe numerical flux Fi+ 1
2

to be used in the
conservative formula (11.2) can now be obtained from any of the relations
(11.27)–(11.29).

11.3.3 The Euler Equations

We solve the Riemann problem (11.4) for the x–split, three dimensional
Euler equations using the Roe–Pike method. Assuming the analytical expres-
sions (11.48)–(11.49) for the eigenvalues and eigenvectors, one then linearises
the equations about a state Û to find analytical expressions for the wave
strengths; this is done under the assumption that both data states UL,UR

are close to Û to O(Δ2). This leads to the linear system

Ut + ÂUx = 0 ,

U(x, t) =
{

UL , x < 0 ,
UR , x > 0 .

⎫
⎪⎬
⎪⎭

(11.106)

The Jacobian matrix Â is obtained by evaluating the exact Jacobian matrix
(11.47) at the state Û; the eigenvalues λ̂i are

λ̂1 = û − â , λ̂2 = λ̂3 = λ̂4 = û , λ̂5 = û + â (11.107)

and the right eigenvectors K̂(i) are
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K̂(1) =

⎡
⎢⎢⎢⎢⎣

1
û − â

v̂
ŵ

Ĥ − ûâ

⎤
⎥⎥⎥⎥⎦

; K̂(2) =

⎡
⎢⎢⎢⎢⎣

1
û
v̂
ŵ

1
2 V̂ 2

⎤
⎥⎥⎥⎥⎦

; K̂(3) =

⎡
⎢⎢⎢⎢⎣

0
0
1
0
v̂

⎤
⎥⎥⎥⎥⎦

K̂(4) =

⎡
⎢⎢⎢⎢⎣

0
0
0
1
ŵ

⎤
⎥⎥⎥⎥⎦

; K̂(5) =

⎡
⎢⎢⎢⎢⎣

1
û + â

v̂
ŵ

Ĥ + ûâ

⎤
⎥⎥⎥⎥⎦

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.108)

By expanding the data jump ΔU onto the right eigenvectors we write

ΔU =
5∑

i=1

α̂iK̂
(i)

(11.109)

The solution of this 5 × 5 linear system will provide analytical expressions
for the wave strengths α̂i. As a matter of fact we can use the solution for
the wave strengths obtained in the Roe original method, (11.68)–(11.70), and
reinterpret the solution appropriately. These are

α̂3 = Δu3 − v̂Δu1 ,

α̂4 = Δu4 − ŵΔu1 ,

α̂2 = γ−1
â2 [Δu1(Ĥ − û2) + ûΔu2 − Δu5] ,

α̂1 = 1
2â [Δu1(û + â) − Δu2 − âα̂2] ,

α̂5 = Δu1 − (α̂1 + α̂2) ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.110)

where

Δu5 = Δu5 − (Δu3 − v̂Δu1)v̂ − (Δu4 − ŵΔu1)ŵ . (11.111)

By applying the operator

Δ(rs) = r̂Δs + ŝΔr + O(Δ2) (11.112)

and neglecting O(Δ2) we arrive at the following solution:

α̂1 =
1

2â2
[Δp − ρ̂âΔu] ,

α̂2 = Δρ − Δp/â2 ,

α̂3 = ρ̂Δv ,

α̂4 = ρ̂Δw ,

α̂5 =
1

2â2
[Δp + ρ̂âΔu]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.113)
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The second step in the Roe–Pike method is to find an average state

W̃ = (ρ̃, ũ, ṽ, w̃, ã)T , (11.114)

such that the algebraic problem posed by the following two sets of equations

ΔU =
5∑

i=1

α̃iK̃
(i)

, (11.115)

ΔF =
5∑

i=1

α̃iλ̃iK̃
(i)

, (11.116)

is satisfied, where

α̃i = α̂i(W̃) , λ̃i = λi(W̃) , K̃
(i)

= K(i)(W̃) , (11.117)

with λi and K(i) given by (11.48)–(11.49) and α̂i given by (11.113). Details
of the algebra for the one–dimensional case are given by Roe and Pike [416].
For the x–split three dimensional case the solution for the average vector W̃
is

ρ̃ =
√

ρLρR ,

ũ =
√

ρLuL +
√

ρRuR√
ρL +

√
ρR

,

ṽ =
√

ρLvL +
√

ρRvR√
ρL +

√
ρR

,

w̃ =
√

ρLwL +
√

ρRwR√
ρL +

√
ρR

,

H̃ =
√

ρLHL +
√

ρRHR√
ρL +

√
ρR

,

ã =
(
(γ − 1)(H̃ − 1

2Ṽ
2
)
) 1

2
,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.118)

where Ṽ
2

= ũ2 + ṽ2 + w̃2. These are identical to the Roe averages obtained
by the original Roe method, see (11.60). Now α̃i, λ̃i and K̃

(i)
are computed

according to (11.117) and then the Roe intercell flux Fi+ 1
2

follows from any
of the formulae (11.27)–(11.29).

An Algorithm

To compute the Roe numerical flux Fi+ 1
2

according to any of the formulae
(11.27)–(11.29) we do the following:
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(1) Compute the Roe average values according to (11.118).
(2) Compute the eigenvalues λ̃i using the analytical expressions (11.107) eval-

uated on the averages (11.118).
(3) Compute the right eigenvectors using the analytical expressions (11.108)

evaluated on the averages (11.118).
(4) Compute the wave strengths using the analytical expressions (11.113)

evaluated on the averages (11.118).
(5) Use all of the above quantities to compute Fi+ 1

2
, according to any of the

formulae (11.27)–(11.29).

Before applying the scheme as described to practical problems, a modi-
fication to handle sonic flow correctly is required. This is the subject of the
next section.

11.4 An Entropy Fix

Linearised Riemann problem solutions consist of discontinuous jumps only.
See Sect. 2.3 of Chap. 2. This can be a good approximation for contacts and
shocks, in that the discontinuous character of the wave is correct, although
the size of the jump may not be correctly approximated by the linearised
solution. Rarefaction waves, on the other hand, carry a continuous change
in flow variables, and as time increases, they tend to spread; that is spatial
gradients tend to decay. Quite clearly then, the linearised approximation via
discontinuous jumps is grossly incorrect. In a practical computational set up
however, it is only in the case in which the rarefaction wave is transonic, or
sonic, where linearised approximations encounter difficulties; these show up
in the form of unphysical, entropy violating discontinuous waves, sometimes
called rarefaction shocks.

11.4.1 The Entropy Problem

Consider the Riemann problem whose initial data is that of Test 1 in Table
11.1. The structure of the exact solution of this problem, depicted in Fig. 11.2,
contains a left sonic rarefaction, a contact discontinuity of speed u∗ and a right
shock wave. As the left rarefaction is sonic the eigenvalue λ1 = u− a changes
from negative to positive, as the wave is crossed from left to right. There is a
point at which λ1 = u − a = 0, giving the sonic flow condition u = a.

λ1(UL) = SHL = uL − aL < 0

is the speed of the head of the rarefaction and

λ1(U∗L) = STL = u∗ − a∗L > 0

is the speed of the tail. Fig. 11.4 shows the numerical (symbols) and exact
(line) solutions of this problem, where the numerical solution is obtained by
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Roe’s method as described so far. The numerical solution within the rarefac-
tion exhibits a discontinuity within the wave; this discontinuity is unphysical,
it violates the entropy condition. See Sect. 2.4.2 of Chap. 2. Recall that a
physically admissible discontinuity of speed S requires Sb ≥ S ≥ Sa where Sb

and Sa are characteristic speeds behind and ahead of the wave respectively.
That is, characteristics move into the discontinuity; the limiting case of par-
allel characteristic speeds is that of a contact discontinuity. For the example
above, the opposite happens. See Sect. 2.4.2 of Chap. 2, for a discussion on
entropy–violating solutions.

L R

*L *R

*

U

a a
u u

U

*

= u+a(

)

)

( = u
1

Left sonic rarefaction

λ

λ2

3

t

u - a )
HL TL

x
0

=S S( λ

Fig. 11.2. Left transonic rarefaction wave. Left eigenvalue λ1 = u− a changes sign
as the wave is crossed from left to right

Roe’s solver can be modified so as to avoid entropy violating solutions. This
is usually referred to as an entropy fix. Harten and Hyman [243] suggested
an entropy fix for Roe’s method, which has widespread use. Other ways of
correcting the scheme have been discussed by Roe and Pike [416], Roe [414],
Sweby [469] and Dubois and Mehlman [167], amongst others. Here we present
the details of the Harten–Hyman approach.

11.4.2 The Harten–Hyman Entropy Fix

The general approach is presented in the original paper of Harten and
Hyman of 1983 [243]. A description can also be found in [308]. The presen-
tation here is tailored specifically to the time–dependent Euler equations, for
which we only need to consider the left and right non–linear waves associated
with the eigenvalues λ1 = u − a and λ5 = u + a respectively. Our version of
the Harten–Hyman entropy fix relies on estimates for particle velocity u∗ and
sound speeds a∗L, a∗R in the Star Region; see Figs. 11.1 and 11.2. Various
ways of finding these are given in Sect. 11.4.3.
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Left Transonic Rarefaction

Consider the situation depicted in Fig. 11.2. Assuming u∗ and a∗L are
available, we compute the speeds

λL
1 = uL − aL ; λR

1 = u∗ − a∗L . (11.119)

If
λL

1 < 0 < λR
1 , (11.120)

then the left wave is a transonic, or sonic, rarefaction wave. In these cir-
cumstances the entropy fix is required and is enforced as follows. The single
jump

U∗L − UL = α̃1K̃
(1)

(11.121)

travelling with speed λ̃1 is split into two smaller jumps USL −UL and U∗L −
USL travelling respectively at speeds λL

1 and λR
1 , where USL is a transonic

state yet to be found; see Fig. 11.3. Application of the integral form of the
conservation laws, see Chaps. 3 and 10, gives

λR
1 (USL − U∗L) + λL

1 (UL − USL) = λ̃1(UL − U∗L) , (11.122)

from which we obtain

USL =
(λ̃1 − λL

1 )UL + (λR
1 − λ̃1)U∗L

λR
1 − λL

1

. (11.123)

To compute the Roe intercell flux we adopt the one–sided formulae (11.27),
namely

U

λ λ
λ

U

x

U U

U

L

11
L R

1

*L

L

*L

SL

t

0

Fig. 11.3. Entropy fix for left transonic rarefaction wave. Single jump U∗L − UL

travelling with speed λ̃1 is split into the two jumps USL − UL and U∗L − USL

travelling with speeds λL
1 and λR

1 . Profile shown is a representation a single variable
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Fi+ 1
2

= FL +
∑

λ̃k≤0

λ̃kα̃kK̃
(k)

, (11.124)

where in the present case the summation applies to the single jump USL−UL

travelling with speed λL
1 < 0; in view of (11.122) the jump is

USL − UL =
(λR

1 − λ̃1)
(λR

1 − λL
1 )

(U∗L − UL) . (11.125)

But the Roe approximation gives

U∗L − UL = α̃1K̃
(1)

(11.126)

and thus the flux jump (ΔF)L
1 across the wave of speed λL

1 is

(ΔF)L
1 = λL

1

(
λR

1 − λ̃1

λR
1 − λL

1

)
α̃1K̃

(1)
. (11.127)

By defining the new wave speed

λ1 = λL
1

(
λR

1 − λ̃1

λR
1 − λL

1

)
, (11.128)

the intercell flux (11.27) becomes

Fi+ 1
2

= FL + λ1α̃1K̃
(1)

. (11.129)

Right Transonic Rarefaction

For a right transonic rarefaction, the entropy fix procedure is entirely anal-
ogous to the left rarefaction case. Assuming the speeds u∗ and a∗R are avail-
able, we compute the two wave speeds

λL
5 = u∗ + a∗R , λR

5 = uR + aR . (11.130)

If
λL

5 < 0 < λR
5 (11.131)

then the right wave is a transonic rarefaction wave. The transonic state USR

is defined between the waves of speeds λL
5 and λR

5 and is given by

USR =
(λR

5 − λ̃5)UR + (λ̃5 − λL
5 )U∗R

λR
5 − λL

5

. (11.132)

Next we define the new wave speed

λ5 = λR
5

(
λ̃5 − λL

5

λR
5 − λL

5

)
(11.133)
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and then use the one–sided flux formula (11.28) to compute the numerical
flux. The resulting Roe numerical flux is

Fi+ 1
2

= FR − λ5α̃5K̃
(5)

. (11.134)

In the present version of the Harten–Hyman entropy fix we have used
the one–sided flux formulae (11.27) and (11.28). The procedure can be easily
adapted for use in conjunction with the centred formulae (11.29), if desired.

Next we discuss ways of finding the speeds u∗, a∗L and a∗R needed to
implement the entropy fix.

11.4.3 The Speeds u∗, a∗L, a∗R

The star states U∗L, U∗R are required in order to obtain the speeds u∗,
a∗L, a∗R and thus the characteristic speeds in (11.119) and (11.130). We
present various possible alternatives.

The Roe–Averaged States

Given the Roe–averaged α̃i and K̃
(i)

one can find the state U∗L as

U∗L = UL + α̃1K̃
(1)

, (11.135)

which leads to

ρ∗L = ρL + α̃1 , u∗ =
ρLuL + α̃1(ũ − ã)

ρL + α̃1
,

p∗ = (γ − 1)
[
EL + α̃1(H̃ − ũã) − 1

2ρ∗Lu2
∗

]
.

⎫
⎪⎬
⎪⎭

(11.136)

Then we compute the sound speed

a∗L =
√

γp∗
ρ∗L

(11.137)

and thus the speeds λL
1 and λR

1 in Eq. (11.119) follow. For the right wave one
has

U∗R = UR − α̃5K̃
(5)

, (11.138)

which produces

ρ∗R = ρR − α̃5 , u∗ =
ρRuR − α̃5(ũ + ã)

ρR − α̃5
,

p∗ = (γ − 1)
[
ER − α̃5(H̃ + ũã) − 1

2ρ∗Ru2
∗

]
.

⎫
⎪⎬
⎪⎭

(11.139)

The sound speed follows as a∗R =
√

γp∗
ρ∗R

and thus the wave speeds λL
5 and

λR
5 in Eq. (11.130) are determined.
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The PVRS Approximation

Another way of estimating the required wave speeds is by using the
Primitive–Variable Riemann Solver (PVRS) of Toro [502] presented in Sect.
9.3 of Chap. 9. The relevant solution values are

p∗ = 1
2 (pL + pR) + 1

2 (uL − uR)ρ̄ā ,
u∗ = 1

2 (uL + uR) + 1
2 (pL − pR)/(ρ̄ā) ,

ρ∗L = ρL + (uL − u∗)ρ̄/ā ,
ρ∗R = ρR + (u∗ − uR)ρ̄/ā ,

⎫
⎪⎪⎬
⎪⎪⎭

(11.140)

with
ρ̄ =

1
2
(ρL + ρR) , ā =

1
2
(aL + aR). (11.141)

In order to avoid negative pressures we recommend replacing the linearised
solution p∗ by max {0, p∗}. The sound speeds a∗L, a∗R are then computed in
the usual way.

TRRS Approximation

Another possibility is to use the Two–Rarefaction Riemann Solver (TRRS)
discussed in Chap. 9, Sect. 9.4.1. The pressure p∗ is given by

p∗ =

[
aL + aR − γ−1

2 (uR − uL)
aL/pz

L + aR/pz
R

] 1
z

, (11.142)

with z = γ−1
2γ . For the left non–linear wave the sound speed and particle

velocity follow directly as

a∗L = aL(p∗/pL)z , u∗ = uL +
2

(γ − 1)
(aL − a∗L) . (11.143)

For the right non–linear wave we have

a∗R = aR(p∗/pR)z , u∗ = uR +
2

(γ − 1)
(a∗R − aR) . (11.144)

Hence speeds (11.119) and (11.130) are determined.

Other Alternatives

Both the PVRS and the Roe linearised solutions for the speeds u∗, a∗L,
a∗R may fail in the vicinity of low density flow [182]. The TRRS approxima-
tion presented above would not suffer from such difficulties; in fact, in the
case in which both non–linear waves are rarefactions such an approximation
would be exact. But as seen in equations (11.142)–(11.144) there are four
fractional powers to be computed in each case, which makes this approxima-
tion rather expensive to use. A robust and yet more efficient scheme is the
Two–Shock Riemann Solver (TSRS) [509] of Sect. 9.4.2, Chap. 9. Even better
is the adaptive Riemann solver scheme of Sect. 9.5.2, Chap. 9.
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11.5 Numerical Results and Discussion

Here we illustrate the performance of Godunov’s first–order upwind method
used in conjunction with the Roe approximate Riemann solver, discuss the
results and point directions for extending the method.

11.5.1 The Tests

We select five test problems for the one–dimensional, time dependent Euler
equations for ideal gases with γ = 1.4; these have exact solutions. In all
chosen tests, data consists of two constant states WL = [ρL, uL, pL]T and
WR = [ρR, uR, pR]T , separated by a discontinuity at a position x = x0. The
states WL and WR are given in Table 11.1. The exact and numerical solutions
are found in the spatial domain 0 ≤ x ≤ 1. The numerical solution is computed
with M = 100 cells and the CFL condition is as for all previous computations,
see Chap. 6; the chosen Courant number coefficient is Ccfl = 0.9; boundary
conditions are transmissive.

The exact solutions were found by running the code HE-E1RPEXACT of
the library NUMERICA [519] and the numerical solutions were obtained by
running the code HE-E1GODFLUX of NUMERICA.

Test ρL uL pL ρR uR pR

1 1.0 0.75 1.0 0.125 0.0 0.1
2 1.0 -2.0 0.4 1.0 2.0 0.4
3 1.0 0.0 1000.0 1.0 0.0 0.01
4 5.99924 19.5975 460.894 5.99242 -6.19633 46.0950
5 1.0 -19.59745 1000.0 1.0 -19.59745 0.01

Table 11.1. Data for five test problems with exact solution, for the
time–dependent, one dimensional Euler equations

Test 1 is a modified version of Sod’s problem [453]; the solution has a right
shock wave, a right travelling contact wave and a left sonic rarefaction wave;
this test is useful in assessing the entropy satisfaction property of numerical
methods. The solution of Test 2 consists of two symmetric rarefaction waves
and a trivial contact wave; the Star Region between the non–linear waves is
close to vacuum, which makes this problem a suitable test for assessing the
performance of numerical methods for low–density flows. Test 3 is designed to
assess the robustness and accuracy of numerical methods; its solution consists
of a strong shock wave of shock Mach number 198, a contact surface and a
left rarefaction wave. Test 4 is also a very severe test, its solution consists of
three strong discontinuities travelling to the right. A detailed discussion on the
exact solution of the test problems is found in Sect. 4.3.3 of Chap. 4. Test 5 is
also designed to test the robustness of numerical methods but the main reason
for devising this test is to assess the ability of numerical methods to resolve
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slowly–moving contact discontinuities. The exact solution of Test 5 consists of
a left rarefaction wave, a right–travelling shock wave and a stationary contact
discontinuity. For each test problem we select a convenient position x0 of the
initial discontinuity and the output time. These are stated in the legend of
each figure displaying computational results.

11.5.2 The Results

The computed results for Tests 1 to 5 using the Godunov first–order
method in conjunction with the Roe approximate Riemann solver are shown
in Figs. 11.4–11.8, where the numerical solution is shown by the symbols and
the full line denotes the exact solution. As discussed earlier, Fig. 11.4 shows
the results obtained from the Roe Riemann solver without the entropy fix and,
as expected, the computed solution is obviously incorrect. Fig. 11.5 shows the
corresponding results from the modified scheme using the Harten–Hyman en-
tropy fix presented in the previous section. These results are, to plotting accu-
racy, almost indistinguishable from those obtained by the Godunov method in
conjunction with the exact Riemann solver; see Fig. 6.8, Chap. 6. As a matter
of fact, near the sonic point, the modified Roe solution looks slightly better;
it also looks better than the Flux Vector Splitting solution, with the van Leer
splitting, see Fig. 8.4 of Chap. 8. The HLL and HLLC solutions of Chap.
10, still seem to be the most accurate near sonic points. Compare also with
the Osher results of Chap. 12. As anticipated, the Roe solver will fail near
low–density flows; Test 2 contains two strong rarefactions with a low density
and low pressure region in the middle and the Roe method, as described, does
actually fail on this test. To compute successfully this kind of flows one must
modify the Roe solver following the methodology of Einfeldt et. al. [182]. The
results for Tests 3 and 4 are virtually identical to those of Godunov’s method
with the exact Riemann solver, as the reader can verify by comparing Figs.
11.6 and 11.7 with Figs. 6.10 and 6.11 of Chap. 6. The results for Test 5 are
also very similar to those obtained from the Godunov method with the exact
Riemann solver; note however that the (non–isolated) stationary contact is
not as sharply resolved as with the approximate HLLC Riemann solver of
Chapt. 10, see Fig. 10.9. As expected of course, the resolution of the station-
ary contact is better than that of the Flux Vector Splitting Method with the
Steger–Warming splitting and that with the van Leer splitting, see Figs. 8.14
and 8.15 of Chap. 8.

11.6 Extensions

The Roe approximate Riemann solver, following the original method of
Roe and that of Roe and Pike, has been presented and illustrated via the
isothermal equations of gas dynamics and the split three–dimensional, time
dependent Euler equations. Details of the Roe solver for the three–dimensional
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steady supersonic Euler equations are found in the original paper of Roe [407].
For one–dimensional applications all the required information is contained in
this chapter and Chap. 6. Second–order Total Variation Diminishing (TVD)
extensions of the schemes are presented in Chap. 13 for scalar problems and
in Chap. 14 for non–linear one dimensional systems. In chap. 15 we present
techniques that allow the extension of these schemes to solve problems with
source terms. In Chap. 16 we study techniques to extend the methods of this
chapter to three–dimensional problems.
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Fig. 11.4. Godunov’s method with Roe’s Riemann solver (no entropy fix) for Test
1, x0 = 0.3. Numerical (symbol) and exact (line) solutions compared at time 0.2
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Fig. 11.5. Godunov’s method with Roe’s Riemann solver applied to Test 1, with
x0 = 0.3. Numerical (symbol) and exact (line) solutions are compared at time 0.2
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Fig. 11.6. Godunov’s method with Roe’s Riemann solver applied to Test 3, with
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Fig. 11.7. Godunov’s method with Roe’s Riemann solver applied to Test 4, with
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Fig. 11.8. Godunov’s method with Roe’s Riemann solver applied to Test 5, with
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The Riemann Solver of Osher

Osher’s approximate Riemann solver is one of the earliest in the literature.
The bases of the approach were communicated in the papers by Engquist and
Osher in 1981 [185] and Osher and Solomon the following year [372]. Appli-
cations to the Euler equations were published later in a paper by Osher and
Chakravarthy [370]. Since then the scheme has gained increasing popularity,
particularly within the CFD community concerned with Steady Aerodynam-
ics; see for example the works of Spekreijse [458], [459], Hemker and Spekreijse
[247], Koren and Spekreijse [290], Qin et. al. [393], [394], [395], [396], [390],
[391], [392]. One of the attractions of Osher’s scheme is the smoothness of the
numerical flux; the scheme has also been proved to be entropy satisfying and
in practical computations it is seen to handle sonic flow well. A distinguish-
ing feature of the Osher scheme is its performance near slowly–moving shock
waves; see Roberts [406], Billett and Toro [60] and Arora and Roe [19]. The
scheme is closely related to the Flux Vector Splitting approach described in
Chap. 8 and, as Godunov’s method of Chap. 6, it is a generalisation of the
CIR scheme described in Chap. 5 for linear hyperbolic systems with constant
coefficients. For a scalar conservation law, van Leer [562] studied in detail
the relationship between the Osher scheme and some other Riemann solvers
available at the time. Useful background material for reading this chapter is
found in the previous Chaps. 2, 3, 5, 6, 8 and 9.

The derivation of the Osher intercell numerical flux depends on integra-
tion in phase space. Such operation involves the choice of integration paths,
intersection points and sonic points. The integration paths are taken to be
integral curves associated with the set of right eigenvectors and to date there
are essentially two ways of ordering these integration paths. The most recent
approach orders the integration paths such that these correspond to physically
meaningful relations across wave families in physical space. In the current lit-
erature this is called physical ordering or P–ordering. Osher’s original scheme
utilises the ordering of paths that is precisely the inverse of the P–ordering;
this is usually called O–ordering. Intersection and sonic points are computed
via Generalised Riemann Invariants.

E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 377
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The purpose of this chapter is to present the Osher scheme in a way that
can be directly applied to practical problems involving hyperbolic conserva-
tion laws. We first describe the principles behind Osher’s method as applied
to any non–linear system of hyperbolic conservation laws. We then give de-
tailed applications of the approach to a single scalar equation, to the isentropic
equations of Gas Dynamics and to the split three–dimensional time depen-
dent Euler equations for ideal gases. For one–dimensional applications, all the
required information is found in this chapter and in Chap. 6.

12.1 Osher’s Scheme for a General System

Here we give, in a self–contained manner, some of the basic aspects of the
Osher scheme for a general non–linear system of hyperbolic conservation laws.

12.1.1 Mathematical Bases

Osher’s approach to upwind differencing provides an approximation to the
Godunov numerical flux of Chap. 6 and results from evaluating the physical
flux F(U) at various states Uk; these include the data states UL, UR, intersec-
tion points and sonic points. Consider a system of m hyperbolic conservation
laws

Ut + F(U)x = 0 (12.1)

and the conservative scheme

Un+1
i = Un

i +
Δt

Δx

[
Fi− 1

2
− Fi+ 1

2

]
(12.2)

to solve it numerically. The objective of this chapter is to provide an expression
for the numerical flux Fi+ 1

2
following Osher’s approach.

We assume (12.1) to be strictly hyperbolic with eigenvalues

λ1(U) < λ2(U) < · · · < λm(U) (12.3)

and corresponding right eigenvectors

K(1)(U) , K(2)(U) , · · · , K(m)(U) .

From hyperbolicity, the Jacobian matrix

A(U) = ∂F/∂U (12.4)

is diagonalisable, that is

A(U) = K(U)Λ(U)K−1(U) , (12.5)

where K(U) is the non–singular matrix whose columns are the right eigen-
vectors of A(U), that is
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K(U) =
[
K(1)(U);K(2)(U); · · · ;K(m)(U)

]
(12.6)

and Λ(U) is the diagonal matrix formed by the eigenvalues λi(U)

Λ(U) =

⎛
⎜⎜⎜⎝

λ1(U) · · · 0
...

...

0 · · · λm(U)

⎞
⎟⎟⎟⎠ . (12.7)

See Sect. 2.3 of Chap. 2 and Sect. 3.2 of Chap. 3. As done in Sect. 2.3 of Chap.
2 for linear systems with constant coefficients, we introduce the following
notation

λ+
i (U) = max(λi(U), 0) ; λ−

i (U) = min(λi(U), 0) (12.8)

to define diagonal matrices

Λ+(U) =

⎛
⎜⎜⎜⎝

λ+
1 (U) · · · 0

...
...

0 · · · λ+
m(U)

⎞
⎟⎟⎟⎠ , (12.9)

Λ−(U) =

⎛
⎜⎜⎜⎝

λ−
1 (U) · · · 0

...
...

0 · · · λ−
m(U)

⎞
⎟⎟⎟⎠ , (12.10)

and

|Λ(U)| =

⎛
⎜⎜⎜⎝

|λ1(U)| · · · 0
...

...

0 · · · |λm(U)|

⎞
⎟⎟⎟⎠ . (12.11)

We also introduce

|A(U)| = K(U)|Λ(U)|K−1(U) . (12.12)

But
|λi(U)| = λ+

i (U) − λ−
i (U)

and hence
|Λ(U)| = Λ+(U) − Λ−(U) ,

which if substituted in (12.12) gives

|A(U)| = A+(U) − A−(U) , (12.13)

with
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A+(U) = K(U)Λ+(U)K−1(U) (12.14)

and
A−(U) = K(U)Λ−(U)K−1(U) . (12.15)

These matrices produce a splitting of the Jacobian matrix as

A(U) = A+(U) + A−(U) , (12.16)

where A+(U) has positive or zero eigenvalues and A−(U) has negative or zero
eigenvalues. Note that this is a direct generalisation to non–linear systems of
the Jacobian splitting for linear systems with constant coefficients performed
in Sect. 5.4 of Chap. 5. See also Sect. 8.2.2 of Chap. 8 on the Flux Vector
Splitting approach.

12.1.2 Osher’s Numerical Flux

Osher’s approach assumes that there exist vector–valued functions F+(U)
and F−(U) that satisfy

F(U) = F+(U) + F−(U) (12.17)

and
∂F+

∂U
= A+(U) ;

∂F−

∂U
= A−(U) . (12.18)

If the initial data UL, UR of the Riemann problem for the conservation laws
(12.1) is denoted by

U0 ≡ UL = Un
i ; U1 ≡ UR = Un

i+1 , (12.19)

then the corresponding numerical flux to be used in (12.2) is

Fi+ 1
2

= F+(U0) + F−(U1) . (12.20)

Sect. 8.2.2 of Chap. 8. Using the integral relations
∫ U1

U0

A−(U)dU = F−(U1) − F−(U0)

and ∫ U1

U0

A+(U)dU = F+(U1) − F+(U0) ,

we can express (12.20) in three different forms, namely

Fi+ 1
2

= F(U0) +
∫ U1

U0

A−(U)dU , (12.21)
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Fi+ 1
2

= F(U1) −
∫ U1

U0

A+(U)dU (12.22)

and

Fi+ 1
2

=
1
2

[F(U0) + F(U1)] −
1
2

∫ U1

U0

|A(U)|dU . (12.23)

Compare these flux formulae with those of Sect. 5.4.2 of Chap. 5 for linear
systems with constant coefficients and with those for the Roe flux in Sect.
11.1.3 of Chap. 11.

The integration with respect to U in (12.21)–(12.23) is carried out in phase
space Rm. Elements of this vector space are vectors

U = [u1, u2, · · · , um]T , (12.24)

whose components ui are real numbers. In general, the integrals (12.21)–
(12.23) depend on the integration path chosen. Osher’s approach is to select
particular integration paths so as to make the actual integration tractable.

12.1.3 Osher’s Flux for the Single–Wave Case

The solution of the Riemann problem for (12.1) with data U0,U1 has
m waves, in general. Osher’s scheme utilises partial information on the so-
lution to provide integration paths to evaluate the integrals (12.21)–(12.23),
which in turn produce an expression for the numerical flux. Consider first the
simplest case in which all waves in the solution of the Riemann problem, ex-
cept for that associated with the eigenvalue λj(U) and eigenvector K(j)(U),
are trivial. That is, the states U0 and U1 are connected by a single j–wave.
Associated with any vector field K(k)(U), there are integral curves. These
have the property that their tangent lies in the direction of the eigenvector
K(k)(U), at any point U in phase space. For background on integral curves
see [308] and [596]. An integration path Ik(U) is now taken to be an integral
curve of K(k)(U) connecting U0 and U1. It is important to note here that the
eigenvector K(k)(U) and the eigenvalue λk(U) associated with the relevant
integration path are not necessarily those corresponding to the non–trivial
j–wave family in question.

Suppose Ik(U) is parameterised by U(ξ), 0 ≤ ξ ≤ ξ1, and

U0 = U(0) , U1 = U(ξ1) ; (12.25)

then
dU(ξ)

dξ
= K(k)(U(ξ)) . (12.26)

By performing a change of variables, utilising (12.25)–(12.26) and the fact
that λ−

k (U) is an eigenvalue of A−(U) with eigenvector K(k)(U), we have
∫ U1

U0

A−(U)dU =
∫ ξ1

0

λ−
k [U(ξ)]K(k)[U(ξ)]dξ . (12.27)
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We first consider the case in which the k–th field is linearly degenerate, that
is λk(U) is constant along Ik(U); see Sect. 2.4.3 of Chap. 2 and Sect. 3.1.3
of Chap. 3. If λk(U) ≥ 0 ∀U along Ik(U), then λ−

k (U) = 0, see (12.8), and
thus from (12.27) we have

∫ U1

U0

A−(U)dU = 0 . (12.28)

If λk(U) ≤ 0 ∀U along Ik(U), then manipulations of (12.27) give

∫ U1

U0

A−(U)dU =
∫ ξ1

0

dF
dU

[U(ξ)]
dU
dξ

dξ

and thus ∫ U1

U0

A−(U)dU = F(U1) − F(U0) . (12.29)

Hence, if the k–field is linearly degenerate, use of (12.28) and (12.29) in the
one–sided flux formula (12.21) gives the Osher’s intercell flux as

Fi+ 1
2

=

⎧
⎨
⎩

F(U0) if λk ≥ 0

F(U1) if λk < 0 .
(12.30)

An entirely equivalent derivation of the Osher flux results from using the flux
formulae (12.22) or (12.23). Note that in the case of a single wave associated
with a linearly degenerate field, the Osher flux is identical to the Godunov
flux if j = k.

We next consider the case in which the k–th field is genuinely non–linear,
that is the eigenvalue λk(U) is monotone along Ik(U). This means that λk(U)
changes sign at most once, along Ik(U). If λk(U) does not change sign along
Ik(U) then this is simply like the linearly degenerate case above and the flux
is given by (12.30). If λk(U) changes sign at ξ = ξS , then there are two cases
to consider. First assume

λk[U(ξ)] ≥ 0 , ∀ξ ∈ [0, ξS ] ; λk[U(ξ)] ≤ 0 , ∀ξ ∈ [ξS , ξ1] .

Then (12.27) can be split into an integral between 0 and ξS and an integral
between ξS and ξ1. The first integral is zero, as λ−

k (U) = min(λk(U), 0) and
λk(U) ≥ 0, see (12.8). The second integral gives

∫ ξ1

ξS

dF
dU

[U(ξ)]
dU
dξ

dξ = F(U1) − F(US) ,

where US = U(ξS) and is called a sonic point. The case

λk[U(ξ)] ≤ 0 , ∀ξ ∈ [0, ξS ] ; λk[U(ξ)] ≥ 0 , ∀ξ ∈ [ξS , ξ1]
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can be treated in a similar way to give

∫ U1

U0

A−(U)dU = F(US) − F(U0) .

Collecting results, for a single wave, we have

∫ U1

U0

A−(U)dU =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if λk(U) ≥ 0 ,

F(U1) − F(U0) if λk(U) ≤ 0 ,

F(U1) − F(US) if λk(U0) ≥ 0 , λk(U1) ≤ 0 ,
λk(US) = 0 ,

F(US) − F(U0) if λk(U0) ≤ 0 , λk(U1) ≥ 0 ,
λk(US) = 0 .

By substituting these expressions into the one–sided flux formula (12.21) we
obtain the Osher intercell flux, for the case in which the states U0 and U1

are connected by the single j–wave.

Fi+ 1
2

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(U0) , λk(U) ≥ 0 ,

F(U1) , λk(U) ≤ 0 ,

F(U0) + F(U1) − F(US) , λk(U0) ≥ 0 , λk(U1) ≤ 0 ,
λk(US) = 0 ,

F(US) , λk(U0) ≤ 0 , λk(U1) ≥ 0 ,
λk(US) = 0 .

(12.31)

These results can be applied directly to any scalar, non–linear conservation
law

ut + f(u)x = 0 . (12.32)

12.1.4 Osher’s Flux for the Inviscid Burgers Equation

Consider (12.32) with flux function

f(u) =
1
2
u2 . (12.33)

This gives the inviscid Burgers equation; see Sect. 2.4.2 of Chap. 2. Recall
that the exact solution of the Riemann problem for (12.32)–(12.33) with data
uL ≡ u0, uR ≡ u1 is

u(x/t) =

{
u0 if x/t ≤ S = 1

2 (u0 + u1)

u1 if x/t > S
(12.34)
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when u0 > u1 (shock case), and

u(x/t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

u0 if x/t ≤ u0 ,

x/t if u0 ≤ x/t ≤ u1 ,

u1 if x/t ≥ u1 ,

(12.35)

when u0 ≤ u1 (rarefaction case). As, trivially, the only eigenvalue is the char-
acteristic speed λ = u, direct application of (12.31) gives

Fi+ 1
2

=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f(u0) if u0, u1 > 0 ,

f(u1) if u0, u1 < 0 ,

f(u0) + f(u1) if u0 ≥ 0 ≥ u1 ,

0 if u0 ≤ 0 ≤ u1 .

(12.36)

At the sonic point uS = 0 and thus f(uS) = 0. Note that the Godunov flux
fgod

i+ 1
2
, obtained from the exact solution to the Riemann problem, is identical

to Osher’s flux (12.36), except in the case of a transonic shock (u0 ≥ 0 ≥ u1),
where

fgod

i+ 1
2

=
{

f(u0) if S ≥ 0 ,
f(u1) otherwise .

For a full discussion on the relationship between the Godunov scheme, with the
exact Riemann solver, and approximate Riemann solvers, including Osher’s
scheme, see the paper by van Leer [562].

12.1.5 Osher’s Flux for the General Case

In the previous section we analysed Osher’s numerical flux for the case of
two states U0,U1 connected by a single wave, where an integration path was
chosen to be tangential to a right eigenvector. For the general case of m wave
families Osher chooses a set {Ik(U)}, k = 1, · · · ,m, of partial integration
paths such that Ik(U) is tangential to K(k)(U) and two successive paths
Ik(U) and Ik+1(U) intersect at a single point

Uk/m = Ik(U) ∩ Ik+1(U) (12.37)

in phase space, called an intersection point. The data points U0 and U1 are
now to be interpreted as

U0 ≡ U(k−1)/m , U1 ≡ Uk/m .

The total integration path is the union of all partial paths, namely

I(U) = ∪Ik(U) . (12.38)
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Fig. 12.1 illustrates a choice of integration paths for the case of a 3× 3 hyper-
bolic system such as the one–dimensional, time dependent Euler equations.
The vectors U0,U1/3,U2/3 and U1 are vectors in phase space R3 and can be
thought of as being the four constant states arising in the exact solution to
the corresponding Riemann problem represented in physical space x–t in Fig.
12.1. See Chap. 4 for details of the exact solution of the Riemann problem
for the Euler equations. The points U 1

3
and U 2

3
are the intersection points in

phase space, and the points US0 and US1 are a representation of the potential
sonic points that may arise from the non–linear fields associated with λ1(U)
and λ3(U).

10

1

2U

U

U U

I

U

3

3(U) (U) (U)2

1/3 2/3

S0 S1

1

U

λ λ λ

I

I

0
x

t

Fig. 12.1. Possible configuration of integration paths Ik(U), intersection points
U 1

3
, U 2

3
and sonic points US0, US1 in physical space x–t for a 3 × 3 system

For the general case, and assuming for the moment that the intersection
points (12.37) and sonic points are known, the integration along I(U) to
evaluate (12.21), say, can now be performed by integrating along each partial
integration path Ik(U). But since these have been chosen to be tangential
to the corresponding eigenvector K(k)(U), the results of the previous section,
see (12.31), can now be applied directly. The determination of the intersection
points Uk/m and sonic points requires extra information about the solution of
the Riemann problem. Traditionally, these have been determined by the use
of Generalised Riemann Invariants, in at least two different ways, as we shall
see.

12.2 Osher’s Flux for the Isothermal Equations

The isothermal equations

Ut + F(U)x = 0 , (12.39)

U =
[

ρ
ρu

]
, F(U) =

[
ρu

ρu2 + a2ρ

]
, (12.40)
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have Jacobian matrix

A(U) =
[

0 1
a2 − u2 2u

]
(12.41)

with eigenvalues
λ1(U) = u − a , λ2(U) = u + a , (12.42)

and corresponding right eigenvectors

K(1)(U) =
[

1
u − a

]
, K(2)(U) =

[
1

u + a

]
. (12.43)

Recall that the sound speed a is constant here; for details on the isothermal
equations see Sect. 1.6.2 of Chap. 1 and Sect. 2.4.1 of Chap. 2. The structure
of the exact solution to the Riemann problem for (12.39)–(12.40) with initial
data U0,U1 is depicted in Fig. 12.2 in the x–t plane, where the intersection
point U 1

2
is identified with the solution of the Riemann problem between the

non–linear waves; potential sonic points are also shown.

(U)(U)1

S1

0 1

UU

2
1/2U

so

II1 2

UU

λλ

0
x

t

Fig. 12.2. Structure of the solution of the Riemann problem for the isothermal
equations in physical space x–t. Integration paths are I1 and I2, intersection point
is U 1

2
, potential sonic points are US0 and US1; P–ordering

12.2.1 Osher’s Flux with P–Ordering

There are two ways of ordering the integration paths in Osher’s scheme,
namely the original Osher ordering, or O–ordering, and the physical ordering
following valid relations across waves in physical space, or P–ordering. First
we apply P–ordering. It is easy to check, see Sect. 2.4.3 of Chap. 2, that the
Riemann Invariants along the path I1(U), across the left wave in physical
space, give

u 1
2

+ a ln(ρ 1
2
) = u0 + a ln(ρ0) . (12.44)

Similarly, across the right wave
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u 1
2
− a ln(ρ 1

2
) = u0 − a ln(ρ1) . (12.45)

The simultaneous solution for ρ 1
2

and u 1
2

is

u 1
2

=
1
2
(u0 + u1) +

1
2
a ln(ρ0/ρ1) , (12.46)

ρ 1
2

=
√

ρ0ρ1 exp
[
−u1 − u0

2a

]
(12.47)

and thus the intersection point

U 1
2

=
[

ρ 1
2

ρ 1
2
u 1

2

]
(12.48)

is determined.

Behaviour of λ1(U) = u − a
∫ U 1

2
U0

A−(U)dU

1 u0 − a ≥ 0 , u 1
2
− a ≥ 0 0

2 u0 − a ≤ 0 , u 1
2
− a ≤ 0 F 1

2
− F0

3 u0 − a ≥ 0 , u 1
2
− a ≤ 0 F 1

2
− FS0

4 u0 − a ≤ 0 , u 1
2
− a ≥ 0 FS0 − F0

Table 12.1. Evaluation of integral along integration path I1(U) with P–ordering,
Fk ≡ F(Uk)

The left and right sonic points US0 and US1 can easily be found by using
the sonic conditions uS0 = a from λ1 = u − a = 0, uS1 = −a from λ2 =
u + a = 0 and the Riemann Invariants. The result is

ρS0 = ρ0 exp
[
u0 − a

a

]
, uS0 = a , (12.49)

ρS1 = ρ1 exp
[
−u1 + a

a

]
, uS1 = −a . (12.50)
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Behaviour of λ2(U) = u + a
∫ U1

U 1
2

A−(U)dU

1 u 1
2

+ a ≥ 0 , u1 + a ≥ 0 0

2 u 1
2

+ a ≤ 0 , u1 + a ≤ 0 F1 − F 1
2

3 u 1
2

+ a ≥ 0 , u1 + a ≤ 0 F1 − FS1

4 u 1
2

+ a ≤ 0 , u1 + a ≥ 0 FS1 − F 1
2

Table 12.2. Evaluation of integral along integration path I2(U) with P–ordering,
Fk ≡ F(Uk)

It is worth remarking at this stage, that the solution (12.46)–(12.47) for the
intersection point is exact when the left and right waves are both rarefaction
waves; in the general case it is an approximation. It is in fact the Two–
Rarefaction approximation TRRS presented in Sect. 9.4.1 of Chap. 9 for the
Euler equations.

Integration Along Partial Paths

In order to compute the Osher flux we use the one–sided flux formula

Fi+ 1
2

= F0 +
∫ U1

U0

A−(U)dU , (12.51)

where the integral is evaluated along each of the partial integration paths
I1(U) and I2(U) shown in Fig. 12.2. For each case the integration is performed
according to the local characteristic configuration. Tables 12.1 and 12.2 show
the results for I1(U) and I2(U) respectively. As

∫ U1

U0

A−(U)dU =
∫ U 1

2

U0

A−(U)dU +
∫ U1

U 1
2

A−(U)dU , (12.52)

strictly speaking, one should consider all 16 possible characteristic configura-
tions (i, j) that result from Tables 12.1 and 12.2. Closer examination of all
cases reveals that 4 possibilities are unrealisable. These are (1,2), (1,4), (4,2)
and (4,4). For instance case (1,2) contains the requirements



12.2 Osher’s Flux for the Isothermal Equations 389

u 1
2
− a ≥ 0 ; u 1

2
+ a ≤ 0 . (12.53)

But a > 0 and thus these two conditions are contradictory. The remaining
12 cases can be tabulated as in the 3 × 4 Table 12.3, which gives the Osher
intercell numerical flux Fi+ 1

2
. We separate conditions on the intersection point

U 1
2

(first column) from conditions on the data points U0 and U1 (top row).
Note that in general Fi+ 1

2
is a combination of physical flux values at several

points in phase space. In contrast, the Godunov flux obtained from the exact
Riemann solver of Chap. 4 and from the approximate Riemann solvers of
Chaps. 9, 10 and 11, consists of a single value. This has a bearing on the
simplicity and computational efficiency of the schemes.

12.2.2 Osher’s Flux with O–Ordering

In the original Osher scheme the ordering of the partial integration paths
Ik(U) is inverted. Fig. 12.3 illustrates the corresponding path configuration
for the isothermal equations. The integration path connecting U0 to U 1

2
is

tangential to the eigenvector K(2)(U) and that connecting U 1
2

to U1 is tan-
gential to K(1)(U). Compare with Fig. 12.2. The O–ordering of the Osher
scheme is used both for the integration paths as well as for the determination
of the intersection point U 1

2
and the sonic points US0,US1. The data state

U

(U)(U)

S1

0 1

U

I

12

12I

so

U1/2

UU

λλ

0
x

t

Fig. 12.3. Configuration of integration paths Ik(U), intersection point U 1
2

and

potential sonic points US0, US1 in physical space x–t when using the O–ordering

U0 is connected to U 1
2

via the right (relation valid across the right wave)
Riemann Invariant to give

u 1
2
− a ln(ρ 1

2
) = u0 − a ln(ρ0) .

Compare with (12.44). The data point U1 is connected to U 1
2

via the left
(relation valid across the left wave) Riemann Invariant to produce

u 1
2

+ a ln(ρ 1
2
) = u1 + a ln(ρ1) .
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u0 − a ≥ 0
u1 + a ≥ 0

u0 − a ≥ 0
u1 + a ≤ 0

u0 − a ≤ 0
u1 + a ≤ 0

u0 − a ≤ 0
u1 + a ≥ 0

u 1
2
− a ≥ 0 F0

F0 + F1

−FS1

FS0 + F1

−FS1
FS0

u 1
2
− a ≤ 0

u 1
2

+ a ≥ 0

F0 + F 1
2

−FS0

F0 + F 1
2

−FS0 + F1

−FS1

F 1
2

+ F1

−FS1
F 1

2

u 1
2

+ a ≤ 0
F0 + FS1

−FS0

F0 + F1

−FS0
F1 FS1

Table 12.3. Osher’s intercell flux for the isothermal equations using P–ordering,
Fk ≡ F(Uk)

Compare with (12.45). The resulting solution is

u 1
2

=
1
2
(u0 + u1) +

1
2
a ln(ρ1/ρ0) , (12.54)

ρ 1
2

=
√

ρ0ρ1 exp
[
u1 − u0

2a

]
(12.55)

and thus the intersection point U 1
2

in (12.48) is determined. The left and
right sonic points are evaluated using the sonic conditions λ2 = u+a = 0 and
λ1 = u − a = 0 and the right and left Riemann Invariants, respectively. The
result is

uS0 = −a , ρS0 = ρ0 exp
[
−u0 + a

a

]
, (12.56)

uS1 = a , ρS1 = ρ1 exp
[
u1 − a

a

]
. (12.57)

Compare solutions (12.54)–(12.57) with (12.46)–(12.50) obtained with the P–
ordering of the Osher scheme. Note that the solution for the intersection point
given by the O–ordering has no physical meaning as a solution for the Star
Region between the left and right wave families. If the exact solution of the
Riemann problem consists of two rarefactions, then solution (12.47) is exact,
in which case the density is expected to decrease; solution (12.55) gives an
increase in density in the Star Region, which is obviously incorrect. We expand
on this point when dealing with the Euler equations later in Sect. 12.3.3.
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Integration along the path I2(U) connecting U0 to U 1
2

produces the results
of Table 12.4. The results of integrating along the path I1(U) connecting U 1

2
to U1 are given in Table 12.5.

Behaviour of λ2(U) = u + a
∫ U 1

2
U0

A−(U)dU

1 u0 + a ≥ 0 , u 1
2

+ a ≥ 0 0

2
u0 + a ≤ 0 , u 1

2
+ a ≤ 0

F 1
2
− F0

3 u0 + a ≥ 0 , u 1
2

+ a ≤ 0 F 1
2
− FS0

4 u0 + a ≤ 0 , u 1
2

+ a ≥ 0 FS0 − F0

Table 12.4. Integration along path I2(U) connecting U0 to U 1
2

(O–ordering),

Fk ≡ F(Uk)

Behaviour of λ1(U) = u − a
∫ U0

U 1
2

A−(U)dU

1 u1 − a ≥ 0 , u 1
2
− a ≥ 0 0

2 u1 − a ≤ 0 , u 1
2
− a ≤ 0 F1 − F 1

2

3 u1 − a ≤ 0 , u 1
2
− a ≥ 0 F1 − FS1

4 u1 − a ≥ 0 , u 1
2
− a ≤ 0 FS1 − F 1

2

Table 12.5. Integration along path I1(U) connecting U 1
2

to U1 (O–ordering),

Fk ≡ F(Uk)
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Out of the 16 possible combinations 12 cases are realisable. Table 12.6
gives the Osher numerical flux Fi+ 1

2
for all 12 cases. Compare with Table

12.3 in which the flux is computed using the P–ordering.

u0 + a ≥ 0
u1 − a ≥ 0

u0 + a ≥ 0
u1 − a ≤ 0

u0 + a ≤ 0
u1 − a ≤ 0

u0 + a ≤ 0
u1 − a ≥ 0

u 1
2
− a ≥ 0 F0

F0 + F1

−FS1

FS0 + F1

−FS1
FS0

u 1
2
− a ≤ 0

u 1
2

+ a ≥ 0

F0 + FS1

−F 1
2

F0 + F1

−F 1
2

FS0 + F1

−F 1
2

FS0 + FS1

−F 1
2

u 1
2

+ a ≤ 0
F0 + FS1

−FS0

F0 + F1

−FS0
F1 FS1

Table 12.6. Osher’s intercell flux for the isothermal equations using O–ordering of
integration paths, Fk = F(Uk)

12.3 Osher’s Scheme for the Euler Equations

Here we develop in detail the Osher scheme, with both P and O orderings,
for the time–dependent Euler equations. We first consider the one–dimensional
case

Ut + F(U)x = 0 , (12.58)

U =

⎡
⎣

ρ
ρu
E

⎤
⎦ , F(U) =

⎡
⎣

ρu
ρu2 + p
u(E + p)

⎤
⎦ . (12.59)

Details of the Euler equations are found in Sect. 1.1 of Chap. 1 and Chap. 3.
We require an expression for the intercell flux Fi+ 1

2
in the explicit conservative

formula
Un+1

i = Un
i +

Δt

Δx
[Fi− 1

2
− Fi+ 1

2
] . (12.60)

Recall that the Jacobian matrix A(U), see Sect. 3.1.2 of Chap. 3, has eigen-
values

λ1 = u − a , λ2 = u, , λ3 = u + a (12.61)
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and right eigenvectors

K(1) =

⎡
⎣

1
u − a

H − ua

⎤
⎦ , K(2) =

⎡
⎣

1
u

1
2u2

⎤
⎦ , K(3) =

⎡
⎣

1
u + a

H + ua

⎤
⎦ . (12.62)

It is instructive to relate Osher’s scheme to the solution of the Riemann prob-
lem in the classical sense, see Chap. 4 for details. Fig. 12.1 shows the structure
of the solution of the Riemann problem with data U0, U1 in the x–t plane.
Also shown there are the partial integration paths I1(U), I2(U), I3(U), the
intersection points U 1

3
,U 2

3
and the sonic points US0, US1 in phase space;

the illustrated paths follow the P–ordering. There are essentially two steps in
obtaining the Osher flux formulae. First the intersection points U 1

3
and U 2

3
are obtained. We identify these points with the states U∗L and U∗R in the
solution of the Riemann problem, see Chaps. 4 and 9. The second step consists
of evaluating the integral in (12.21), for instance, along the integration paths
Ik(U) to obtain the intercell flux.

12.3.1 Osher’s Flux with P–Ordering

The physical or P–ordering of integration paths for the Euler equations is
illustrated in Fig. 12.1. States U0 and U 1

3
are connected by the partial inte-

gration path I1(U), which is taken to be tangential to the right eigenvector
K(1)(U) in (12.62). Similarly, I2(U) connects U 1

3
to U 2

3
and I3(U) connects

U 2
3

to U1. In the P–ordering the intersection points U 1
3
,U 2

3
and the sonic

points US0,US1 are obtained by using the physically correct Generalised Rie-
mann Invariants; see Sect. 3.1.3 of Chap. 3 for details.

Intersection Points and Sonic Points

Effectively, the intersection points U 1
3
,U 2

3
can be taken to be the solu-

tion of the Riemann problem with data U0,U1 in the conventional sense. In
the spirit of Osher’s scheme we obtain U 1

3
and U 2

3
utilising the Generalised

Riemann Invariants
IL ≡ u +

2a

γ − 1
= constant (12.63)

and
IR ≡ u − 2a

γ − 1
= constant (12.64)

to relate U0 to U 1
3

and U 2
3

to U1 respectively. Recall that if the left and right
non–linear waves are rarefaction waves then relations (12.63)–(12.64) are ex-
act. These waves can be either shock or rarefactions and thus the derived
intersection points U 1

3
and U 2

3
are, in general, approximations. The under-

lying assumption is that in the solution of the Riemann problem with data
U0,U1, both non–linear waves are rarefaction waves. This corresponds to the
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Two–Rarefaction approximation TRRS presented in Sect. 9.4.1 of Chap. 9.
Using (12.63) across the left wave gives

u∗ +
2a 1

3

γ − 1
= u0 +

2a0

γ − 1
(12.65)

and use of (12.64) across the right wave gives

u∗ −
2a 2

3

γ − 1
= u1 −

2a1

γ − 1
. (12.66)

Here u∗ is the common particle velocity for U 1
3

and U 2
3
. Recall that, see

Chaps. 3 and 4, the pressure p∗ is also common, that is

u 1
3

= u 2
3

= u∗ = constant , p 1
3

= p 2
3

= p∗ = constant . (12.67)

In addition to (12.65)–(12.66) the isentropic law applied to the left and right
waves gives

a 1
3

= a0(p∗/p0)z , a 2
3

= a1(p∗/p1)z , (12.68)

with
z =

γ − 1
2γ

. (12.69)

From (12.65) and (12.68) we obtain

u∗ = u0 −
2a0

γ − 1

[(
p∗
p0

)z

− 1
]

. (12.70)

Similarly, use of (12.66) and (12.68) gives

u∗ = u1 +
2a1

γ − 1

[(
p∗
p1

)z

− 1
]

. (12.71)

Solving for p∗ and u∗ gives

p∗ =
[
a0 + a1 − (u1 − u0)(γ − 1)/2

a0/pz
0 + a1/pz

1

] 1
z

, (12.72)

u∗ =
Hu0/a0 + u1/a1 + 2(H − 1)/(γ − 1)

H/a0 + 1/a1
, (12.73)

with
H = (p0/p1)z .

The density values ρ 1
3
, ρ 2

3
could be obtained from (12.68)–(12.69) or more

directly as

ρ 1
3

= ρ0

(
p∗
p0

) 1
γ

, ρ 2
3

= ρ1

(
p∗
p1

) 1
γ

. (12.74)
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The complete solution for U 1
3
,U 2

3
is given by (12.72)–(12.74). This is

identical to the two–rarefaction approximation of Sect. 9.4.1 of Chap. 9. The
computation of the sonic points US0 (left wave) and US1 (right wave) is
performed by first enforcing the sonic conditions λ1 = u−a = 0 and λ3 = u+
a = 0, respectively and then applying the corresponding Generalised Riemann
Invariants. The solution for the left sonic point is

uS0 = γ−1
γ+1u0 + 2a0

γ+1 , aS0 = uS0 ,

ρS0 = ρ0

(
aS0
a0

) 2
γ−1

, pS0 = p0

(
ρS0
ρ0

)γ

.

⎫
⎪⎪⎬
⎪⎪⎭

(12.75)

For the right sonic point the solution is

uS1 = γ−1
γ+1u1 − 2a1

γ+1 , aS1 = −uS1 ,

ρS1 = ρ1

(
aS1
a1

) 2
γ−1

, pS1 = p1

(
ρS1
ρ1

)γ

.

⎫
⎪⎪⎬
⎪⎪⎭

(12.76)

Integration Along Partial Paths

We adopt expression (12.21) for the Osher intercell flux

Fi+ 1
2

= F0 +
∫ U1

U0

A−(U)dU ,

where the integral in phase space along the path

I(U) = I1(U) ∪ I2(U) ∪ I3(U)

gives

Fi+ 1
2

= F0 +
∫ U 1

3

U0

A−(U)dU+
∫ U 2

3

U 1
3

A−(U)dU+
∫ U1

U 2
3

A−(U)dU . (12.77)

The integration along each partial path Ik(U) is performed individually and
the results are added to produce Fi+ 1

2
. The partial integrations are easily

performed following the methodology presented in previous sections. For any
given path there is only one wave involved. The left and right waves define
genuinely non–linear fields, see Sect. 3.1.3 of Chap. 3, and the corresponding
eigenvalue changes sign at most once, generating the sonic–point values. The
second field (middle wave) is linearly degenerate, see Sect. 3.1.3 of Chap. 3,
and thus the eigenvalue λ2(U) is constant along the path I2(U).

The integration results for each path are given in Table 12.7 and are la-
belled A, B and C respectively. To obtain the intercell flux Fi+ 1

2
the integral

terms in (12.77) must be selected according to the behaviour of the eigenvalue
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A : Behaviour of λ1(U) = u − a
∫ U 1

3
U0

A−(U)dU

1 u0 − a0 ≥ 0 , u∗ − a 1
3
≥ 0 0

2 u0 − a0 ≤ 0 , u∗ − a 1
3
≤ 0 F 1

3
− F0

3 u0 − a0 ≥ 0 , u∗ − a 1
3
≤ 0 F 1

3
− FS0

4 u0 − a0 ≤ 0 , u∗ − a 1
3
≥ 0 FS0 − F0

B : Behaviour of λ2(U) = u
∫ U 2

3
U 1

3

A−(U)dU

1 u∗ ≥ 0 0

2 u∗ < 0 F 2
3
− F 1

3

C : Behaviour of λ3(U) = u + a
∫ U1

U 2
3

A−(U)dU

1 u1 + a1 ≥ 0 , u∗ + a 2
3
≥ 0 0

2 u1 + a1 ≤ 0 , u∗ + a 2
3
≤ 0 F1 − F 2

3

3 u∗ + a 2
3
≥ 0 , u1 + a1 ≤ 0 F1 − FS1

4 u∗ + a 2
3
≤ 0 , u1 + a1 ≥ 0 FS1 − F 2

3

Table 12.7. Integration along partial paths for the Euler equations following the
P–ordering, Fk ≡ F(Uk)
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λk(U) along the path Ik(U). As seen in Table 12.7 there are 32 possible com-
binations i, j, l; of these only 16 are realisable, which are tabulated as in Table
12.8. Here, in order to identify the correct expression for the resulting intercell
flux Fi+ 1

2
, we split conditions on the intersection points, first column, from

conditions on the data, top row.

u0 − a0 ≥ 0
u1 + a1 ≥ 0

u0 − a0 ≥ 0
u1 + a1 ≤ 0

u0 − a0 ≤ 0
u1 + a1 ≥ 0

u0 − a0 ≤ 0
u1 + a1 ≤ 0

u∗ ≥ 0
u∗ − a 1

3
≥ 0

F0
F0 + F1

−FS1
FS0

FS0 − FS1

+F1

u∗ ≥ 0
u∗ − a 1

3
≤ 0

F0 − FS0

+F 1
3

F0 − FS0

+F 1
3
− FS1

+F1

F 1
3

F1 + F 1
3

−FS1

u∗ ≤ 0
u∗ + a 2

3
≥ 0

F0 − FS0

+F 2
3

F0 − FS0

+F 2
3
− FS1

+F1

F 2
3

F 2
3
− FS1

+F1

u∗ ≤ 0
u∗ + a 2

3
≤ 0

F0 − FS0

+FS1

F0 − FS0

+F1
FS1 F1

Table 12.8. Osher’s flux formulae for the Euler equations using P–ordering of
integration paths, Fk ≡ F(Uk)

12.3.2 Osher’s Flux with O–Ordering

As originally presented, Osher’s scheme uses the O–ordering of integration
paths; this is precisely the opposite of the P–ordering described previously.
The approach is used consistently to determine the intersection points, the
sonic points and for performing the integration in (12.77). Fig. 12.4 illustrates
the O–ordering of Osher’s scheme as applied to a 3 × 3 system, such as the
one–dimensional Euler equations. We combine the configuration for the in-
tegration paths, the intersection points and the sonic points in phase space
with the Riemann problem solution with data U0,U1 in physical space x–t.
The O–ordering can now be interpreted as assigning the eigenvalue λ3(U) and
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10

21/3U

U

U U

I

U2/3

3

1

3 1(U)

S0 S1

2(U) (U)

U

λ λ λ

I

I

0
x

t

Fig. 12.4. Configuration of integration paths Ik(U), intersection points U 1
3
, U 2

3
and sonic points US0, US1 in physical space x–t for a 3 × 3 system, following the
O–ordering

eigenvector K(3)(U) to the wave family with eigenvalue λ1(U) and eigenvector
K(1)(U) (left wave), and vice–versa.

Intersection Points and Sonic Points

First, the intersection points U 1
3

and U 2
3

are determined by using Gen-
eralised Riemann Invariants, as done in Sect. 12.1.3 with P–ordering. The
difference is that U0 and U 1

3
are connected using the right Riemann Invari-

ant and U 2
3

is connected to U1 using the left Riemann Invariant. Thus we
write

IR ≡ u∗ −
2

γ − 1
a 1

3
= u0 −

2
γ − 1

a0 , (12.78)

IL ≡ u∗ +
2

γ − 1
a 2

3
= u1 +

2
γ − 1

a1 . (12.79)

See (12.63)–(12.66). Again, we assume u∗ and p∗ are the common particle
velocity and pressure at points U 1

3
and U 2

3
. Use of (12.68) into (12.78) gives

u∗ = u0 +
2

(γ − 1)
a0

[(
p∗
p0

)z

− 1
]

, (12.80)

and use of (12.68) into (12.79) produces

u∗ = u1 −
2

(γ − 1)
a1

[(
p∗
p1

)z

− 1
]

. (12.81)

Solving for p∗ gives

p∗ =
[
a0 + a1 + (u1 − u0)(γ − 1)/2

a0/pz
0 + a1/pz

1

] 1
z

. (12.82)

Compare with solution (12.72) using P–ordering. Equations (12.80) and
(12.81) can be rearranged as
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p∗ = p0

[
γ − 1
2a0

(u∗ − u0) + 1
] 1

z

, (12.83)

p∗ = p1

[
γ − 1
2a1

(u1 − u∗) + 1
] 1

z

, (12.84)

whose solution for u∗ is

u∗ =
Hu0/a0 + u1/a1 − 2(H − 1)/(γ − 1)

H/a0 + 1/a1
, (12.85)

with
H = (p0/p1)z , z =

γ − 1
2γ

.

Compare with solution (12.73) using the P–ordering. The solution for ρ 1
3

and
ρ 2

3
is, using the isentropic law,

ρ 1
3

= ρ0(p∗/p0)
1
γ , ρ 2

3
= ρ1(p∗/p1)

1
γ . (12.86)

To find the sonic points US0 and US1 we first connect U0 to U 1
3

via the right
Riemann Invariant to obtain

uS0 =
2

γ − 1
aS0 + u0 −

2
γ − 1

a0 .

Then by enforcing the sonic condition

λ3(U) = uS0 + aS0 = 0

along I3(U) and applying the isentropic law one obtains the solution

uS0 = γ−1
γ+1u0 − 2a0

γ+1 , aS0 = −uS0 ,

ρS0 = ρ0

(
aS0
a0

) 2
γ−1

, pS0 = p0

(
ρS0
ρ0

)γ

.

⎫
⎪⎪⎬
⎪⎪⎭

(12.87)

The solution for the right sonic point US1 is

uS1 = γ−1
γ+1u1 + 2

γ+1a1 , aS1 = uS1 ,

ρS1 = ρ1

(
aS1
a1

) 2
γ−1

, pS1 = p1

(
ρS1
ρ1

)γ

.

⎫
⎪⎪⎬
⎪⎪⎭

(12.88)

Integration Along Partial Paths

To compute Osher’s intercell flux

Fi+ 1
2

= F0 +
∫ U1

U0

A−(U)dU , (12.89)
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we need to find the integral

∫ U1

U0

A−(U)dU =
∫ U 1

3

U0

A−(U)dU +
∫ U 2

3

U 1
3

A−(U)dU +
∫ U1

U 2
3

A−(U)dU .

(12.90)
Using the O–ordering one has

∫ U 1
3

U0

A−(U)dU =
∫

I3(U)

A−(U)dU , (12.91)

∫ U 2
3

U 1
3

A−(U)dU =
∫

I2(U)

A−(U)dU , (12.92)

∫ U1

U 2
3

A−(U)dU =
∫

I1(U)

A−(U)dU . (12.93)

The evaluation of the three terms in (12.90) according to (12.91)–(12.93) is
given in Table 12.9, by cases labelled A, B and C respectively. The first column
contains the sub–case numbers. The second column contains the behaviour of
the eigenvalue along the corresponding partial path. For instance in case A
one considers the sign of the eigenvalue λ3(U) along the path I3(U) joining
the points U0 and U 1

3
. The third column contains the resulting integral in

(12.91)–(12.93). There are 32 combinations, of which only 16 are realisable.
Just to illustrate the method of analysis, consider first the combination

(A1, B1, C1), that is

A1 : u0 + a0 ≥ 0 , u∗ + a 1
3
≥ 0 ,

B1 : u∗ ≥ 0 ,

C1 : u1 − a1 ≥ , u∗ − a 2
3
≥ 0 .

As all eigenvalues are positive throughout, the integrals are all zero. The
combination (A1, B2, C1) gives

A1 : u0 + a0 ≥ 0 , u∗ + a 1
3
≥ 0 ,

B2 : u∗ ≤ 0 ,

C1 : u1 − a1 ≥ 0 , u∗ − a 2
3
≥ 0 .

Clearly these conditions cannot be satisfied simultaneously, u∗ ≤ 0 contradicts
u∗ − a 2

3
≥ 0, as a 2

3
> 0.

The Osher intercell flux with O–ordering is given in table 12.10. The logic
involved can be organised so as to test conditions on the data points (top
row) and conditions on the intersection points (first column). The Osher’s flux
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A : Behaviour of λ3(U) = u − a
∫ U 1

3
U0

A−(U)dU

1 u0 + a0 ≥ 0 , u∗ + a 1
3
≥ 0 0

2 u0 + a0 ≤ 0 , u∗ + a 1
3
≤ 0 F 1

3
− F0

3 u0 + a0 ≥ 0 , u∗ + a 1
3
≤ 0 F 1

3
− FS0

4 u0 + a0 ≤ 0 , u∗ + a 1
3
≥ 0 FS0 − F0

B : Behaviour of λ2(U) = u

1 u∗ ≥ 0 0

2 u∗ ≤ 0 F 2
3
− F 1

3

C : Behaviour of λ1(U) = u − a

1 u1 − a1 ≥ 0 , u∗ − a 2
3
≥ 0 0

2 u1 − a1 ≤ 0 , u∗ − a 2
3
≤ 0 F1 − F 2

3

3 u1 − a1 ≥ 0 , u∗ − a 2
3
≤ 0 FS1 − F 2

3

4 u1 − a1 ≤ 0 , u∗ − a 2
3
≥ 0 F1 − FS1

Table 12.9. Osher’s flux for the Euler equations. Evaluation of integral following
O–ordering, Fk ≡ F(Uk)
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formulae with P and O ordering given by Tables 12.8 and 12.10 respectively,
are valid for any 3 × 3 non–linear hyperbolic system. The specific properties
of a particular system enter in the determination of the sonic and intersection
points only. The formulae can be directly applied, for instance, to the split
two–dimensional shallow water equations.

u0 + a0 ≥ 0
u1 − a1 ≥ 0

u0 + a0 ≥ 0
u1 − a1 ≤ 0

u0 + a0 ≤ 0
u1 − a1 ≥ 0

u0 + a0 ≤ 0
u1 − a1 ≤ 0

u∗ + a 1
3
≤ 0

F0 − FS0

+FS1

F0 − FS0

+F1
FS1 F1

u∗ + a 1
3
≥ 0

u∗ ≤ 0

F0 − F 1
3

+FS1

F0 − F 1
3

+F1

FS0 − F 1
3

+FS1

FS0 − F 1
3

+F1

u∗ − a 2
3
≥ 0 F0

F0 − FS1

+F1
FS0

FS0 − FS1

+F1

u∗ − a 2
3
≤ 0

u∗ ≥ 0

F0 − F 2
3

+FS1

F0 − F 2
3

+F1

FS0 − F 2
3

+FS1

FS0 − F 2
3

+F1

Table 12.10. Osher’s flux formulae for the Euler equations using O–ordering of
integration paths, Fk = F(Uk)

12.3.3 Remarks on Path Orderings

It is useful to compare the pressure solutions (12.72) and (12.82) when
computing the intersection points using the P and O orderings for the inte-
gration paths. Let us redefine the respective solutions as

p
(P )
∗ =

[
a0 + a1 − Δu(γ − 1)/2

a0/pz
0 + a1/pz

1

]1/z

(12.94)

and

p
(O)
∗ =

[
a0 + a1 + Δu(γ − 1)/2

a0/pz
0 + a1/pz

1

]1/z

, (12.95)

where Δu = u1 − u0 is the velocity difference in the data. The reader is
encouraged to review Sect. 4.3.1 of Chap. 4, in which a detailed discussion is
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given on the influence of Δu on the solution for pressure in the exact solution.
First we note that p

(P )
∗ = p

(O)
∗ when Δu = 0 and that for Δu �= 0 the two

solutions are not only different but more importantly, they have very different
behaviour. This does not seem to matter too much in practical computations,
except for special but important situations. There are at least two cases that
deserve special attention.

The case Δu >> 0, see Sect. 4.3.1 of Chap. 4, is associated with strong
rarefaction waves. In fact there is a limit for which the pressure p∗ becomes
negative and is associate with the pressure positivity condition stated in Sect.
4.3.1 of Chap. 4. In the incipient cavitation case the pressure is 0. The solution
p
(P )
∗ will correctly reflect this physical situation of low–density flow, including

the detection of vacuum. The author is not aware of this having been exploited
in the context of Osher’s Riemann solver with P–ordering. On the other hand,
the solution p

(O)
∗ for Δu >> 0 obtained with the O–ordering, will give un-

realistically large values for the pressure at the intersection points, which is
more consistent with the presence of strong shock waves, rather than strong
rarefaction waves. Such large pressure values will lead the Osher scheme to
be very inaccurate or simply to fail for low–density flows, just as linearised
Riemann solvers do; see Einfeldt et. al. [182] for a discussion on numerical
difficulties for low–density flows. We illustrate this point through Test 2 of
Table 12.11, for which the scheme actually fails.

The case Δu << 0, see Sect. 4.3.1 of Chap. 4, is associated with strong
shock waves. Again the P–ordering solution (12.94) will correctly reflect this.
However the O–ordering solution (12.95) will not. More importantly, there
will be a limiting strong shock situation for which the O–ordering pressure is
undefined and the scheme will again fail; see Test 5 in Table 12.11. The failure
condition in this case is analytic, namely

a0 + a1 + Δu(γ − 1)/2 ≤ 0. (12.96)

It is paradoxical that the scheme fails in the presence of strong shocks, which
is consistent with large pressure, through a pressure solution p

(O)
∗ that is

undefined for being so close to vacuum conditions. One could devise some
sort of fix to remedy this situation. One possibility is to abandon the O–
ordering altogether or switch to the P–ordering locally, in a kind of adaptive
ordering.

12.3.4 The Split Three–Dimensional Case

The extension of the Osher scheme to two and three–dimensional problems
is straightforward. All methods considered here require expressions for the
split fluxes. In the x–split, three dimensional case, for instance, we require in
addition the y and z momentum flux components ρuv and ρuw. In turn, this
requires the extra components ρv and ρw in the vector of conserved variables
U. These new components will be needed in the intersection points and sonic
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points. But, as seen in Sect. 4.8 of Chap. 4, the exact solution for v and w in
the Riemann problem is given by

q(x, t) =

⎧
⎨
⎩

qL if x/t < u∗

qR if x/t > u∗

, (12.97)

where q = v and q = w. The approximate solution for the tangential com-
ponents of velocity obtained from using Generalised Riemann Invariants in
the Osher scheme preserves the form of the exact solution (12.97), the only
approximation being that of the normal velocity component u∗. Therefore, for
computing US0 and U 1

3
we take vL and wL; for computing US1 and U 2

3
we

take vR and wR. Solution (12.97) ensures that contact waves and shear waves
(and shear layers in Navier–Stokes applications) are well resolved by Osher’s
scheme, a property that is common to the exact Riemann solver of Chap. 6,
the approximate–state Riemann solvers of Chap. 9, the HLLC Riemann solver
of Chap. 10 and Roe’s solver of Chap. 11.

12.4 Numerical Results and Discussion

Here we illustrate the performance of Godunov’s first–order method used
in conjunction with Osher–type approximate Riemann solvers. We select six
test problems for the one–dimensional time dependent Euler equations for
ideal gases with γ = 1.4; these have exact solutions. In all chosen tests, data
consists of two constant states WL = [ρL, uL, pL]T and WR = [ρR, uR, pR]T ,
separated by a discontinuity at a position x = x0. The states WL and WR

are given in Table 12.11. The exact and numerical solutions are found in the
spatial domain 0 ≤ x ≤ 1. The numerical solution is computed with M = 100
cells and the CFL condition is as for all previous computations, see Chap.
6; the chosen Courant number coefficient is Ccfl = 0.9; boundary conditions
are transmissive. The exact solutions were found by running the code HE-
E1RPEXACT of the library NUMERICA [519] and the numerical solutions
were obtained by running the code HE-E1GODOSHER of NUMERICA.

Test ρL uL pL ρR uR pR

1 1.0 0.75 1.0 0.125 0.0 0.1
2 1.0 -2.0 0.4 1.0 2.0 0.4
3 1.0 0.0 1000.0 1.0 0.0 0.01
4 5.99924 19.5975 460.894 5.99242 -6.19633 46.0950
5 1.0 -19.59745 1000.0 1.0 -19.59745 0.01
6 1.0 2.0 0.1 1.0 -2.0 0.1

Table 12.11. Data for six test problems with exact solution, for the
time–dependent one dimensional Euler equations
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Test 1 is a modified version of Sod’s problem [453]; the solution has a right
shock wave, a right travelling contact wave and a left sonic rarefaction wave;
this test is useful in assessing the entropy satisfaction property of numerical
methods. The solution of Test 2 consists of two symmetric rarefaction waves
and a trivial contact wave; the Star Region between the non–linear waves is
close to vacuum, which makes this problem a suitable test for assessing the
performance of numerical methods for low–density flows. Test 3 is designed to
assess the robustness and accuracy of numerical methods; its solution consists
of a strong right shock wave of shock Mach number 198, a contact surface and
a left rarefaction wave. Test 4 is also a very severe test, its solution consists
of three strong discontinuities travelling to the right. A detailed discussion
on the exact solution of the test problems is found in Chap. 4. Test 5 is also
designed to test the robustness of numerical methods but the main reason
for devising this test is to assess the ability of numerical methods to resolve
slowly–moving contact discontinuities. The exact solution of Test 5 consists of
a left rarefaction wave, a right–travelling shock wave and a stationary contact
discontinuity. Test 6 simulates the collision of two uniform streams; the exact
solution consists of two strong symmetric shock waves and a trivial contact
discontinuity. The purpose of Test 6 is to illustrate the fact that Osher’s
scheme with O–ordering will fail for a range of problems of this kind. For each
test problem we select a convenient position x0 of the initial discontinuity
and the output time. These are stated in the legend of each figure displaying
computational results.

The computed results for Tests 1, 3, 4 and 5 using the Godunov first–
order method in conjunction with the Osher approximate Riemann solver
with O–ordering are shown in Figs. 12.5–12.8. The scheme failed for Tests 2
and 6. The result of Fig. 12.5 is virtually identical to that of the Godunov
method with an exact Riemann solver, Fig. 6.8 of Chap. 6; note also that
both schemes give comparable performance in the vicinity of the sonic point.
The results for Tests 3 and 4, shown in Figs. 12.6 and 12.7, obtained with
O–ordering compare well with those of the exact Riemann solver, except for
the fact that the slowly moving shock in Fig. 12.7 does not have the spurious
oscillations that other Riemann solvers produce [406], [60], [19], [280]; this is
a distinguishing property of the Osher approach.

Results for Tests 1 to 6 from the Osher scheme with P–ordering are shown
in Figs. 12.9–12.14. The results for Tests 1 to 4 are, overall, as accurate as
those obtained from an exact Riemann solver; the P–ordering scheme actually
works for Tests 2 and 6, whereas O–ordering scheme does not; note however
the spurious oscillations in Test 6 near the shocks, a feature of P–ordering
schemes already noted by Osher. For Test 5 the P–ordering scheme gives the
incorrect solution; compare Fig. 12.13 with Fig. 12.8 and note the scales. First,
there are very large unphysical overshoots in density, velocity and pressure.
More intriguing is the fact that the expected right–travelling shock does not
propagate at all; no signal propagates to the right of the initial discontinuity
at x = 0.8. As a matter of fact, it looks as if the shock wave does not actually
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form and the state behind the contact discontinuity has the incorrect values,
see pressure and velocity plots. My numerical results have been confirmed by
Dr N. Qin (private communication), who used an independently written code
to solve Test 5.

Earlier we made some remarks concerning a modified Osher scheme based
on an adaptive ordering. In view of the numerical results it seems as if O–
ordering could be used in all cases except for the two situations in which the
solution of the Riemann problem contains either two shocks or two rarefac-
tions. Such situations could be identified reliably and cheaply by using any of
the approximate state Riemann solvers of Chap. 9.

12.5 Extensions

The approximate Riemann solvers of this chapter may be applied in con-
junction with the Godunov first–order upwind method presented in Chap. 6.
Second–order Total Variation Diminishing (TVD) extensions of the schemes
are presented in Chap. 13 for scalar problems and in Chap. 14 for non–linear
one dimensional systems. In chap. 15 we present techniques that allow the ex-
tension of these schemes to solve problems with source terms. In Chap. 16 we
study techniques to extend the methods of this chapter to three–dimensional
problems.
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Fig. 12.5. Osher scheme with O–ordering applied to Test 1, with x0 = 0.3. Numer-
ical (symbol) and exact (line) solutions are compared at time 0.2 units
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Fig. 12.6. Osher scheme with O–ordering applied to Test 3, with x0 = 0.5. Numer-
ical (symbol) and exact (line) solutions are compared at time 0.012 units
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Fig. 12.7. Osher scheme with O–ordering applied to Test 4, with x0 = 0.4. Numer-
ical (symbol) and exact (line) solutions are compared at time 0.035 units
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Fig. 12.8. Osher scheme with O–ordering applied to Test 5, with x0 = 0.8. Numer-
ical (symbol) and exact (line) solutions are compared at time 0.012 units
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Fig. 12.9. Osher scheme with P–ordering applied to Test 1, with x0 = 0.3. Numer-
ical (symbol) and exact (line) solutions are compared at time 0.2 units
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Fig. 12.10. Osher scheme with P–ordering applied to Test 2, with x0 = 0.3. Nu-
merical (symbol) and exact (line) solutions are compared at time 0.2 units
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Fig. 12.11. Osher scheme with P–ordering applied to Test 3, with x0 = 0.5. Nu-
merical (symbol) and exact (line) solutions are compared at time 0.012 units
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Fig. 12.12. Osher scheme with P–ordering applied to Test 4, with x0 = 0.4. Nu-
merical (symbol) and exact (line) solutions are compared at time 0.035 units
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Fig. 12.13. Osher scheme with P–ordering applied to Test 5, with x0 = 0.8. Nu-
merical (symbol) and exact (line) solutions are compared at time 0.012 units
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Fig. 12.14. Osher scheme with P–ordering applied to Test 6, with x0 = 0.5. Nu-
merical (symbol) and exact (line) solutions are compared at time 0.8 units



13

High–Order and TVD Methods for Scalar
Equations

Central to this chapter is the resolution of two contradictory requirements
on numerical methods, namely high–order of accuracy and absence of spurious
(unphysical) oscillations in the vicinity of large gradients. It is well–known that
high–order linear (constant coefficients) schemes produce unphysical oscilla-
tions in the vicinity of large gradients. This was illustrated by some numerical
results shown in Chap. 5. On the other hand, the class of monotone methods,
defined in Sect. 5.2 of Chap. 5, do not produce unphysical oscillations. How-
ever, monotone methods are at most first order accurate and are therefore of
limited use. These difficulties are embodied in the statement of Godunov’s
theorem [216] to be studied in Sect. 13.5.3. One way of resolving the con-
tradiction between linear schemes of high–order of accuracy and absence of
spurious oscillations is by constructing non–linear methods. Total Variation
Diminishing Methods, or TVD Methods for short, are a prominent class of
non–linear methods, which we shall study in detail in this chapter.

13.1 Introduction

The purpose of this chapter is to introduce and develop the concept of
TVD methods in a simple setting, so as to aid the reader to extend the tech-
niques to more general problems. TVD methods are one of the most significant
achievements in the development of numerical methods for partial differential
equations (PDEs) in the last 20 years or so, although the preliminary ideas can
be traced as far back as 1959, with the pioneering work of Godunov and later
by van Leer [554], the Flux Corrected Transport (FCT) approach of Boris and
Book [70], [69], [71] and many others. The theoretical bases of TVD methods
are sound for scalar one–dimensional problems only. In practical, non–linear,
multidimensional problems, the accumulated experience of numerous appli-
cations has demonstrated that the one–dimensional scalar theory serves well
as a guideline for extending the ideas, on a more or less empirical basis.
TVD schemes have their roots on the fundamental question of convergence of
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schemes for non–linear problems. Total–Variation Stable schemes have been
proved to be convergent. TVD methods are a class of Total–Variation Stable
schemes and they are based on the requirement that the total variation of the
numerical solution be non–increasing in time. As a matter of fact the exact
solution of a scalar conservation law does possess this property and therefore
TVD numerical methods just mimic a property of the exact solution. Apart
from being a class of methods proved to be convergent, for scalar problems,
the TVD concept is also extremely useful in designing schemes, as we shall
see in this chapter.

TVD schemes are intimately linked to traditional Artifical Viscosity Meth-
ods [402]. Both TVD and Artifical Viscosity Methods attempt to circumvent
Godunov’s theorem by constructing schemes of accuracy p > 1, such that
spurious oscillations near high gradients are eliminated or controlled. Both
classes of schemes resort effectively to the same mechanism, namely the ad-
dition of artificial viscosity. Artifical Viscosity Methods do this explicitly, by
adding extra terms to the PDEs. In TVD methods, on the other hand, the
artificial viscosity is inherent in the scheme itself, but the way this is activated
is rather sophisticated.

The TVD approach has managed to circumvent Godunov’s theorem by re-
sorting to non–linear schemes, even when applied to linear problems. The in-
herent artificial viscosity of the schemes is controlled in a very precise manner
so that spurious oscillations are eliminated and high–order accuracy in smooth
parts of the solution is retained. Historically, TVD methods have almost ex-
clusively been associated with high–order upwind methods. Over the last few
years, however, the TVD concept has been extended to centred schemes, as
distinct from upwind schemes. This development has effectively provided Ar-
tificial Viscosity Methods with a more rational basis and has tended to unify
the developments on numerical methods for conservation laws.

Relevant contributions to the general area of TVD and related methods
can be found in the papers by Godunov [216]; van Leer [554]; Boris and Book
[70]; Book, Boris and Hain [69]; Boris and Book [71]; Majda and Osher [335];
Zalesak [597]; Crandall and Majda [145]; Roe [408], [409], [410]; van Albada,
van Leer and Roberts [552]; Harten [238], [239]; Sweby [470], [471]; Baines and
Sweby [23]; Davis [149]; Osher[369]; Osher and Chakravarthy [371]; Jameson
and Lax [267]; Yee, Warming and Harten [595]; Shu [446]; Yee [592], [593];
Tadmor [473]; Leonard [307]; Gaskell and Lau [198]; Swanson and Turkel [467];
Jorgenson and Turkel [274]; Cockburn and Shu [124]; Liu and Lax [330]; Billett
and Toro [65]; Toro and Billett [538]; and many others.

In this chapter, after a brief review of some basic properties of schemes in
Sect. 13.2, we present several approaches for constructing high–order methods.
The emphasis is on approaches that extend to non–linear systems and can
be suitably modified according to some TVD criteria; see Sects. 13.3 and
13.4. General theoretical aspects relevant to TVD methods are discussed in
Sect. 13.5. In Sect. 13.6 we introduce TVD methods. We then present two
approaches for constructing TVD methods, namely the Flux Limiter Approach
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of Sect. 13.7 and the Slope Limiter Approach of Sect. 13.8. For each of these
two classes of TVD methods we present upwind–based schemes and centred
schemes. Numerical results on model problems are included.

The reader is encouraged to review Chaps. 2 and 5 before proceeding with
this chapter. Application of the TVD concepts to non–linear systems is found
in Chaps. 14 and 16.

13.2 Basic Properties of Selected Schemes

The purpose of this section is to review a selected number of schemes and
discuss some of their main properties. In the main, the discussion is centred
on the linear advection equation

ut + f(u)x = 0 , f(u) = au , (13.1)

where u = u(x, t) and a is a constant wave propagation speed.

13.2.1 Selected Schemes

In Chap. 5 we introduced a number of well known schemes to solve (13.1)
numerically. Prominent examples are the Godunov first–order upwind method
(the CIR scheme for linear systems)

un+1
i = un

i − c(un
i − un

i−1) , a > 0 ,
un+1

i = un
i − c(un

i+1 − un
i ) , a < 0 ,

}
(13.2)

and the Lax–Wendroff method

un+1
i =

1
2
c(1 + c)un

i−1 + (1 − c2)un
i − 1

2
c(1 − c)un

i+1 . (13.3)

Here c is the CFL or Courant number

c =
aΔt

Δx
. (13.4)

For background on these well–known schemes see Sect. 5.2 of Chap. 5. A
general form of these schemes is

un+1
i =

kR∑
k=−kL

bkun
i+k , (13.5)

where kL and kR are two non–negative integers. We assume that these schemes
(13.5) are linear, that is all the coefficients bk are constant. Any scheme (13.5)
is entirely determined by the coefficients bk. Table 13.1 lists the coefficients
for several schemes. The first on the list is the Lax–Friedrichs method (LF);
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the second scheme is the First–Order Centred scheme (force) introduced
in Sect. 7.4.2 of Chap. 7; the third and fourth schemes are the two versions
of the Godunov first–order upwind method (GODu). The fifth scheme is the
Godunov first–order centred method (GODc) [217]. LW is the Lax–Wendroff
method; WB is the Warming–Beam scheme and FR is the Fromm scheme.

Properties of the various schemes are stated in terms of the coefficients bk.
An important feature of a given scheme is its support; this is defined as the
number kL + kR + 1 of data mesh point values un

i involved in the summation
(13.5). One speaks of a compact scheme when its support is small. For example
the support of the GODu scheme has only two points, whereas the support
of the Fromm scheme has four points.

b−2 b−1 b0 b1 b2

LF 0 1
2
(1 + c) 0 1

2
(1 − c) 0

force 0 1
4
(1 + c)2 1

2
(1 − c2) 1

4
(1 − c)2 0

GODu a > 0 0 c 1 − c 0 0

GODu a < 0 0 0 1 + c −c 0

GODc 0 1
2
c(1 + 2c) 1 − 2c2 − 1

2
c(1 − 2c) 0

LW 0 1
2
c(1 + c) 1 − c2 − 1

2
c(1 − c) 0

WB, a > 0 1
2
c(c − 1) (2 − c)c 1

2
(c − 2)(c − 1) 0 0

WB, a < 0 0 0 1
2
(c + 2)(c + 1) −(c + 2)c 1

2
c(c + 1)

FR, a > 0 − 1
4
c(1 − c) 1

4
c(5 − c) 1

4
(1 − c)(4 + c) − 1

4
c(1 − c) 0

FR, a < 0 0 1
4
c(1 + c) 1

4
(1 + c)(4 − c) - 1

4
c(5 + c) 1

4
c(1 + c)

Table 13.1. Coefficients bk for several first and second order linear schemes

Another feature of a scheme is the bias of its support. Notice for instance
that the support of the GODu scheme is biased towards the left of the centre
point un

i or to the right, depending on the sign of the wave speed a in the
conservation law (13.1). For a > 0 the support is biased to the left; if a < 0 the
support is biased to the right. For this reason we say that the GODu scheme
is upwind. By contrast the Lax–Friedrichs scheme has a centred support; there
is always one point to the left and one point to the right of the centre of the
stencil, regardless of the sign of a. Note however that the upwind coefficient
of the Lax–Friedrichs scheme is always larger than the downwind coefficient;
schemes whose support configuration does not depend on the sign of charac-
teristic speeds are called centred schemes. Examples of centred schemes are
Lax–Friedrichs, force, Godunov’s first–order centred method (GODc) and
the Lax–Wendroff method.

Given a numerical method, there are four fundamental properties associ-
ated with it, namely consistency, stability, convergence and accuracy. A most
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useful reference in this regard is Hirsch, [251]. See also Smith [450], Mitchell
and Griffiths [352] and Hoffmann [253].

13.2.2 Accuracy

The first five schemes listed in Table 13.1 are first–order accurate. The
remaining schemes are second–order accurate. Here we quantify the accuracy
of a scheme by the form of the leading term in its local truncation error.
Appropriate definitions and techniques to analyse the accuracy of a scheme
are found in any textbook on numerical methods for PDEs. See for example
the references listed above.

Next we state a theorem due to Roe [408] that facilitates the verification
of the accuracy of any scheme of the form (13.5).

Theorem 13.1 (Roe [408]). A scheme of the form (13.5) is p–th (p ≥ 0)
order accurate in space and time if and only if

kR∑
k=−kL

kqbk = (−c)q , 0 ≤ q ≤ p . (13.6)

Proof. (Exercise)

Remark 13.2. For each integer value of q, with 0 ≤ q ≤ p, we verify that the
sum of terms kqbk, for all integers k with −kL ≤ k ≤ kR, reproduces identically
the power (−c)q, where c is the Courant number (13.4). The condition for
q = 0 is simply the Consistency Condition of a scheme.

Example 13.3 (Godunov’s upwind method).
The GODu scheme for a ≥ 0 has coefficients b−1 = c, b0 = 1− c. For q = 0

we have the summation

0∑
k=−1

k0bk = (−1)0 × c + 00 × (1 − c) = 1 = (−c)0 .

For q = 1

0∑
k=−1

k1bk = (−1)1 × c + 01 × (1 − c) = −c = (−c)1 .

Thus all conditions for first order accuracy are satisfied. Note that the GODu
scheme is not second–order accurate, as for q = 2

0∑
k=−1

k2bk = (−1)2 × c + 02 × (1 − c) = c �= (−c)2 .
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Example 13.4 (The Lax–Wendroff method). Application of (13.6) with q =
0, 1, 2 gives

1∑
k=−1

k0bk = 1 = (−c)0 ,
1∑

k=−1

k1bk = −c = (−c)1 ,
1∑

k=−1

k2bk = (−c)2 .

Therefore the Lax–Wendroff method is second–order accurate in space and
time. This scheme is not third–order accurate, as

1∑
k=−1

k3bk = −c �= (−c)3 .

Exercise 13.5. Apply (13.6) to prove that the Lax–Friedrichs, force and
Godunov’s first order centred (GODc) methods are first order accurate in
space and time. Show also that the Warming–Beam and Fromm schemes are
second order accurate in space and time.

Solution 13.6. (Left to the reader).

Exercise 13.7 (The Lax–Wendroff Scheme). Use (13.6) to show that
any centred three–point support scheme of the form (13.5) to solve (13.1)
that is second–order accurate in space and time must be identical to the Lax–
Wendroff method.

Solution 13.8. (Left to the reader).

13.2.3 Stability

Background reading on stability analysis of numerical methods is found in
any text book on numerical methods for differential equations. We particularly
recommend Hirsch [251] Chaps. 7–10, Smith [450] Chaps. 3 and 4, Mitchell
and Griffiths [352] Chap. 4 and Hoffmann [253] Chap. 4.

Naturally, the only useful numerical methods are those that are convergent.
Unfortunately, it is difficult or impossible to prove, theoretically, the conver-
gence of a particular numerical method. For linear problems a most useful
result is the Lax Equivalence Theorem. This states that the only convergent
schemes are those that are both consistent and stable. There are various tech-
niques available for studying stability. However, even for simple problems and
schemes, the algebra involved may be cumbersome and simply not lead to
analytical conditions on the parameters of the scheme to assume stability or
otherwise. For non–linear problems there is a severe lack of theorems, and in
practice one relies heavily on linear analysis and on numerical experimenta-
tion as guidance. A useful practice when dealing with non–linear problems
is to compute the numerical solution on a sequence of meshes of decreasing



13.2 Basic Properties of Selected Schemes 419

mesh size and observe the behaviour of the numerical solutions as the mesh
is refined. Exact solutions, even for simplified initial conditions, can also be
very helpful here in assessing the performance of numerical methods.

For any centred three–point scheme of the form (13.5) we quote a useful
result on stability derived for the model advection–diffusion equation [58].
Here we state the special case applicable to the model equation (13.1).

Proposition 13.9. Any centred, three–point scheme

un+1
i = b−1u

n
i−1 + b0u

n
i + b1u

n
i+1

for the model equation (13.1) is stable if the following two conditions on the
coefficients bk are met, namely

(i) b0(b−1 + b1) ≥ 0 ,

(ii) b0(b−1 + b1) + 4b−1b1 ≥ 0 .

}
(13.7)

Proof. (Exercise).

Example 13.10 (The Godunov first–order upwind method GODu). For a >
0, b−1 = c, b0 = 1 − c, b1 = 0. Thus (i) and (ii) become identical; they both
give c(1 − c) ≥ 0. But a > 0 and so c > 0. Thus 1 − c > 0 and therefore
0 ≤ c ≤ 1 is the stability condition for the GODu scheme when a ≥ 0. For
a < 0 we obtain the condition −1 ≤ c ≤ 0 and thus for both positive and
negative speed a the stability condition for the GODu scheme becomes

0 ≤ |c| ≤ 1 . (13.8)

Exercise 13.11 (Stability Conditions). Apply (13.7) to prove that the
stability condition of the Lax–Friedrichs and force schemes is as given by
(13.8) and that the stability condition for the Godunov first order centred
method GODc is

0 ≤ |c| ≤ 1
2

√
2 . (13.9)

Solution 13.12. Left to the reader.

In the next two sections we study various ways of constructing high order
numerical methods. The emphasis is on explicit, fully discrete schemes that
are based on the solution of the Riemann problem and that can be extended
to non–linear systems of conservation laws. We shall consider two approaches.
One is the Weighted Average Flux approach and the other is the MUSCL or
Variable Extrapolation approach.
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13.3 WAF–Type High Order Schemes

The Weighted Average Flux (or waf for short) approach is a generalisation
of the Lax–Wendroff and the Godunov first–order upwind schemes to non–
linear systems of conservation laws. It is also a generalisation of the Warming–
Beam method. The waf approach has its origins in the random flux scheme
[497], which is second–order accurate in space and time in a statistical sense
[539]. The waf approach is deterministic and leads to fully discrete, explicit
second order accurate schemes. See Refs. [499], [506], [504] [527], [63].

i-1/2
xx

n
iu

i+1/2

i+1i-1

)n

Δx

i

u(x,t

Fig. 13.1. Integral averages produce piece–wise constant data un
i at time level n

In this section we present the approach as applied to a general scalar
conservation law

ut + f(u)x = 0 , (13.10)

where u = u(x, t) and f(u) is a convex flux function, see Sect. 2.4 of Chap. 2.
The scheme is based on the explicit conservative formula

un+1
i = un

i +
Δt

Δx

[
fi− 1

2
− fi+ 1

2

]
. (13.11)

Full details for the linear advection case (13.1) will be developed. Useful back-
ground reading is found in Sect. 5.3 of Chap. 5.

13.3.1 The Basic waf Scheme

The waf method assumes piece–wise constant data {un
i }, as in the Go-

dunov first–order upwind method; that is, un
i is an integral average of the

solution u(x, tn) within a cell Ii = [xi− 1
2
, xi+ 1

2
] at time t = tn, namely

un
i =

1
Δx

∫ x
i+ 1

2

x
i− 1

2

u(x, tn)dx . (13.12)

Fig. 13.1 illustrates the cell average un
i in cell Ii of length xi+ 1

2
− xi− 1

2
= Δx.

In practice, the formality of defining un
i is not necessary. The initial data {u0

i }
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at time t = 0 is regarded as cell averages and for all subsequent time levels
these averages are produced automatically by formula (13.11). Thus, all we
require is a definition of the numerical flux. In the original presentation of the

x/t = a

i+1/2

+1

i
n

n
i

(a)

i+1i
n nuu

(b)

u

u

x

t

x
0

Fig. 13.2. The Riemann problem for the linear advection equation: (a) piece–wise
constant initial data, (b) exact solution on x–t plane for a > 0

waf method, the intercell flux was defined as an integral average of the flux
function f(u), namely

fwaf

i+ 1
2

=
1

Δx

∫ 1
2 Δx

− 1
2 Δx

f [ui+ 1
2
(x,

1
2
Δt)]dx . (13.13)

Here, the integration range goes from the middle of cell Ii to the middle of cell
Ii+1. The integrand is the physical flux function f(u) in the conservation law
(13.10) (linear or non–linear) evaluated at ui+ 1

2
(x, Δt

2 ), where ui+ 1
2
(x, t) is the

solution of the Riemann problem with piece–wise constant data (un
i , un

i+1). In
defining (13.13) we have assumed a regular mesh of size Δx, but this definition
can easily be altered to include the case of irregular meshes.

Now we develop, in full detail, the waf scheme as applied to the linear ad-
vection equation (13.1). As seen in Sect. 2.2 of Chap. 2, the solution ui+ 1

2
(x, t)

of the Riemann problem for (13.1) is trivial and consists of the two data states
un

i , un
i+1 separated by a wave of speed a. Fig. 13.2(a) shows the initial data

and Fig. 13.2(b) shows the solution ui+ 1
2
(x, t) for a > 0. Algebraically

ui+ 1
2
(x, t) =

⎧
⎪⎨
⎪⎩

un
i ,

x

t
< a ,

un
i+1 ,

x

t
> a .

(13.14)
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Obviously the two states present in the solution ui+ 1
2
(x, t) are constant

and thus the exact evaluation of the integral (13.13) is trivial, see Fig. 13.3.
The integration domain is the line AC, which is subdivided into the segments
AB and BC. Note that the lengths |AB| and |BC|, when normalised by Δx,
are respectively given by

β1 =
1
2
(1 + c) , β2 =

1
2
(1 − c) . (13.15)

The integral (13.13) becomes the summation

Δx x

t

Δ

x/t = a

β β

Δ

Δ

t

x
22

2

Δ

1 2

0Δ x

CA B

Fig. 13.3. Evaluation of the waf flux for the linear advection equation, for a > 0.
Weights normalised by distance Δx are β1, β2

fwaf

i+ 1
2

=
1

Δx

[
1
2
(1 + c)Δx(aun

i )
]

+
1

Δx

[
1
2
(1 − c)Δx(aun

i+1)
]

,

or
fwaf

i+ 1
2

=
1
2
(1 + c)(aun

i ) +
1
2
(1 − c)(aun

i+1) . (13.16)

This numerical flux is identical to that of the Lax–Wendroff method in
conservation form. For non–linear conservation laws (13.10) fwaf

i+ 1
2
, as given

by (13.13), becomes a Riemann–problem based generalisation of the Lax–
Wendroff method, see Sect 5.3.4 of Chap. 5.

Note that for a > 0 the waf flux as given by (13.16) is a weighted average
of the upwind flux fi = aun

i , with weight β1 = 1
2 (1+c) and the downwind flux

fi+1 = aun
i+1 with weight β2 = 1

2 (1− c). For a < 0 the derivation is analogous
and the result is in fact identical to (13.16), but now β1 = 1

2 (1 + c) is the
downwind weight and β2 = 1

2 (1− c) is the upwind weight. The upwind weight
is always larger than the downwind weight and thus the waf method is, in
this sense, upwind biased. The waf flux contains the Godunov flux in one of
its terms, and it may thus be also regarded as an extension of the Godunov
first order upwind method.
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Exercise 13.13. Evaluate the waf numerical flux (13.13) for the linear
advection equation (13.1) for the case a < 0.

Solution 13.14. Left to the reader.

It is convenient to express intercell numerical fluxes for the linear advection
equation (13.1) as a linear combination of data flux values fi = aun

i , namely

fi+ 1
2

=
2∑

k=−1

βk(aun
i+k) . (13.17)

Table 13.2 lists the coefficients βk for a range of schemes.

β−1 β0 β1 β2

LF 0 1
2c

(1 + c) − 1
2c

(1 − c) 0

force 0 1
4c

(1 + c)2 − 1
4c

(1 − c)2 0

GODu 0 1
2
(1 + sign(c)) 1

2
(1 − sign(c)) 0

GODc 0 1
2
(1 + 2c) 1

2
(1 − 2c) 0

LW 0 1
2
(1 + c) 1

2
(1 − c) 0

WB, a > 0 − 1
2
(1 − c) 1

2
(3 − c) 0 0

WB, a < 0 0 0 1
2
(3 + c) − 1

2
(1 + c)

FR, a > 0 − 1
4
(1 − c) 1 1

4
(1 − c) 0

FR, a < 0 0 1
4
(1 + c) 1 − 1

4
(1 + c)

SLIC
− 1

16
(1 − c)
(1 + c)2

1
4c

(1 + c)2

+ 1
16c

(1 + c)
(1 − c)2

1
16c

(1 − c)
(1 + c)2

+ 1
4c

(1 − c)2

− 1
16c

(1 + c)
(1 − c)2

Table 13.2. Coefficients βk in the expression for the intercell flux for various
schemes. See also Table 13.1

Exercise 13.15. Evaluate the waf flux, according to (13.13), for the in-
viscid Burgers equation, f(u) = 1

2u2 in (13.10). Recall that the Riemann
problem at the interface i + 1

2 , see Sect. 2.4.2 of Chap. 2, has two cases,
namely the shock case un

i > un
i+1 and the rarefaction case un

i ≤ un
i+1.

Solution 13.16. Left to the reader.

13.3.2 Generalisations of the waf Scheme

Generalisations of the basic waf flux (13.13) may be carried out in a
number of ways. The definition of the flux to include irregular meshes of size
(Δx)i is obvious,
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fwaf

i+ 1
2

=
1

1
2 [(Δx)i + (Δx)i+1]

∫ 1
2 (Δx)i+1

− 1
2 (Δx)i

f [ui+ 1
2
(x,

Δt

2
)]dx (13.18)

and definitions (13.13) and (13.18) are actually special cases of the more
general formula

fwaf

i+ 1
2

=
1

t2 − t1

1
x2 − x1

∫ t2

t1

∫ x2

x1

f [ûi+ 1
2
(x, t)]dxdt . (13.19)

Here we integrate f(ûi+ 1
2
) in a box [x1, x2] × [t1, t2] in the x–t plane, where

ûi+ 1
2
(x, t) is the solution of some relevant initial value problem.

Let us consider the following conditions on the integral (13.19) as applied
to the linear advection equation (13.1):

(i) x1 = − 1
2Δx , x2 = 1

2Δx,
(ii) t1 = 0 , t2 = Δt,
(iii) the time integral in (13.19) is approximated by the mid–point rule in

time,
(iv) ûi+ 1

2
≡ ui+ 1

2
(x, t) is the solution of the Riemann problem with data

un
i , un

i+1,
(v) Δt is such that |c| = Δt

Δx |a| < 1.

If all these conditions are fulfilled, then (13.19) reduces identically to
(13.13). If in condition (iii) above we replace the approximate integration by
exact integration, then two second–order accurate methods result; for c ≤ 1

2
one obtains the Lax–Wendroff method; for 1

2 ≤ c ≤ 1 one obtains a second–
order method which appears to be new.

Consider the case in which conditions (i)–(iv) are imposed but condition
(v) is weakened so that the CFL number |c| may be larger than unity. A
consequence of relaxing (v) in this way is that ûi+ 1

2
may become the solution

of more than one piece–wise constant data Riemann problem. For the linear
advection equation this results in an explicit method with arbitrarily large
time step Δt, see Casulli and Toro [95]. Extensions of this large–time step
scheme to non–linear problems is, however, very difficult. The particular case
in which |c| ≤ 2 is of interest and we call the resulting scheme waf cfl2 [527];
this scheme is effectively a combined, Riemann–problem based extension of
the Lax–Wendroff scheme and the Warming–Beam scheme [574], namely

fwafcfl2

i+ 1
2

=

⎧
⎨
⎩

f lw
i+ 1

2
= 1

2 (1 + c)(aun
i ) + 1

2 (1 − c)(aun
i+1) , |c| < 1 ,

fwb
i+ 1

2
, 1 ≤ |c| ≤ 2 ,

(13.20)
where fwb

i+ 1
2

is the Warming–Beam numerical flux

fwb
i+ 1

2
=

{− 1
2 (1 − c)(aun

i−1) + 1
2 (3 − c)(aun

i ) , if a > 0 ,

1
2 (3 + c)(aun

i+1) − 1
2 (1 + c)(aui+2) , if a < 0 .

(13.21)
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Fig. 13.4. Evaluation of the waf flux for the linear advection equation, for a > 0
and 1 ≤ c ≤ 2

Fig. 13.4 illustrates the flux evaluation for a > 0 and 1 ≤ c ≤ 2. Now the
normalised lengths |AB| and |BC| for a > 0 are β−1 = − 1

2 (1−c), β0 = 1
2 (3−c).

For a < 0 the weights are β1 = 1
2 (3 + c), β2 = − 1

2 (1 + c). See (13.17) and
Table 13.2.

The waf cfl2 scheme of Toro and Billett has been extended to non–linear
systems, with a suitable TVD condition in [527], where it is applied to the
time–dependent two dimensional Euler equations. A final remark on the waf

cfl2 scheme is this. If the integral (13.19), under the conditions following
it, is evaluated by the mid–point rule in space and exact integration in time,
then a first–order upwind method of Courant number two stability restriction
is produced. This has numerical flux

f tb
i+ 1

2
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

fGODu
i+ 1

2
= 1

2 (1 + sign(c))(aun
i )

+ 1
2 (1 − sign(c))(aun

i+1) , if |c| ≤ 1 ,

(c−1)
c (aun

i−1) + 1
c (aun

i ) , if a > 0 , 1 ≤ c ≤ 2 ,

−1
c (aun

i+1) + (c+1)
c (aun

i+2) , if a < 0 , 1 ≤ |c| ≤ 2 .

(13.22)

Exercise 13.17. Substitute the above numerical fluxes (13.22) into the
conservative formula (13.11) to derive the scheme in the form (13.5). Check
the accuracy of the scheme using formula (13.6) and verify that the scheme
produces the exact solution for |c| = 1 and |c| = 2.

Solution 13.18. Left to the reader.

A Total Variation Diminishing ( TVD) modification of the waf method
is constructed in Sect. 13.7.1. In Chap. 14 we extend the waf method to
non–linear systems of conservations laws; in Chap. 15 we extend the scheme
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further to deal with source terms and in Chap. 16 we extend the scheme to
deal with multi–dimensional problems.

In the following section we present another approach for deriving high–
order numerical methods.

13.4 MUSCL–Type High–Order Methods

Van Leer, see [557], [558], [559], introduced the idea of modifying the piece–
wise constant data (13.12) in the first–order Godunov method, as a first step
to achieve higher order of accuracy. This approach has become known as
the MUSCL or Variable Extrapolation approach, where MUSCL stands for
Monotone Upstream–centred Scheme for Conservation Laws. The MUSCL
approach is routinely used in practice today; it allows the construction of very
high order methods, fully discrete, semi–discrete and also implicit methods.
As we shall see later in this chapter, high–order (linear) schemes produce
spurious oscillations. See numerical results of Chap. 5. The MUSCL approach
implies (i) high–order of accuracy obtained by data reconstruction and (ii)
the reconstruction is constrained so as to avoid spurious oscillations, and thus
the justification of the word monotone in the name of the scheme. In this
section we shall only be concerned with the first aspect of MUSCL, that is as
a method for increasing the accuracy of first–order schemes.

13.4.1 Data Reconstruction

The simplest way of modifying the piecewise constant data {un
i } is to

replace the constant states un
i by piecewise linear functions ui(x). As for

the first–order Godunov method, one assumes that un
i represents an integral

average in cell Ii = [xi− 1
2
, xi+ 1

2
] as given by (13.12).

A piece–wise linear, local reconstruction of un
i is

ui(x) = un
i +

(x − xi)
Δx

Δi , x ∈ [0,Δx] , (13.23)

where Δi

Δx is a suitably chosen slope of ui(x) in cell Ii. In what follows we call
Δi a slope. Note that the linear function ui(x) is defined locally in cell Ii, that
is x ∈ [0,Δx]. Fig. 13.5 illustrates the situation. The centre of the cell xi in
local co–ordinates is x = 1

2Δx and ui(xi) = un
i . The values of ui(x) at the

extreme points play a fundamental role; they are given by

uL
i = ui(0) = un

i − 1
2
Δi ; uR

i = ui(Δx) = un
i +

1
2
Δi (13.24)

and are usually called boundary extrapolated values; hence the alternative
name of Variable Extrapolation Method. Note that the integral of ui(x) in
cell Ii is identical to that of un

i and thus the reconstruction process retains
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Fig. 13.5. Piece–wise linear MUSCL reconstruction of data in a single computing
cell Ii; boundary extrapolated values are uL

i , uR
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Fig. 13.6. Piece–wise linear MUSCL reconstruction for three successive computing
cells Ii−1, Ii , Ii+1

conservation. Fig. 13.6 illustrates the piece–wise linear reconstruction process
applied to three successive cells. As a consequence of having modified the
data, at each interface i + 1

2 one now may consider the so called Generalised
Riemann Problem (or GRP)

ut + f(u)x = 0 ,

u(x, 0) =

{
ui(x) , x < 0 ,

ui+1(x) , x > 0 ,

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(13.25)

to compute an intercell Godunov–type flux fi+ 1
2
. Fig. 13.7 illustrates the ini-

tial data and the structure of the solution of the Generalised Riemann prob-
lem. The solution no longer contains uniform regions as in the conventional
Riemann problem in which the data is piece–wise constant; wave paths are
now curved in x–t space.

Ben–Artzi and Falcovitz [37] were the first to develop a method based on
the GRP. They applied their scheme to the Euler equations. Naturally, for
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non–linear systems the exact solution of the generalised Riemann problem is
exceedingly complicated, but for the purpose of flux evaluation, approximate
information may be obtained. Most approaches do in fact give up the solu-
tion of the generalised Riemann problem and rely instead on judicious use of
the boundary extrapolated values uL

i , uR
i in (13.24), for each function ui(x)

(13.23). In this way, one may instead consider the piece–wise constant data
Riemann problem

ut + f(u)x = 0 ,

u(x, 0) =

{
uR

i , x < 0 ,

uL
i+1 , x > 0 ,

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(13.26)

which if used in conjunction with some other procedures can produce useful
high–order methods.

As to the choice of slopes Δi in (13.23) we define

Δi =
1
2
(1 + ω)Δui− 1

2
+

1
2
(1 − ω)Δui+ 1

2
, (13.27)

where as usual

Δui− 1
2
≡ un

i − un
i−1 , Δui+ 1

2
≡ un

i+1 − un
i (13.28)

and ω is a free parameter in the real interval [−1, 1]. For ω = 0, Δi is a central–
difference approximation, multiplied by Δx, to the first spatial derivative of
the numerical solution at time level n.

MUSCL data reconstructions that are more accurate than the piece–wise
linear reconstruction (13.23) are possible. A piece–wise quadratic reconstruc-
tion [251] is

ui(x) = un
i +

(x − xi)
Δx

Δ
(1)
i +

3κ

2(Δx)2

[
(x − xi)2 −

(Δx)2

12

]
Δ

(2)
i , (13.29)

where Δ
(1)
i = Δi as in (13.27), Δ

(2)
i is associated with an estimate for the

second space derivative of ui(x) in cell Ii and κ is a parameter. For κ = 1
3 this

piece–wise quadratic reconstruction leads to third–order accurate space dis-
cretisations. The Piece–wise Parabolic Method (PPM) of Colella and Wood-
ward [137], [584] is based on a piece–wise parabolic reconstruction of the data.

The next sections present various methodologies based on MUSCL data
reconstruction to derive high–order methods. Three of the approaches use, in
addition, solutions of associated Riemann problems. We also present a high–
order scheme that uses the MUSCL reconstruction step, but instead of using
the Riemann problem solution it uses the First–Order Centred Scheme force

introduced in Sect. 7.4.2 Chap. 7, giving rise to a centred high–order method.
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Fig. 13.7. The Generalised Riemann Problem (GRP): (a) piece–wise linear data
(b) structure of the solution in x–t plane

13.4.2 The MUSCL–Hancock Method (MHM)

Van Leer [562] attributes this method to S. Hancock, and we therefore
adopt the name MUSCL–Hancock Method, or MHM, for this approach. MHM
has three distinct steps to construct fully discrete second–order accurate
schemes based on (13.11) to solve (13.10). These are:

Step (I) Data reconstruction as in (13.23) with boundary extrapolated val-
ues as in (13.24), namely

uL
i = un

i − 1
2
Δi ; uR

i = un
i +

1
2
Δi .

Step (II) Evolution of uL
i , uR

i by a time 1
2Δt according to

uL
i = uL

i +
1
2

Δt

Δx
[f(uL

i ) − f(uR
i )] ,

uR
i = uR

i +
1
2

Δt

Δx
[f(uL

i ) − f(uR
i )] .

⎫
⎪⎬
⎪⎭

(13.30)

Step (III) Solution of the piece–wise constant data Riemann problem

ut + f(u)x = 0 ,

u(x, 0) =

{
uR

i , x < 0 ,

uL
i+1 , x > 0 ,

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(13.31)

to find the similarity solution ui+ 1
2
(x/t). Fig. 13.8 illustrates steps (I) and

(II) at the intercell boundary position i+ 1
2 ; the boundary extrapolated values

uR
i , uL

i+1 are evolved to uR
i , uL

i+1. These form the piece–wise constant data for
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a conventional Riemann problem at the cell interface i + 1
2 with solution

ui+ 1
2
(x/t). The intercell numerical flux fi+ 1

2
is then obtained in exactly the

same way as in the Godunov first–order upwind method, see Sect. 5.3.2 of
Chaps. 5 and Chap. 6, namely

fi+ 1
2

= f(ui+ 1
2
(0)) . (13.32)

u

i+1/2 i+1i

u

u

u i

L

R

i+1

i

i+1

R

L

Fig. 13.8. Boundary extrapolated values. At each interface i+ 1
2

boundary extrap-
olated values uR

i , uL
i+1 are evolved to uR

i , uL
i+1, to form the piece–wise constant data

for a conventional Riemann problem at the intercell boundary

Now we develop the details of the scheme for the linear advection equation
(13.1). Step (I) gives the boundary extrapolated values (13.24). In step (II) we
need the fluxes f(uL

i ), f(uR
i ). As for the linear advection equation f(u) = au,

then we have

f(uL
i ) = a[un

i − 1
2
Δi] ; f(uR

i ) = a[un
i +

1
2
Δi] .

Substitution of these into (13.30) gives the evolved boundary extrapolated
values in cell Ii, namely

uL
i = un

i − 1
2
(1 + c)Δi ; uR

i = un
i +

1
2
(1 − c)Δi . (13.33)

In step (III) one solves the conventional Riemann problem at the interface
i + 1

2 with data
(uR

i , uL
i+1)

the solution of which is

ui+ 1
2
(x/t) =

{
uR

i = un
i + 1

2 (1 − c)Δi , if x/t < a ,

uL
i+1 = un

i+1 − 1
2 (1 + c)Δi+1 , if x/t > a .

(13.34)

The intercell flux is now as in the first–order Godunov method (13.32). The
result is



13.4 MUSCL–Type High–Order Methods 431

fmhm
i+ 1

2
=

1
2
(1 + sign(c))f(uR

i ) +
1
2
(1 − sign(c))f(uL

i+1) , (13.35)

where

f(uR
i ) = a[un

i +
1
2
(1 − c)Δi] ; f(uL

i+1) = a[un
i+1 −

1
2
(1 + c)Δi+1] . (13.36)

Recall that sign(x) = 1 if x > 0 and sign(x) = −1 if x < 0, for any real
number x.

When expressed as in (13.17) the MHM flux for the linear advection equa-
tion (13.1) has coefficients βk that depend on the Courant number c and the
parameter ω.

Exercise 13.19. Using the notation (13.17) verify that the coefficients βk

in (13.35), for a > 0, are

β−1 = −1
4
(1 − c)(1 + ω) ;β0 = 1 +

1
2
(1 − c)ω ;β1 =

1
4
(1 − c)(1 − ω) ;β2 = 0

(13.37)
and that for a < 0 they are

β−1 = 0 ;β0 =
1
4
(1 + c)(1 + ω) ;β1 = 1 − 1

2
(1 + c)ω ;β2 = −1

4
(1 + c)(1 − ω) .

(13.38)

Solution 13.20. Left to the reader.

Exercise 13.21. Verify that if the parameter ω in the slopes (13.27) is ω =
0, then MHM reproduces the Fromm scheme, see Tables 13.1 and 13.2. Assume
a > 0 and verify that for ω = 1 the scheme is identical to the Warming–Beam
scheme and that for ω = −1 the scheme is identical to the Lax–Wendroff
method; see Tables 13.1 and 13.2.

Solution 13.22. Left to the reader.

Exercise 13.23. Apply (13.6) to show that for any value of ω in the slopes
Δi in (13.27) MHM is second–order accurate in space and time, for both a < 0
and a > 0.

Solution 13.24. Left to the reader.

Exercise 13.25. Apply (13.6) to show that MHM is third–order accurate
in space and time if the parameter ω in (13.27) is chosen to be

ω =
1
3
(2c − sign(c)) . (13.39)

Solution 13.26. Left to the reader.

A Total Variation Diminishing ( TVD) version of the MHM is constructed
in Sect. 13.8. Extensions to non–linear systems in one space dimension are
given in Chap. 14. Application of the method to systems involving source
terms is discussed in Chap. 15 and extension to multidimensional problems is
given in Chap. 16.
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13.4.3 The Piece–Wise Linear Method (PLM)

Colella [133] proposed the Piece–wise Linear Method, or PLM, to ob-
tain second–order accurate generalisations of the Godunov first–order upwind
method. PLM is also based on the MUSCL data reconstruction step discussed
in Sec. 13.4.1. For any conservation law (13.10) as solved by (13.11), PLM de-
fines the numerical flux fi+ 1

2
as

fPLM
i+ 1

2
=

1
2
[f(ugrp

i+ 1
2
(0, 0)) + f(ugrp

i+ 1
2
(0,Δt))] , (13.40)

where ugrp

i+ 1
2
(x, t) is the solution of the Generalised Riemann problem (13.25).

See Fig. 13.7. PLM does not solve the Generalised Riemann problem directly;
instead, it uses a trapezium rule approximation in time to the integral

fi+ 1
2

=
1

Δt

∫ Δt

0

f [ugrp

i+ 1
2
(0, t)]dt , (13.41)

where ugrp

i+ 1
2
(0, t) is the solution of the Generalised Riemann Problem along

the cell interface position (t–axis). In order to determine the two terms in the
PLM flux (13.40), one proceeds as follows

Step (I) Data reconstruction in each cell Ii as in (13.23) with slopes as
in (13.27) and computation of the boundary extrapolated values
uL

i , uR
i , for each cell Ii.

Step (II) The first term is found by solving the conventional Riemann prob-
lem

ut + f(u)x = 0 ,

u(x, 0) =

{
uR

i , x < 0 ,

uL
i+1 , x > 0 ,

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(13.42)

with piece–wise constant data uR
i , uL

i+1. As ugrp

i+ 1
2
(0, 0) is solely

determined by the interaction of the extreme data values uR
i ,

uL
i+1 in the Generalised Riemann Problem (13.25), the solu-

tion ui+ 1
2
(x/t) of (13.42) produces the sought result, namely

ugrp

i+ 1
2
(0, 0) = ui+ 1

2
(0).

Step (III) The second term in (13.40) depends on ugrp

i+ 1
2
(0,Δt), which is

found by tracing characteristics from the point (0,Δt) back to
the reconstructed piece–wise linear data (13.23); Fig. 13.9 illus-
trates this step for the linear advection equation (13.1). Then
ugrp

i+ 1
2
(0,Δt) = uk(x̂), where k is either i or i + 1 and x̂ is the

point of intersection of the characteristic with the x–axis.
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ΔΔ

dx/dt=a>0dx/dt=a<0

Δx Δx

x

i+1 (x)
0

|c|

u

x

ui(x)

(1-c)

Δ t

Fig. 13.9. Tracing characteristic dx/dt = a back to the reconstructed data ui to
find the constant value at the interface position i + 1

2
at time Δt

We now work out the details for the linear advection equation (13.1). Step
(I) produces the extrapolated values (13.24). Step (II) gives the solution of
(13.42), which, when evaluated along the t–axis gives

ui+ 1
2
(0) =

{
uR

i = un
i + 1

2Δi , if a > 0 ,
uL

i+1 = un
i+1 − 1

2Δi+1 , if a < 0 ,

which in turn leads to the first term in (13.40). In step (III), one traces the
characteristic dx/dt = a from the point (0,Δt) back to cell Ii if a > 0 or to
cell Ii+1 if a < 0, to find the intersection point x̂; this is

x̂ =
{

cΔx , if a ≤ 0 ,
(1 − c)Δx , if a ≥ 0 .

See Fig. 13.9. For a > 0, evaluation of ui(x) at x̂ = (1− c)Δx in (13.23) gives

ui[(1 − c)Δx] = un
i + (

1
2
− c)Δi .

As this value is constant along the characteristic we have ugrp

i+ 1
2
(0,Δt) = un

i +

(1
2 − c)Δi, which gives the second term for the PLM flux (13.40).

Exercise 13.27. Verify that for both a > 0 and a < 0 the PLM flux is

fplm

i+ 1
2

=

{
a[un

i + 1
2 (1 − c)Δi] , a > 0 ,

a[un
i+1 − 1

2 (1 + c)Δi+1] , a < 0 .
(13.43)

Solution 13.28. Left to the reader.

The PLM intercell flux is identical to the MHM flux (13.35)–(13.36), for
the linear advection equation and leads to the same numerical fluxes (13.17)
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with coefficients (13.37)–(13.38), with third–order accuracy for the parameter
value given by (13.39). See Colella [133] for details on the extension of PLM to
non–linear systems. A simplified version of the PLM to construct conservative
and non–conservative methods is found in [517].

13.4.4 The Generalised Riemann Problem (GRP) Method

The Generalised Riemann Problem, or GRP, method was first put forward
by Ben–Artzi and Falcovitz [37], [38], [36], who applied it to the Euler equa-
tions. Here we present the scheme as applied to the scalar conservation law
(13.10), as solved by (13.11). The basic ingredient of the GRP method is the
solution of the Generalised Riemann Problem (13.25) to obtain a Godunov–
type numerical flux that yields a second–order accurate scheme. The GRP
method defines a numerical flux as

fgrp

i+ 1
2

= f(ugrp

i+ 1
2
(0,

1
2
Δt)) , (13.44)

where ugrp

i+ 1
2
(x, t) is the solution of the Generalised Riemann Problem (13.25)

and ugrp

i+ 1
2
(0, 1

2Δt) is the mid–point rule approximation in time to the integral

(13.41). As a matter of fact, a further approximation to ugrp

i+ 1
2
(0, 1

2Δt) is re-
quired to obtain the numerical flux (13.44). The GRP scheme then has the
following steps

Step (I) Data reconstruction in each cell Ii as in (13.23) with slopes as in
(13.27).

Step (II) Taylor expansion of ugrp

i+ 1
2
(x, t) about (0, 0) to obtain an approxi-

mation to ugrp

i+ 1
2
(0, 1

2Δt), namely

ugrp

i+ 1
2
(0,

1
2
Δt) = ugrp

i+ 1
2
(0, 0) +

1
2
Δt

∂

∂t
ugrp

i+ 1
2
(0, 0) , (13.45)

with error terms O(Δt2).
Step (III) Determination of the two terms on the right hand side of (13.45).

The first term ugrp

i+ 1
2
(0, 0) in the expansion (13.45) is the value of ugrp

i+ 1
2
(x, t)

immediately after the interaction of the piece–wise linear states ui(x), ui+1(x)
in the GRP (13.25). This value is solely determined by the extrapolated val-
ues (13.24). Thus ugrp

i+ 1
2
(0, 0) is the solution of the piece–wise constant data

Riemann problem (13.42) evaluated along the t–axis, namely

ugrp

i+ 1
2
(0) =

{
uR

i = un
i + 1

2Δi , if a > 0 ,
uL

i+1 = un
i+1 − 1

2Δi+1 , if a < 0 .
(13.46)

This is identical to the step leading to the first term in the PLM flux (13.40).
To determine the second term in (13.45) there are various possibilities.
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Here we suggest a modification of the original GRP method whereby the
time derivative in (13.45) is replaced by a space derivative. The required value
along the cell interface results from solving an extra Riemann problem for
gradients. For the linear advection equation (13.1) the modification is based
on the following result

Proposition 13.29. For any p–th order spatial derivative v = ∂pu/∂xp,
where u(x, t) is a solution of the linear advection equation (13.1), we have

vt + avx = 0 .

Proof. (Left as an exercise).

The proposition states that any spatial gradient of u(x, t), if defined,
obeys the original PDE. Hence one may pose Riemann problems for gra-
dients ∂pu/∂xp, which if assumed piece–wise constant, lead to conventional
Riemann problems.

For the linear advection equation (13.1) we have ut = −aux and thus
the time derivative in the second term of (13.45) can be replaced by a space
derivative. This in turn, by virtue of the above proposition, can be found by
solving the gradient (p = 1) Riemann problem

vt + avx = 0 ,

v(x, 0) ≡ ux(x, 0) =

⎧
⎪⎨
⎪⎩

Δi

Δx
, x < 0 ,

Δi+1

Δx
, x > 0 .

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(13.47)

The solution is

v(x, t) ≡ ux(x, t) =

⎧
⎪⎨
⎪⎩

Δi

Δx
,

x

t
< a ,

Δi+1

Δx
,

x

t
> a .

(13.48)

Therefore, the GRP flux for the linear advection equation (13.1) is

fGRP
i+ 1

2
=

{
a[un

i + 1
2 (1 − c)Δi] , a > 0 ,

a[un
i+1 − 1

2 (1 + c)Δi+1] , a < 0 .
(13.49)

The GRP flux is identical to those of the MUSCL Hancock Method (13.35)
and of Colella’s PLM scheme (13.43). Therefore all the schemes of the form
(13.5) with coefficients (13.37)–(13.38) are reproduced for any value of the
slope parameter ω in (13.27). Third order accuracy is achieved by the special
value (13.39).
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Remark 13.30. The modification of the GRP method to include solutions
of Riemann problems for spatial derivatives has potential for constructing
higher–order GRP–type schemes. Some preliminary results on a third–order
scheme were reported by former MSc student Cáceres [84]. The approach also
has potential for constructing schemes for convection–diffusion PDEs, where
a viscous flux component involves space derivatives. Some preliminary results
were reported by former MSc student Cheney [104], who derived schemes with
enlarged stability regions.

One extension of the GRP scheme to the Euler equations is found in the
original paper of Ben–Artzi and Falcovitz [37]. Hillier [250] has successfully
applied the GRP scheme to study shock diffraction problems; see also [38]
and [36]. The modified GRP scheme is applied in [517] to construct non–
conservative and conservative schemes for non–linear systems.

13.4.5 Slope–Limiter Centred (slic) Schemes

Recall that one aspect of the MUSCL approach allows the construction of
high–order extensions of the Godunov first–order upwind method via recon-
struction of the data. Here we extend the approach for constructing high–order
versions of any low–order scheme with numerical flux

fLO
i+ 1

2
= fLO

i+ 1
2
(uL, uR)

that depends on the two states uL and uR on the left and right of the inter-
face respectively. For the linear advection equation (13.1), Table 13.2 shows
four possible choices for the low–order flux, including the Godunov first–order
upwind method. In this section we are interested in low–order schemes that
avoid the solution of the Riemann problem, and thus possible choices for the
low–order scheme are the Godunov first–order centred, the Lax–Friedrichs and
the force schemes, all of which extend to non–linear systems. As we are fun-
damentally interested in oscillation–free versions of these high–order schemes,
we construct Slope–Limiter versions of these centred schemes; we therefore
adopt the name of slic methods [538]. We describe the slic schemes in terms
of the scalar conservation law (13.10) as solved by the explicit conservative
formula (13.11). The schemes have three steps, the first two being identical
to those of the MUSCL–Hancock method of Sect. 13.4.2. The steps are

Step (I) Data reconstruction as in (13.23) with boundary extrapolated val-
ues as in (13.24), namely

uL
i = un

i − 1
2
Δi ; uR

i = un
i +

1
2
Δi . (13.50)

Step (II) Evolution of uL
i , uR

i by a time 1
2Δt according to
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uL
i = uL

i +
1
2

Δt

Δx
[f(uL

i ) − f(uR
i )] ,

uR
i = uR

i +
1
2

Δt

Δx
[f(uL

i ) − f(uR
i )] .

⎫
⎪⎬
⎪⎭

(13.51)

Step (III) Now, instead of solving the Riemann problem with data (uR
i , uL

i+1)
to find the Godunov first–order upwind flux, we compute a low–
order flux with data arguments (uR

i , uL
i+1) and thus we have

fslic
i+ 1

2
= fLO

i+ 1
2
(uR

i , uL
i+1) . (13.52)

One possible choice for the low–order flux is the force flux. Recall that
for data (uL, uR) at the cell interface i + 1

2 the force flux, see Sect. 7.4.2 of
Chap. 7, is

fforce

i+ 1
2

(uL, uR) =
1
2
[fRI

i+ 1
2
(uL, uR) + fLF

i+ 1
2
(uL, uR)] , (13.53)

where fRI
i+ 1

2
is the Richtmyer flux and fLF

i+ 1
2

is the Lax–Friedrichs flux.
We consider a general low–order flux

fLO
i+ 1

2
(uL, uR) = β0(auL) + β1(auR) (13.54)

for the linear advection equation in which the flux function is f(u) = au. See
Table 13.2 for examples of low–order fluxes. Application of (13.54) in (13.52)
gives the high–order flux

fslic
i+ 1

2
= β0a[un

i +
1
2
(1 − c)Δi] + β1a[un

i+1 −
1
2
(1 + c)Δi+1] . (13.55)

Compare this with the MUSCL–Hancock flux (13.35). Direct substitution of
these fluxes into (13.11) gives a five–point support centred scheme based on
the MUSCL approach, namely

un+1
i =

2∑
k=−2

bkun
i+k (13.56)

with coefficients

b−2 = − 1
4β0c(1 − c)(1 + ω) ,

b−1 = β0c(1 + 1
4 (1 − c)(1 + 3ω)) + 1

4β1c(1 + c)(1 + ω) ,

b0 = 1 − β0c(1 − 1
4 (1 − c)(1 − 3ω)) + β1c(1 − 1

4 (1 + c)(1 + 3ω)) ,

b1 = −β1c(1 + 1
4 (1 + c)(1 − 3ω)) − 1

4β0c(1 − c)(1 − ω) ,

b2 = 1
4β1c(1 + c)(1 − ω) .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13.57)
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Theorem 13.31. Schemes (13.56)–(13.57) are second order accurate in
space and time for any value ω and for any coefficients β0, β1 that give a
consistent low–order flux (13.54). Provided β0 and β1 also give a first order
flux, schemes (13.56)–(13.57) are third order accurate in space and time when

ω =
3c(β0 − β1) − 2c2 − 1

3(β0 − β1 − c)
. (13.58)

Proof. Conventional truncation error analysis gives the desired result. A
more direct alternative is to apply Roe’s theorem (13.1), [408], formula (13.16).

Remark 13.32. Note that (13.58) always gives a well–defined ω under the
conditions of the theorem because the denominator is only zero when

β0 =
1
2
(1 + c) and β1 =

1
2
(1 − c) ,

which are the coefficients for the second order Lax–Wendroff flux.

Exercise 13.33. Consider schemes (13.56)–(13.57). Verify that the fol-
lowing statements are true.

1. If the first order scheme is the Godunov upwind scheme, third order ac-
curacy is achieved for

ω =
1
3
(2c − sign(c)).

2. If the first order scheme is the Godunov centred scheme, third order ac-
curacy is achieved for

ω =
4c2 − 1

3c
.

3. If the first order scheme is the force scheme, third order accuracy is
achieved for

ω =
1
3
c.

4. If the first order scheme is the Lax–Friedrichs scheme, third order accuracy
is achieved for

ω =
2c

3
.

5. If the coefficients β0, β1 are chosen as

β0 =
1
6

(
c + 1
c − ω

)
(1 + 2c − 3ω) ; β1 =

1
6

(
c − 1
c − ω

)
(1 − 2c + 3ω) ,

then the scheme (13.56)–(13.57) is third order accurate ∀ω.

Solution 13.34. (Left to the reader).

A Total Variation Diminishing ( TVD) version of these centred schemes
will be constructed in Sect. 13.8. In Chap. 14 we extend the schemes to non–
linear systems of conservation laws.
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13.4.6 Other Approaches

There are two more approaches for constructing numerical methods, which
are closely related to the explicit, fully discrete schemes studied previously;
these are the semi–discrete methods and implicit methods. Both families of
methods admit first–order schemes as special cases. Here we give a brief de-
scription.

13.4.7 Semi–Discrete Schemes

Consider the scalar conservation law (13.10). In the semi–discrete ap-
proach, or method of lines, one separates the space and time discretisation
processes. First one assumes some discretisation in space, while leaving the
problem continuous in time. This results in an Ordinary Differential Equation
(ODE) in time, namely

du

dt
=

1
Δx

(fi− 1
2
− fi+ 1

2
) . (13.59)

Here
fi+ 1

2
= fi+ 1

2
({ui(t)}, t) (13.60)

is an intercell numerical flux, an approximation to the true flux f(u(xi+ 1
2
, t))

at the interface i + 1
2 at time t.

A possible choice for fi+ 1
2

in (13.59) is the Godunov first–order upwind
flux. A second–order space discretisation may be obtained by first applying the
MUSCL reconstruction step (13.23) followed by the solution of the Riemann
problem (13.42), where the initial data are the right and left boundary ex-
trapolated values (13.24). Higher–order reconstructions lead to corresponding
high–order space discretisations.

The time discretisation in (13.10) results from solving the ODE (13.59).
There are many techniques for solving ODEs numerically; see Refs. [296] and
[251]. The simplest method for solving Ordinary Differential Equations is the
first–order Euler method, which if applied to (13.59) leads to the explicit
conservative formula (13.11). Runge–Kutta methods are particularly popular
for solving ODEs, in the context of the semi–discrete approach. See Jameson
et. al. [268] and Gottlieb and Shu [223]. Related works based on the method
of lines are those of Berzins [55], [56].

The separation of the time and space discretisation processes in the semi–
discrete approach allows enormous flexibility and is well suited for deriving
very high–order schemes, such as the families of UNO and ENO schemes. See
[245], [242], [240], [241].

13.4.8 Implicit Methods

Natural extensions of the second–order fully discrete schemes based on
(13.11) to solve (13.10) are conservative schemes
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un+1
i = un

i +
Δt

Δx
(fi− 1

2
− fi+ 1

2
) , (13.61)

where the intercell numerical flux fi+ 1
2

depends on both data values {un
i } and

unknown values {un+1
i }, that is

fi+ 1
2

= fi+ 1
2
(un

i−r+1, · · · , un
i+r; un+1

i−s+1, · · · , un+1
i+s ) , (13.62)

with r and s two non–negative integers.
See Harten [239] for approaches for constructing Total Variation Dimin-

ishing ( TVD) implicit schemes. A most useful reference on implicit TVD
methods is the VKI Lecture Notes by Helen Yee [593]; see also [595].

Implicit methods involve the solution of systems of algebraic equations at
each time step, which is an expensive process on both CPU time and storage.
The advantage of implicit schemes over explicit schemes is that the choice of
the time step Δt is, at least in theory, not restricted by stability considerations.
Implicit schemes are particularly well suited for solving steady state problems
by marching in time. Steady Aerodynamics is perhaps the most prominent
area of application of implicit schemes [268], [595].

Several ways of constructing high–order methods have been presented.
While high order of accuracy is a very desirable feature of numerical methods,
we shall see that, if unmodified, these schemes produce spurious oscillations
in the vicinity of high gradients of the solution, see Fig. 13.10. The next
three sections are devoted to study ways of eliminating the unwanted spurious
oscillations while preserving high order of accuracy in the smooth parts of the
solution.

13.5 Monotone Schemes and Accuracy

Here we study the class of monotone methods and their relation to ac-
curacy. We prove the important theorem due to Godunov that asserts that
monotone, linear schemes are at most first–order accurate.

13.5.1 Monotone Schemes

A useful class of methods for non–linear scalar conservation laws (13.10)
are those which are monotone. These were defined in Chap. 5 but we recall
the definition here.

Definition 13.35 (Monotone Schemes). A scheme

un+1
i = H(un

i−kL+1 , · · · , un
i+kR

) , (13.63)

with kL and kR two non–negative integers, is said to be monotone if

∂H

∂un
j

≥ 0 ∀j . (13.64)

That is, H is a non–decreasing function of each of its arguments.
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This definition of a monotone scheme is actually equivalent to the following
property:

if vn
i ≥ un

i ∀i then vn+1
i ≥ un+1

i . (13.65)

This property in turn is the discrete version of the following property of the
exact solution of the conservation law (13.10): if two initial data functions
v0(x) and u0(x) for (13.10) satisfy v0(x) ≥ u0(x) ∀x, then their corresponding
solutions v(x, t) and u(x, t) satisfy v(x, t) ≥ u(x, t), t > 0. Hence monotone
schemes mimic a basic property of exact solutions of conservation laws (13.10).
See [238] and [308].

Next we state a useful property of monotone schemes when applied to the
scalar non–linear conservation law (13.10).

Theorem 13.36. Given the data set {un
i }, if the solution set {un+1

i } is
obtained with a monotone method (13.63) then

max
i

{un+1
i } ≤ max

i
{un

i } ; min
i
{un+1

i } ≥ min
i
{un

i } . (13.66)

Proof. Define vn
i = maxj{un

j } = constant ∀i. Then application of (13.63)
gives vn+1

i = vn
i . As vn

i ≥ un
i , application of (13.65) gives vn+1

i = vn
i ≥

un+1
i and therefore maxi{un+1

i } ≤ maxi{un
i }. The second inequality in (13.66)

follows analogously.

An obvious consequence of (13.66) is

maxi{un} ≤ maxi{un−1
i } ≤ · · · ≤ maxi{u0

i } ,
mini{un} ≥ mini{un−1

i } ≥ · · · ≥ mini{u0
i } .

}
(13.67)

This result says that no new extrema are created and thus spurious oscillations
do not appear; see Fig. 13.10.

In numerical solutions computed with monotone methods, minima increase
and maxima decrease as time evolves. This results in clipping of extrema,
which is in fact a disadvantage of monotone methods. See Figs. 5.10 and
5.11 of Chap. 5, which show results for two monotone methods, namely the
Lax–Friedrichs method and the Godunov first–order upwind method.

Another very useful consequence of (13.66) is that solutions of monotone
schemes satisfy

min
j

{un
j } ≤ un+1

i ≤ max
j

{un
j } . (13.68)

This follows from noting that

min
j

{un+1
j } ≤ un+1

i ≤ max
j

{un+1
j }

and direct application of (13.66). Condition (13.68) says that the solution at
any point i is bounded by the minimum and maximum of the data.

The following result applies to all three–point schemes for non–linear scalar
conservation laws (13.10).
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Theorem 13.37 (Monotonicity and the Flux). If a three–point scheme
of the form

un+1
i = un

i +
Δt

Δx
[fi− 1

2
− fi+ 1

2
] (13.69)

for the non–linear conservation law (13.10) is monotone then

∂

∂un
i

fi+ 1
2
(un

i , un
i+1) ≥ 0 and

∂

∂un
i+1

fi+ 1
2
(un

i , un
i+1) ≤ 0 . (13.70)

That is, in a monotone scheme the numerical flux fi+ 1
2
(un

i , un
i+1) is an increas-

ing (meaning non–decreasing) function of its first argument and a decreasing
(meaning non–increasing) function of its second argument.

Proof. In (13.69) we define

H(un
i−1, u

n
i , un

i+1) ≡ un
i +

Δt

Δx
[fi− 1

2
(un

i−1, u
n
i ) − fi+ 1

2
(un

i , un
i+1)] .

The requirement
∂H

∂un
i−1

≥ 0 implies
∂fi− 1

2

∂un
i−1

(un
i−1, u

n
i ) ≥ 0, while the require-

ment
∂H

∂un
i+1

≥ 0 implies
∂fi+ 1

2

∂un
i+1

(un
i , un

i+1) ≤ 0, and the result follows.

Example 13.38 (The Lax–Friedrichs Scheme). For a general non–linear
conservation law (13.10) the Lax–Friedrichs flux is

fLF
i+ 1

2
(un

i , un
i+1) =

1
2
[f(un

i ) + f(un
i+1)] +

1
2

Δx

Δt
(un

i − un
i+1) .

Application of conditions (13.70) to the Lax–Friedrichs flux shows that mono-
tonicity is ensured provided

−1 ≤ Δtλmax(u)
Δx

≤ 1 ,

where λ(u) = ∂f/∂u is the characteristic speed and λmax(u) is the maxi-
mum. That is, provided the CFL stability condition is enforced properly, the
Lax–Friedrichs method is monotone, when applied to non–linear scalar con-
servation laws (13.10).

Exercise 13.39. Derive conditions for the force flux

fforce

i+ 1
2

=
1
2
[fLF

i+ 1
2

+ fRI
i+ 1

2
] ,

where fRI
i+ 1

2
is the Richtmyer flux, see Sect. 7.4.2 of Chap. 7, to give a monotone

scheme, when applied to the inviscid Burgers equation

ut + f(u)x = 0 , f(u) =
1
2
u2 .
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Solution 13.40. Left to the reader.

Next we state a result for linear schemes (13.5) to solve the linear advection
equation (13.1).

Theorem 13.41 (Positivity of Coefficients). A scheme

un+1
i =

kR∑
k=−kL

bkun
i+k (13.71)

for the linear advection equation (13.1) is monotone if and only if all coeffi-
cients bk are non–negative, that is bk ≥ 0 ∀k .

Proof. By defining

H ≡
kR∑

k=−kL

bkun
i+k

and using (13.64) the result bk ≥ 0 follows immediately.

Example 13.42. Note that the first–order upwind scheme (see Table 13.1)
is always monotone, whereas the Lax–Wendroff method is not monotone. As a
matter of fact, none of the second–order accurate schemes, whose coefficients
bk are listed in Table 13.1, is monotone.

Exercise 13.43. Show that the Godunov first–order centred method [217],
see Table 13.1, is non–monotone for the range of Courant numbers 0 ≤ |c| ≤ 1

2

and is monotone for the range 1
2 ≤ |c| ≤ 1

2

√
2.

Solution 13.44. Left to the reader.

13.5.2 A Motivating Example

Suppose we want to solve the linear advection equation (13.1) with a
conservative scheme (13.11) in conjunction with a waf–type flux

fα
i+ 1

2
=

1
Δx

∫ 1
2 Δx

− 1
2 Δx

f [ui+ 1
2
(x, αΔt)]dx , (13.72)

where α ≥ 0 is a dimensionless parameter and ui+ 1
2
(x, t) is the solution of

the Riemann problem with data (un
i , un

i+1). Compare (13.72) with (13.13) and
(13.19). In fact α = 1

2 reproduces the waf flux (13.16) that leads to the Lax–
Wendroff method; see Sect. 13.3.1. Evaluation of (13.72), see Fig. 13.3, for the
linear advection equation gives

fα
i+ 1

2
=

1
2
(1 + 2αc)(aun

i ) +
1
2
(1 − 2αc)(aun

i+1) . (13.73)
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Appropriate choices for α give familiar schemes. For instance,

α =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

: Lax–Wendroff method;

1
2|c| : Godunov first–order upwind method;

1 : Godunov first–order centred method;

1
4c2

(
1 + c2

)
: force scheme;

1
2c2

: Lax–Friedrichs method.

(13.74)

Substitution of (13.73) into (13.11) gives

un+1
i = b−1u

n
i−1 + b0u

n
i + b1u

n
i+1 , (13.75)

with coefficients

b−1 =
1
2
(1 + 2αc)c ; b0 = 1 − 2αc2 ; b1 = −1

2
(1 − 2αc)c . (13.76)

A stability analysis of the scheme (13.75)–(13.76) using (13.7) shows that the
scheme is stable for the following values of the parameter α:

1
2
≤ α ≤ 1

2c2
. (13.77)

The flux (13.73) is a weighted average of the upwind and downwind fluxes,
with α controlling the relative size of their contributions. For α > 1

2 the
upwind flux contribution is increased and the downwind contribution is de-
creased. The minimum upwind contribution consistent with a stable scheme
is α = 1

2 , the Lax–Wendroff method. Also note that the upper limit for sta-
bility is α = 1

2c2 ; that is, the maximum upwind contribution results in the
Lax–Friedrichs method. Any attempt at increasing the upwind contribution
further results in an unstable method.

An accuracy analysis of (13.75)–(13.76) using (13.6) says that the scheme
is second–order accurate in space and time for the single value α = 1

2 (the
Lax–Wendroff method), and for any value of α with 1

2 < α ≤ 1
2c2 the scheme is

first–order accurate. As soon as the upwind contribution in the Lax–Wendroff
scheme is slightly increased, the accuracy of the scheme drops to first order.

According to Theorem (13.41), monotonicity of the scheme (13.75)–(13.76)
holds if the coefficients (13.76) are non–negative.

Exercise 13.45 (Monotonicity). Verify that scheme (13.75)–(13.76) is
monotone for values of α in the range

1
2|c| ≤ α ≤ 1

2c2
. (13.78)
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Solution 13.46. Left to the reader.

An important observation follows from (13.77) and (13.78): for the range
of values

1
2

< α ≤ 1
2|c| (13.79)

of the parameter α the scheme (13.75) is stable, first–order accurate, but not
monotone.

Remark 13.47. There are infinitely many first–order accurate schemes that
are stable but not monotone. In (13.75) we have one example for each value
of α in the range given by (13.79).

Exercise 13.48. On the c–α plane, identify the regions of stability, in-
stability and monotonicity of scheme (13.75)–(13.76). Note that the Godunov
first–order centred scheme is stable for 0 ≤ |c| ≤ 1

2

√
2 and is monotone only

in the range 1
2 ≤ |c| ≤ 1

2

√
2.

Solution 13.49. Left to the reader.

Fig. 13.10 shows numerical results (symbols) compared with the exact so-
lution (line), for the linear advection equation (13.1) with a square wave as
initial condition; see Test 2, Sect. 5.5.1 of Chap. 5. The computational domain
is [0, 10] which is discretised with M = 1000 cells; the CFL number used is
c = 1

4 and the output time is t = 1.0. The schemes used result from the con-
servative formula (13.11) and the numerical flux (13.73), with six fixed values
for the parameter α; see legend to figure. A relevant observation to make is
that the second–order Lax–Wendroff method (a) produces high resolution of
the discontinuities (narrow transition zone) but also produces spurious oscil-
lations in their vicinity; the result labelled (b) is some first–order accurate
method resulting from the choice α = 3

4 and the result confirms the fact
that the scheme is not monotone, as predicted by (13.79). This first–order
accurate scheme is not monotone, as remarked earlier. The result labelled (c)
corresponds to the Godunov first–order centred scheme, which for the CFL
number used is not monotone, in agreement with condition (13.79). The result
(d) is oscillation–free and corresponds to a scheme with a larger value of α
(α = 2) so that the Godunov first–order upwind method is reproduced. Larger
values of α produce other schemes; (e) corresponds to the First–Order Cen-
tred (force) scheme (α = 4.25) and (f) corresponds to the Lax–Friedrichs
method (α = 8), both giving oscillation–free results.

Remark 13.50. Monotonicity and Accuracy. Our empirical observation based
on the numerical results of Chap. 5 and those of Fig. 13.10 is that schemes
that are second order accurate produce spurious oscillations, and schemes
that are monotone are inaccurate. The observation is in fact true in general,
for fixed coefficient (linear) schemes, as we shall prove in the next section. A
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Fig. 13.10. Numerical results at time t = 1 for six numerical schemes contained in
the motivating example of Sect. 13.5.2; symbols denote numerical solution and lines
denote the exact solution; CFL number used is c = 1

4
. (a): α = 1

2
(Lax–Wendroff);

(b): α = 3
4

(Some first–order non–monotone method); (c): α = 1 (Godunov first–
order centred, non–monotone); (d): α = 2 (Godunov first–order upwind); (e): α =
4.25 (First–Order Centred, FORCE); (f): α = 8 (Lax–Friedrichs)
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possible way forward is to vary the parameter α so as to maintain accuracy
in smooth parts of the solution and monotonicity near high gradients. This
would require α to be a function of the data set {un

i }, which would then lead
to non–linear schemes; see Sect. 13.7.1.

13.5.3 Monotone Schemes and Godunov’s Theorem

Our empirical observations so far reveal that linear second–order accurate
schemes (13.5) to solve the linear advection equation (13.1) are distinctly bet-
ter than first–order methods for problems with smooth solutions; see compu-
tational results of Figs. 5.9 to 5.11 of Chap. 5. However, for solutions involving
high gradients, such as near a discontinuity, these methods produce spurious
oscillations; see Figs. 5.12 to 5.14 of Chap. 5 and Fig. 13.10. On the other
hand, monotone methods avoid spurious oscillations near high gradients; see
results of Figs. 5.12 to 5.14 of Chap. 5. Their disadvantage though, seems to
be their limited accuracy, which is clearly exposed in the results of Figs. 5.9
to 5.11 of Chap. 5.

Godunov’s theorem establishes, theoretically, that the desirable properties
of accuracy and monotonicity are, for linear schemes, contradictory require-
ments. The following result applies to the linear advection equation (13.1) and
linear schemes (13.5).

Theorem 13.51 (Godunov’s Theorem). There are no monotone, lin-
ear schemes (13.5) for (13.1) of second or higher order of accuracy.

Proof. The proof given here is based on the accuracy relation (13.6). De-
note by sq the summation

sq =
kR∑

k=−kL

kqbk , (13.80)

where bk are the coefficients (constant) of the (linear) scheme (13.5). For
second–order accuracy one requires

s0 = 1 , s1 = −c , s2 = c2 . (13.81)

From definition (13.80)

s2 =
kR∑

k=−kL

k2bk

=
kR∑

k=−kL

(k + c)2bk − 2c

kR∑
k=−kL

kbk − c2
kR∑

k=−kL

bk

= [
kR∑

k=−kL

(k + c)2bk] − 2cs1 − c2s0 .

(13.82)
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Use of (13.81) into (13.82) gives
[

kR∑
k=−kL

(k + c)2bk

]
+ c2 ≥ c2 . (13.83)

The above inequality holds, as a monotone linear scheme satisfies bk ≥ 0.
Equality in (13.83), and thus second order accuracy, is only possible if bk =
0 ∀k or when c = −k0, that is for integer Courant numbers, and bk = 0 ∀k �=
k0. Thus we have proved the theorem for schemes satisfying the condition
0 ≤ |c| ≤ 1.

The case of integer Courant numbers larger that unity is only of theoretical
interest, as for non–linear systems this is an impossible requirement to impose
on numerical methods.

Remark 13.52. Consequences of Godunov’s Theorem. Another way to ex-
press Godunov’s theorem is that monotone schemes are at most first–order
accurate. First–order methods are too inaccurate to be of practical interest.
We therefore must search for other classes of schemes that, ideally, allow for
both the oscillation–free property of monotone schemes and the accuracy of
high order methods to coexist. In other words we must look for ways of cir-
cumventing Godunov’s theorem. The key to this lies on the assumption made
in the theorem that the schemes have fixed coefficients (linear schemes).

13.5.4 Spurious Oscillations and High Resolution

The problem of spurious oscillations in the vicinity of high gradients is de-
picted in the sketch of Fig. 13.11, where the full line denotes the exact solution
and the dotted line denotes the numerical solution obtained by some linear
method of second or higher order of accuracy. Different methods will produce
different patterns for the oscillatory profile. The Lax–Wendroff method will
produce spurious oscillations behind the wave, whereas the Warming–Beam
method will produce spurious oscillations ahead of the wave; see Fig. 5.12 of
Chap. 5. This is related to the form of the leading term in the local truncation
error of the method.

The data un
i and the exact solution are monotone decreasing functions but

the numerical solution is not; new local extrema have been introduced, thus
violating a fundamental property of solutions of scalar conservation laws. See
Sect. 13.6.1 and the statements preceding (13.94). See also conditions (13.94).

The aim of the rest of this chapter is to provide the necessary theoreti-
cal background and construct numerical methods that avoid the problem of
spurious oscillations, sometimes called the Gibb phenomena, while retaining
accuracy. In fact we aim at constructing numerical methods that have the
following properties
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Exact solution

Numerical solution

Fig. 13.11. Illustration of the numerical phenomenon of spurious oscillations near
high gradients.

– (i) The schemes have second or higher order of accuracy in smooth parts
of the solution

– (ii) The schemes produce numerical solutions free from spurious oscilla-
tions

– (iii) The schemes produce high–resolution of discontinuities, that is the
number of mesh points in the transition zone containing the numerical
wave is narrow in comparison with that of first–order monotone methods.

Schemes satisfying the above properties are called high–resolution methods,
after Harten [238].

13.5.5 Data Compatibility

One of the first reported attempts at providing a rational approach to
circumventing Godunov’s theorem is due to Roe [408]. The central idea is
to construct adaptive algorithms that would adjust themselves to the local
nature of the solution. This results, obviously, in variable coefficient (non–
linear) schemes, even when applied to linear PDEs. The coefficients must be
functions of the data.

The following definition relates an algorithm for the linear equation (13.1)
with particular classes of data.

Definition 13.53 (Data Compatible Algorithm). A scheme is com-
patible with a given data set {un

i } if the solution un+1
i at each point i,

as given by the algorithm, is bounded by the upwind pair (un
i−s, u

n
i ), where

s ≡ sign(c) = sign(a).

Remark 13.54. For a given point i the upwind pair is (un
i−1, u

n
i ) for c > 0

and (un
i , un

i+1) for c < 0. The characteristic through (i, n + 1) of the PDE
(13.1) intersects the real line at a point between the upwind pair.
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We may therefore rephrase the above definition as follows: a scheme is
compatible with the data if un+1

i lies between un
i−s and un

i . The data compat-
ibility requirement of an algorithm is conveniently expressed as follows:

min{un
i−s, u

n
i } ≤ un+1

i ≤ max{un
i−s, u

n
i } . (13.84)

Compare (13.84) with (13.68) derived from Theorem (13.36).

Proposition 13.55 (Data Compatibility). The data compatibility con-
dition (13.84) is equivalent to requiring

0 ≤ un+1
i − un

i

un
i−s − un

i

≤ 1 . (13.85)

Proof. First assume un
i−s ≤ un

i . Imposing (13.84) gives un
i−s ≤ un+1

i ≤ un
i ,

that is un
i−s − un

i ≤ un+1
i − un

i ≤ 0. Division through by un
i−s − un

i < 0 gives
(13.85). The case un

i−s ≥ un
i follows similarly.

Example 13.56. The flux for the Godunov first–order upwind method to
solve (13.1) is

fi+ 1
2

=
1
2
(1 + s)(aun

i ) +
1
2
(1 − s)(aun

i+1) .

Substitution of fi+ 1
2

and fi− 1
2

into (13.11) gives

un+1
i = un

i + sc(un
i−s − un

i ) . (13.86)

The data compatibility condition (13.85) for (13.86) is

0 ≤ un+1
i − un

i

un
i−s − un

i

= s|c| ≤ 1 ,

which is always satisfied. That is, the Godunov first–order upwind method is
compatible with all possible sets of data. This is not a property enjoyed by
the Lax–Wendroff method, for instance.

Next we consider data compatibility conditions for any three point scheme

un+1
i = b−1u

n
i−1 + b0u

n
i + b1u

n
i+1 (13.87)

applied to the linear advection equation (13.1). We first note that (13.87) can
be written in incremental form as

un+1
i = un

i − b−1Δui− 1
2

+ b1Δui+ 1
2

, (13.88)

where as usual Δui− 1
2

= un
i − un

i−1 and Δui+ 1
2

= un
i+1 − un

i .
It is easily verified that any three–point scheme (13.87) or (13.88) for (13.1)

has data compatibility conditions
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0 ≤ b−1 − b1/ri ≤ 1 , if c > 0 ,
0 ≤ b1 − b−1ri ≤ 1 , if c < 0 ,

}
(13.89)

where

ri =
Δui− 1

2

Δui+ 1
2

. (13.90)

Example 13.57 (The Lax–Wendroff Method).
Manipulations of the previous result (13.89), (13.90) show that the Lax–

Wendroff method is not compatible with all possible sets of data, it is com-
patible only with data satisfying

− 1+c
1−c ≤ 1/ri ≤ c+2

c ; if 0 ≤ c ≤ 1 ,

− 1−c
1+c ≤ ri ≤ c−2

c ; if −1 ≤ c ≤ 0 .

⎫
⎬
⎭

Example 13.58 (The Warming and Beam Method). Roe [408] showed that
the Warming–Beam Method is not compatible with all possible sets of data,
it is compatible only with data satisfying

c−2
c ≤ ri ≤ c−3

c−1 ; if 0 ≤ c ≤ 1 ,

c
c−2 ≤ 1/ri ≤ c+1

c−1 ; if 1 ≤ c ≤ 2

⎫
⎬
⎭

and
c+2

c ≤ 1/ri ≤ c+3
c+1 ; if − 1 ≤ c ≤ 0 ,

c+2
c ≤ ri ≤ c−1

c ; if − 2 ≤ c ≤ −1 .

⎫
⎬
⎭

Roe [408] also observed that given the set SDC of all possible data states
one can select combinations of schemes such that the subsets for which the
schemes satisfy the data compatibility requirement do cover the full set SDC ;
in this way he constructed adaptive, non–linear schemes that are monotone
and second order accurate, thus circumventing Godunov’s Theorem.

More recent applications of the data compatibility concept impose directly
the data compatibility requirement (13.85) on schemes that depend on some
free parameter to allow for variable coefficients. In Sect. 13.7.1 we illustrate
this approach to modify the scheme (13.11) with flux (13.73) so as to avoid
spurious oscillations and maintain second–order accuracy in smooth parts of
the solution.

13.6 Total Variation Diminishing ( TVD) Methods

The real issue concerning numerical methods is convergence. For non–
linear systems convergence proofs rely on non–linear stability, the theory of
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which relies on functional analysis concepts, such as compactness. Sets of func-
tions whose total variation is bounded lead to compact sets. Total Variation
Stable methods are then defined as those whose mesh–dependent approxima-
tions lie in compact function sets. It can then be proved that Total Variation
Stable methods are convergent. See Harten [238] and LeVeque [308] for details.

A subclass of Total Variation Stable methods are those whose total varia-
tion does not increase in time; these are commonly referred to as Total Varia-
tion Diminishing ( TVD) methods, or Total Variation Non–Increasing (TVNI)
methods. See Harten [238], [239] and Sweby [470]. Here we are interested in
studying and designing TVD methods.

13.6.1 The Total Variation

Given a function u = u(x), the total variation of u is defined as

TV (u) = lim
δ→0

sup
1
δ

∫ ∞

−∞
|u(x + δ) − u(x)|dx . (13.91)

See Apostol [15] for definitions of supremum (sup) and related concepts of
Real Analysis. If u(x) is smooth then (13.91) is identical to

TV (u) =
∫ ∞

−∞
|u′(x)|dx . (13.92)

In fact, even for discontinuous u(x), (13.92) is still correct in the sense of
Distribution Theory, see Smoller [451], Chap. 7. If u = u(x, t) then one can
generalise definitions (13.91) or (13.92), but in fact for convergence purposes,
it suffices to define the total variation of u(x, t) at fixed times t = tn, which
we denote by TV (u(t)). Moreover, if un = {un

i } is a mesh function, then the
total variation of un is defined as

TV (un) =
∞∑

i=−∞
|un

i+1 − un
i | . (13.93)

Obviously, in order for TV (un) to be finite, one must assume un
i = 0 or un

i =
constant as i → ±∞. For a moment, let us just consider the results of Fig.
13.10 again, where computed results at time t = 1 are shown. Clearly, for
the Lax–Wendroff result (a) the total variation of the numerical solution is
larger than that of the exact solution; highly oscillatory solutions have large
total variation. Of the numerical solutions shown, that of the Lax–Friedrichs
method (f) has the smallest total variation. It is easy to see that as time
evolves the total variation of the Lax–Friedrichs solution will decrease; the
total variation of the exact solution of the linear equation (13.1) will remain
constant.

A fundamental property of the exact solution of the IVP for the non–linear
scalar conservation law (13.10), when the initial data u(x, 0) has bounded total
variation, is
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– (i) No new local extrema in x may be created
– (ii) The value of a local minimum increases (it does not decrease) and the

value of a local maximum decreases (it does not increase).

From this it follows that the Total Variation TV (u(t)) is a decreasing
function of time (non–increasing); that is,

TV (u(t2)) ≤ TV (u(t1)) ∀t2 ≥ t1 . (13.94)

See Harten [238] and Lax [301]. This property of the exact solution is the one
that we want to mimic when designing numerical methods.

13.6.2 TVD and Monotonicity Preserving Schemes

Consider a numerical scheme of the form

un+1
i = H(un

i−kL+1, · · · , un
i+kR

) , (13.95)

with kL and kR two non–negative integers, to solve the scalar conservation law
(13.10). Motivated by property (13.94) we introduce the following definition

Definition 13.59 ( TVD Schemes). Scheme (13.95) is said to be a To-
tal Variation Diminishing ( TVD) scheme, or Total Variation Non–Increasing
(TVNI) scheme, if

TV (un+1) ≤ TV (un) , ∀n . (13.96)

An obvious consequence of the above definition is that

TV (un) ≤ TV (un−1) ≤ · · · ≤ TV (u0) , (13.97)

where {u0
i } is data at time t = 0. Next we define another class of numerical

methods.

Definition 13.60. Schemes of the form (13.95) for the scalar, nonlinear
conservation law (13.10) are said to be Monotonicity Preserving Schemes if
whenever the data {un

i } is monotone the solution set {un+1
i } is monotone in

the same sense. That is, if {un
i } is monotone increasing so is {un+1

i } and if
{un

i } is monotone decreasing so is {un+1
i }.

An important result that relates monotone, TVD and monotonicity pre-
serving schemes for non–linear scalar conservation laws (13.10) is given by the
following theorem, the proof of which we omit here.

Theorem 13.61. In general, the set Smon of monotone schemes is con-
tained in the set Stvd of TVD schemes and this in turn is contained in the set
Smpr of monotonicity preserving schemes, that is

Smon ⊆ Stvd ⊆ Smpr . (13.98)
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Proof. See Harten [238]; see also [308].

For linear schemes (13.5) to solve the linear advection equation (13.1) one
can prove that monotone schemes are equivalent to monotonicity preserving
schemes, as the following theorem states.

Theorem 13.62. A linear scheme (13.5) as applied to the linear advection
equation (13.1) is Monotonicity Preserving if and only if the coefficients bk

are non–negative, i.e. bk ≥ 0 ∀k.

Proof. In the first part of the proof, we assume the scheme is monotonicity
preserving and show that bk ≥ 0. Applying the scheme (13.5) to two consec-
utive points leads to

un+1
i+1 − un+1

i =
kR∑

k=−kL

bk(un
i+1+k − un

i+k) . (13.99)

In proving this part by contradiction we assume bK < 0 for some K. The
objective now is to contradict the hypothesis that the scheme is Monotonicity
Preserving. This is achieved by considering the special case

un
j =

{
0 j < i + 1 + K ,
1 j ≥ i + 1 + K .

(13.100)

Thus
un+1

i+1 − un+1
i = bK < 0 .

But if {un
i } is monotone increasing for instance, then by hypothesis, we must

have un+1
i+1 − un+1

i ≥ 0. Therefore bk ≥ 0, ∀k.
In the second part of the proof we assume bk ≥ 0 in (13.5) and prove that

the scheme is Monotonicity Preserving. If {un
i } is monotone then all terms in

the summation (13.99) are of the same sign, as bk ≥ 0; consequently the left
hand side of (13.99) is of the same sign and thus {un+1

i } is monotone in the
same sense as {un

i }.

Remark 13.63. Recall that a monotone linear scheme (13.5) to solve (13.1)
is monotone if and only if bk ≥ 0. Hence, in this case, monotone schemes are
identical to monotonicity preserving schemes and by (13.98) they are also
equivalent to TVD schemes.

Remark 13.64. The most useful class is that of TVD methods, which have
some precise mathematical properties that allow proofs of convergence. For an
example of convergence proofs see for instance the work of Sweby and Baines
[472] and relevant references cited there. The TVD conditions also allow the
practical construction of numerical methods having the TVD property.
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Harten [238] considered the class of non–linear schemes

un+1
i = un

i − Ci− 1
2
Δui− 1

2
+ Di+ 1

2
Δui+ 1

2
, (13.101)

where Δui+ 1
2

= un
i+1 − un

i and the coefficients Ci− 1
2
, Di+ 1

2
are in general as-

sumed to be functions of the data. Harten [238] proved the following important
result

Theorem 13.65 (Harten). For any scheme of the form (13.101) to solve
(13.10), a sufficient condition for the scheme to be TVD is that the coefficients
satisfy

Ci+ 1
2
≥ 0 ; Di+ 1

2
≥ 0 ,

0 ≤ Ci+ 1
2

+ Di+ 1
2
≤ 1 .

}
(13.102)

Proof. Apply the scheme (13.101) to two consecutive cells i and i + 1. We
obtain

un+1
i = un

i − Ci− 1
2
(un

i − un
i−1) + Di+ 1

2
(un

i+1 − un
i ) (13.103)

and

un+1
i+1 = un

i+1 − Ci+ 1
2
(un

i+1 − un
i ) + Di+ 3

2
(un

i+2 − un
i+1) . (13.104)

Subtracting (13.103) from (13.104) gives

un+1
i+1 − un+1

i = (un
i+1 − un

i )(1 − Ci+ 1
2
− Di+ 1

2
)

+Ci− 1
2
(un

i − un
i−1) + Di+ 3

2
(un

i+2 − un
i+1) .

Taking absolute values on both sides of the above inequality leads to

|un+1
i+1 − un+1

i | ≤ |1 − Ci+ 1
2
− Di+ 1

2
||un

i+1 − un
i |

+|Ci− 1
2
||un

i − un
i−1| + |Di+ 3

2
||un

i+2 − un
i+1| .

As |r| = r for any non–negative real number r, application of the sufficient
conditions (13.102) gives

|un+1
i+1 − un+1

i | ≤ |un
i+1 − un

i | + Ci− 1
2
|un

i − un
i−1| − Ci+ 1

2
|un

i+1 − un
i |

+Di+ 3
2
|un

i+2 − un
i+1| − Di+ 1

2
|un

i+1 − un
i | .

Summing over i gives
∑

i

|un+1
i+1 − un+1

i | ≤
∑

i

|un
i+1 − un

i | +
∑

i

Ci− 1
2
|un

i − un
i−1|

−
∑

i

Ci+ 1
2
|un

i+1 − un
i | +

∑
i

Di+ 3
2
|un

i+2 − un
i+1|

−
∑

i

Di+ 1
2
|un

i+1 − un
i | .
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Clearly the second and third summations on the right–hand side of the above
inequality cancel and so do the fourth and fifth summations, leading to the
sought result

TV (un+1) ≤ TV (un) .

Remark 13.66. During the proof of the above theorem we assumed

Ci− 1
2
≥ 0 , 1 − Ci+ 1

2
− Di+ 1

2
≥ 0 , Di+ 3

2
≥ 0.

By appropriate shifting of the position at which expressions (13.103),(13.104)
are applied, the above conditions are equivalent to the conditions (13.102) of
the theorem.

Remark 13.67. The coefficients Ci+ 1
2
, Di+ 1

2
in Harten’s theorem, may

in general, be data dependent. The theorem therefore applies to nonlinear
schemes. This fact can be then used to circumvent Godunov’s theorem (13.51),
which applies to linear schemes only. Harten’s theorem (13.65) offers a very
useful tool for constructing high resolution schemes.

Remark 13.68. Schemes that allow a controlled increase in the total varia-
tion have also been constructed. They are usually referred to as Total Variation
Bounded Schemes, or TVB schemes. See for instance the work of Shu [446],
[445].

13.7 Flux Limiter Methods

In this section we construct Total Variation Diminishing ( TVD) methods
following the flux limiter approach, see Sweby [470]. In Sect. 13.7.1 we first
consider a particular method, namely a TVD version of the Weighted Average
Flux (waf) method described in Sect. 13.3. We then present the general flux
limiter approach as applied to families of numerical methods; in Sect. 13.7.2
we present upwind based flux limiter methods and in Sect. 13.7.4 we present
centred (non–upwind) flux limiter methods.

13.7.1 TVD Version of the waf Method

Recall the motivating example of Sect. 13.5.2 in which the conservative
scheme (13.11) has numerical flux (13.73), which depends on a free parameter
α. Various, fixed values of α reproduce familiar schemes. One may exploit
α by regarding it as a function of data un

i and constrained by some TVD
requirement to construct non–linear oscillation–free schemes of second order
accuracy in smooth parts of the solution. This is in fact the approach we
follow here to construct a TVD version of the basic waf scheme presented in
Sect. 13.3.1 to solve the model linear advection equation (13.1).
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For convenience we introduce a new parameter φ and re–write the waf

flux (13.16) as

fi+ 1
2

=
1
2
(1 + φ)(aun

i ) +
1
2
(1 − φ)(aun

i+1) . (13.105)

Compare with (13.73). Three particular choices of φ are φ = |c| (which leads to
the Lax–Wendroff method), φ = s ≡ sign(a) = sign(c) (which produces the
Godunov first–order upwind method) and φ = −s (which gives the downwind
method, unconditionally unstable).

The purpose is to find appropriate ranges for φ as a function of some data–
dependent variables that produce a TVD version of the waf scheme. Based
on the extreme cases φ = s and φ = −s above we restrict φ to satisfy the
following requirement

− 1 ≤ φ ≤ 1 . (13.106)

Other choices for the upper and lower bounds of φ are of course also possible.
By introducing appropriate notation for φ at the intercell boundaries the
relevant intercell fluxes become

fi+ 1
2

= 1
2 (1 + φi+ 1

2
)(aun

i ) + 1
2 (1 − φi+ 1

2
)(aun

i+1) ,

fi− 1
2

= 1
2 (1 + φi− 1

2
)(aun

i−1) + 1
2 (1 − φi− 1

2
)(aun

i ) .

⎫
⎬
⎭ (13.107)

Thus, for each intercell boundary position i+ 1
2 we seek a value φi+ 1

2
that will

produce a modified waf flux leading to a TVD scheme.

Application of Data Compatibility

Instead of using Harten’s Theorem we impose the slightly stronger con-
straint embodied in the data compatibility condition (13.85). First we assume
that a > 0 in the PDE (13.1). Substitution of the fluxes (13.107) into the con-
servative formula (13.11) followed by some obvious algebraic manipulations,
to reproduce the ratio in (13.85), give

un+1
i − un

i

un
i−1 − un

i

=
1
2
c

[
1

ri+ 1
2

(
1 − φi+ 1

2

)
+ φi− 1

2
+ 1

]
, (13.108)

where
ri+ 1

2
=

un
i − un

i−1

un
i+1 − un

i

. (13.109)

Compare the left–hand side of (13.108) with the ratio of consecutive data
changes in the data compatibility condition (13.85). Direct application of con-
dition (13.85) to the right–hand side of (13.108) leads to

− 1 ≤ 1
ri+ 1

2

(1 − φi+ 1
2
) + φi− 1

2
≤ 2 − c

c
. (13.110)
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For negative speed a in the PDE (13.1) (c < 0) one arrives at the same
result (13.110), with the CFL number c replaced by its absolute value and
ri+ 1

2
defined as

ri+ 1
2

=
un

i+2 − un
i+1

un
i+1 − un

i

. (13.111)

Thus, for both positive and negative waves speeds in (13.1) we obtain

− 1 ≤ 1
ri+ 1

2

(1 − φi+ 1
2
) + φi− 1

2
≤ 2 − |c|

|c| , (13.112)

with

ri+ 1
2

=

⎧
⎪⎪⎨
⎪⎪⎩

un
i −un

i−1
un

i+1−un
i

, a > 0 ,

un
i+2−un

i+1
un

i+1−un
i

, a < 0 .

(13.113)

Thus ri+ 1
2

is always the ratio of the upwind change, Δui− 1
2
≡ un

i − un
i−1 for

a > 0 or Δui+ 3
2
≡ un

i+2−un
i+1 for a < 0, to the local change Δui+ 1

2
= un

i+1−un
i .

That is
ri+ 1

2
=

Δupw

Δloc
,

with the obvious definitions for Δupw and Δloc. Fig. 13.12. illustrates the
identification of local and upwind changes across appropriate waves. The ratio
ri+ 1

2
of local changes in the data is now regarded as a flow parameter that

will cause the value of the sought function φ to adjust to local conditions on
the data. So far we have identified two quantities that may be regarded as the
independent variables of the function φ, namely |c| and the flow parameter
ri+ 1

2
. Thus we define

φi+ 1
2

= φi+ 1
2
(ri+ 1

2
, |c|) . (13.114)

Occasionally, we shall omit the argument |c|.

Construction of the TVD Region

The purpose here is to find a suitable range of values for φi+ 1
2

as a function
of ri+ 1

2
and |c|. To this end we select two inequalities, one for φi+ 1

2
and one

for φi− 1
2

so that both inequalities in (13.112) are automatically satisfied. We
take

− 1 − L ≤ 1
ri+ 1

2

(1 − φi+ 1
2
) ≤ 2(1 − |c|)

|c| (13.115)

and
L ≤ φi− 1

2
≤ 1 , (13.116)

with the lower bound L in the interval [−1, |c|]. This will allow some freedom
in selecting how much downwinding is to be allowed. For L = −1, see (13.112),
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i+1i-1

i i+1 i+2i-1

dx/dt = a < 0 dxdt = a < 0

(a)

(b)

i

dx/dt = a > 0

i+2

Local change

Upwind changeLocal change

Upwind change
dx/dt = a > 0

Fig. 13.12. Identification of upwind direction to form the ratio ri+ 1
2

of upwind

change to local change: (a) positive wave speed, upwind change lies on the left (b)
negative wave speed, upwind change lies on the right

full downwinding is allowed; for L = 0 no downwinding is allowed. Note that
by adding (13.115) and (13.116) we reproduce (13.112). We study (13.115) in
detail. Subscripts are omitted, for convenience.

The left inequality in (13.115): −(1 + L) ≤ 1
r (1 − φ) contains two cases,

namely

– Positive r: if r > 0 then −(1 + L)r ≤ 1 − φ, which implies

φ ≤ 1 + (1 + L)r ≡ φL(r, |c|) . (13.117)

– Negative r: if r < 0 then −(1 + L)r ≥ 1 − φ, which implies

φ ≥ 1 + (1 + L)r ≡ φL(r, |c|) . (13.118)

The right inequality in (13.115): 1
r (1−φ) ≤ 2(1−|c|)

|c| has two cases, namely

– Positive r: if r > 0 we obtain

φ ≥ 1 − 2(1 − |c|)
|c| r ≡ φR(r, |c|) . (13.119)

– Negative r: if r < 0 we obtain

φ ≤ 1 − 2(1 − |c|)
|c| r ≡ φR(r, |c|) . (13.120)
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(r)

φφ

φ

φ

φ

= 1

r = 0

RL

= -1

= L

= 0

= |c|φ

φ
φ

r

Fig. 13.13. TVD regions for the waf method are shown by shaded area in the r–φ
plane, for fixed values of the CFL number c

Fig. 13.13 illustrates the derived TVD regions (dark zone) in the plane r − φ
that satisfies conditions (13.115)–(13.116). There is a TVD region for r < 0
and a TVD region for r > 0. The choice of the lower bound L determines
the left TVD region; for L = −1 this region coalesces to the single line
φR(r, |c|) = 1 (Godunov first–order upwind). Any fixed value of the limiter
function φ(r, |c|) results in a scheme with a numerical viscosity αφ, see Sect. 5.2
of Chap. 5. For |c| ≤ φ(r, |c|) ≤ 1 this numerical viscosity is positive and results
in spreading of discontinuities and clipping of extrema. For L ≤ φ(r, |c|) ≤ |c|
the numerical viscosity is negative and results in steepening of discontinuities.
Obviously the case φ(r, |c|) = |c| does not add any extra numerical viscosity
and corresponds to the Lax–Wendroff method.

A limiter function φ = φ(r, |c|) can be constructed within the TVD re-
gion and any choice will produce an oscillation–free scheme (13.11) with flux
(13.105); the only restriction is

φ(1, |c|) = |c| . (13.121)

This ensures second–order accuracy for values of r close to 1, that is when
the upwind change is comparable to the local change (smooth part of the
solution), see (13.113).

Construction of waf Limiter Functions

There is scope for the imagination in constructing functions φ(r, |c|). Here
we give five waf limiter functions, namely
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φua(r, |c|) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if r ≤ 0 ,

1 − 2(1−|c|)r
|c| if 0 ≤ r ≤ |c|

1−|c| ,

−1 if r ≥ |c|
1−|c| ,

(13.122)

φsa(r, |c|) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if r ≤ 0 ,

1 − 2(1 − |c|)r if 0 ≤ r ≤ 1
2 ,

|c| if 1
2 ≤ r ≤ 1 ,
,

1 − (1 − |c|)r if 1 ≤ r ≤ 2 ,
,

2|c| − 1 if r ≥ 2

(13.123)

φvl(r, |c|) =

⎧
⎪⎪⎨
⎪⎪⎩

1 if r ≤ 0 ,

1 − 2(1−|c|)r
1+r if r ≥ 0 ,

(13.124)

φva(r, |c|) =

⎧
⎪⎪⎨
⎪⎪⎩

1 if r ≤ 0 ,

1 − (1−|c|)r(1+r)
1+r2 if r ≥ 0 ,

(13.125)

and

φma(r, |c|) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if r ≤ 0 ,

1 − (1 − |c|)r if 0 ≤ r ≤ 1 ,

|c| if r ≥ 1 .

(13.126)

Each of these waf limiter functions above corresponds to the well known flux
limiters ULTRABEE, SUPERBEE, VANLEER, VANALBADA and MIN-
BEE, to be studied in Sect. 13.7.2. We therefore give the waf limiters analo-
gous names. The function φua(r, |c|) (ULTRAA) corresponds to the flux lim-
iter ULTRABEE of Roe [409]; φsa(r, |c|) (SUPERA) corresponds to the flux
limiter SUPERBEE of Roe [409] ; φvl(r, |c|) (VANLEER) corresponds to the
flux limiter of van Leer [554], [555]; φva(r, |c|) (VANALBADA) corresponds
to the limiter proposed by van Albada [552]; φma(r, |c|) (MINA) corresponds
to the flux limiter MINBEE of Roe [409]. Fig. 13.14 illustrates the limiter
function SUPERA. Note that φua(r, |c|) does not satisfy the second–order
requirement (13.121).
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r=1/2

r

(r)

φ

r=1

= 2|c|-1

= |c|

= 1

r=0 r=2

φ

φ
φ

Fig. 13.14. WAF limiter function SUPERA (corresponding to flux limiter SUPER-
BEE) is a piece–wise linear function shown by thick line

Numerical Experiments

We consider the same two test problems for the linear advection (13.1)
as in Chap. 5. In the computations we take a = 1.0 and a CFL coefficient
Ccfl = 0.8. Computed results are shown at the output times t = 1.0 unit (125
time steps) and t = 10.0 unit (1250 time steps). In each figure we compare the
exact solution (shown by full lines) with the numerical solution (symbols).

The initial conditions for Test 1 (smooth data) and Test 2 (discontinuous
data, square wave) are respectively given by

u(x, 0) = αe−βx2
; u(x, 0) =

⎧
⎨
⎩

0 if x ≤ 0.3 ,
1 if 0.3 ≤ x ≤ 0.7 ,
0 if x ≥ 0.7 .

(13.127)

In the computations for Test 1 we take α = 1.0, β = 8.0; the initial profile
u(x, 0) is evaluated in the interval −1 ≤ x ≤ 1. The mesh used is Δx = 0.02.
For Test 2 the mesh used is Δx = 0.01. In both test problems the initial profile
and that at the output time is resolved by 100 computing cells.

Results for Test 1 are shown in Figs. 13.15 (t=1) and 13.16 (t=10). Re-
sults for Test 2 are shown in Figs. 13.17 (t=1) and 13.18 (t=10). In each figure
we first show the linear schemes corresponding to φ(r, |c|) = |c| = constant
(Lax–Wendroff) and to φ(r, |c|) = 1 = constant (Godunov first order up-
wind). The other solutions correspond to TVD versions of the waf method
for four choices of the limiter function φ(r, |c|); these are: ULTRAA, SUPERA,
VANLEER and MINA, given respectively by (13.122)–(13.124) and (13.126).
In analysing the results of Fig. 13.15 one must bear in mind that these are
for a test with smooth initial data and that the solution has been evolved for
a short time (125 time steps). The results from the Lax–Wendroff (or waf

without the TVD property) are excellent and no apparent improvements are
offered by the TVD version of WAF using any of the limiter functions tested.
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The result of the Godunov first order upwind method shows the effects of
the numerical viscosity inherent in this method; as a consequence extrema
are unduly smoothed out. Of the four TVD results shown, that of the limiter
ULTRAA is the worst of the group. As noted earlier this function does not
pass through the point of second–order accuracy; it adds negative numerical
viscosity (locally) and results in the wrong steepening and squaring of the so-
lution profiles. Clearly this limiter is unsuitable, at least for smooth solutions.
All other TVD results are very satisfactory. SUPERA shows a tendency to
squaring of the solution profile near extrema, similar to ULTRAA. This is in
fact a well known feature of SUPERA. The limiters VANLEER and MINA
give similar results, at least for this output time.

Compare the results for Fig. 13.15 with those of Fig. 13.16 (t=10). The
results of Fig. 13.16 (1250 time steps) begin to show the effect of the dispersive
errors in the Lax–Wendroff method, the computed solution lags behind (the
speed a is positive) the true solution. For very long evolution times this error
becomes unacceptable. The Godunov first–order upwind method now clearly
shows the effects of its numerical viscosity, which increases as the number of
time steps increases. As for t = 1, the TVD results that are acceptable are
those produced by SUPERA, VANLEER AND MINA. The result of ULTRAA
is completely unacceptable. The tendency of the limiter SUPERA to square
smooth profiles unduly is now visible. The limiters VANLEER and MINA are
beginning to show the effect of their inherent numerical viscosity acting near
extrema.

The main conclusion from the results of Figs. 13.15 and 13.16 is that the
TVD results of the limiter functions SUPERA and VANLEER are the best,
a conclusion that is also valid for non–linear systems (see Chap. 14).

In discussing the results of Fig. 13.17 one must bear in mind that the
solution contains two discontinuities and that the output time is short (125
time steps). Now, unlike Test 1, the schemes (linear schemes) Lax–Wendroff
and Godunov first–order upwind give the worse results. As noted earlier, the
Lax–Wendroff scheme resolves steep fronts more sharply but at the cost of
introducing spurious oscillations. Godunov’s first–order upwind method on
the other hand, while avoiding the production of spurious oscillations, smears
sharp fronts excessively. It is in fact the limitations of these (linear) methods
that motivates the introduction of TVD methods. These have the best features
of both classes of schemes.

Of the four limiter functions tested in Fig. 13.17, ULTRAA produces the
best results; the corresponding results of Figs. 13.15 and 13.16 are the worst
of their group. It is worth noting that at even time steps the discontinuities in
the ULTRAA profile have one intermediate point and none at odd time steps.
The results from the other limiter functions are also satisfactory. Recall that
the larger the limiter function is (within the TVD region), the more numerical
viscosity is added; thus, of the four TVD results the one given by MINA is the
one with the largest numerical viscosity, which explains the smearing of the
discontinuities. Compare results with those of Fig. 13.18, which correspond to
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1250 time steps; these results clearly expose the limitations of Lax–Wendroff
and Godunov first–order upwind method. All TVD results are superior, with
ULTRAA giving the best result followed by SUPERA, VANLEER and MINA.
In practical computations the solutions will contain smooth parts as well as
discontinuities. It is found that SUPERA and VANLEER give the best results.
Extension of TVD methods to non–linear systems is carried out in Chap. 14.

13.7.2 The General Flux–Limiter Approach

A well established approach for constructing high–order Total Variation
Diminishing ( TVD) schemes is the flux limiter approach [70], [69], [71], [470],
[409]. This requires a high–order flux fHI

i+ 1
2

associated with a scheme of accu-

racy greater than or equal to two and a low–order flux fLO
i+ 1

2
associated with a

monotone, first–order scheme. We present the approach in terms of the model
conservation law

ut + f(u)x = 0 ; f(u) = au (13.128)

as solved by

un+1
i = un

i +
Δt

Δx
[fi− 1

2
− fi+ 1

2
] . (13.129)

One then defines a high–order TVD flux as

fTV D
i+ 1

2
= fLO

i+ 1
2

+ φi+ 1
2
[fHI

i+ 1
2
− fLO

i+ 1
2
] , (13.130)

where φi+ 1
2

is a flux limiter function yet to be determined. To preserve some
generality we assume that fHI

i+ 1
2

and fLO
i+ 1

2
are respectively of the form

fLO
i+ 1

2
= α0 aun

i + α1 aun
i+1 ,

fHI
i+ 1

2
= β0 aun

i + β1 aun
i+1 .

⎫
⎬
⎭ (13.131)

The choice
α0 =

1
2
(1 + s) , α1 =

1
2
(1 − s) , (13.132)

with s = sign(a), reduces fLO
i+ 1

2
to the Godunov first order upwind flux. For

the choice
α0 =

1
4c

(1 + c)2 ; α1 = − 1
4c

(1 − c)2 (13.133)

fLO
i+ 1

2
becomes the force flux and the choice

α0 =
1
2c

(1 + c) ; α1 = − 1
2c

(1 − c) (13.134)

reproduces the Lax–Friedrichs flux; see (13.17) and Table 13.2. The two–point
support for the flux fHI

i+ 1
2

means that this flux must be the Lax–Wendroff flux,
for which
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Fig. 13.15. Numerical (symbols) and exact (line) solutions for Test 1 at time t = 1.
The results of the linear schemes Lax–Wendroff and Godunov first order upwind
are compared with results from TVD version of the WAF method using four lim-
iter functions, namely: ULTRAA, SUPERA, VANLEER and MINA. Compare the
results with those of Fig. 13.16.
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Fig. 13.16. Numerical (symbols) and exact (line) solutions for Test 1 at time t = 10.
The results of the linear schemes Lax–Wendroff and Godunov first order upwind are
compared with results from TVD version of the WAF method using four limiter
functions, namely: ULTRAA, SUPERA, VANLEER and MINA. Compare the re-
sults with those of Fig. 13.15.
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Fig. 13.17. Numerical (symbols) and exact (line) solutions for Test 2 at time t = 1.
The results of the linear schemes Lax–Wendroff and Godunov first order upwind
are compared with results from TVD version of the WAF method using four lim-
iter functions, namely: ULTRAA, SUPERA, VANLEER and MINA. Compare the
results with those of Fig. 13.18.
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Fig. 13.18. Numerical (symbols) and exact (line) solutions for Test 2 at time t = 10.
The results of the linear schemes Lax–Wendroff and Godunov first order upwind are
compared with results from TVD version of the WAF method using four limiter
functions, namely: ULTRAA, SUPERA, VANLEER and MINA. Compare the re-
sults with those of Fig. 13.17.
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β0 =
1
2
(1 + c) ; β1 =

1
2
(1 − c) . (13.135)

Therefore the coefficients for β0 and β1 for the high–order flux are fixed but
the coefficients α0 and α1 for the low–order flux are general. Substitution of
(13.131) into (13.130) gives

fTV D
i+ 1

2
= [α0 +(β0 −α0)φi+ 1

2
](aun

i )+ [α1 +(β1 −α1)φi+ 1
2
](aun

i+1) , (13.136)

which if substituted into (13.129) produces

un+1
i = un

i − CΔui− 1
2

+ DΔui+ 1
2

,

C = c[α0 + (β0 − α0)φi− 1
2
] ,

D = −c[α1 + (β1 − α1)φi+ 1
2
] ,

Δui− 1
2

= un
i − un

i−1 ; Δui+ 1
2

= un
i+1 − un

i .

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(13.137)

In the next section we specialise the flux limiter approach to particular
choices of low and high order schemes.

13.7.3 TVD Upwind Flux Limiter Schemes

Here we assume that the low–order flux is that of the Godunov first–order
upwind scheme and the high order flux is that of the Lax–Wendroff scheme.
The derivation of the TVD scheme relies on identifying upwind directions.
Flux limiters are now denoted by ψi+ 1

2
(r).

First assume a > 0 in the model conservation law (13.128). Then

α0 = 1 ; α1 = 0 ; c > 0 ,

C = c[1 + (β0 − 1)ψi− 1
2
] ; D = −cβ1ψi+ 1

2
,

β0 = 1
2 (1 + c) ; β1 = 1

2 (1 − c) .

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(13.138)

Now we rewrite (13.137) as

un+1
i = un

i − ĈΔui− 1
2

,

Ĉ = C − D/r ; r = Δui− 1
2
/Δui+ 1

2
.

⎫
⎪⎬
⎪⎭

(13.139)

Application of the TVD condition (13.102) of Harten’s theorem gives the
inequalities

0 ≤ c

[
1 + (β0 − 1)ψi− 1

2
+ β1ψi+ 1

2

1
r

]
≤ 1 . (13.140)

We now impose a global constraint, independent of r, on the sought limiter
functions, namely
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ψB ≤ ψi− 1
2
≤ ψT , ∀i ,∀r . (13.141)

This constraint may be re–written as

c[1 + (β0 − 1)ψT ] ≤ c[1 + (β0 − 1)ψi− 1
2
] ≤ c[1 + (β0 − 1)ψB ] . (13.142)

Now we consider the following two inequalities

− c[1 + (β0 − 1)ψT ] ≤ cβ1ψi+ 1
2

1
r
≤ 1 − c[1 + (β0 − 1)ψB ] . (13.143)

Note that (13.142) and (13.143) reproduce the TVD condition (13.140) iden-
tically. As (13.142) is only a re–statement of (13.141) we only work with in-
equalities (13.143) to find the limiter function ψi+ 1

2
at the intercell boundary

i + 1
2 .
Analysis of the left inequality in (13.143) leads to

ψi+ 1
2
(r)

{
≥ ψL(r) , if r > 0 ,
≤ ψL(r) , if r < 0 ,

(13.144)

where
ψL(r) = (ψT − 1/β1)r . (13.145)

Analysis of the right inequality in (13.143) produces the constraints

ψi+ 1
2
(r)

{
≤ ψR(r) , r > 0 ,
≥ ψR(r) , r < 0 ,

(13.146)

where

ψR(r) =
[
ψB +

(1 − c)
cβ1

]
r . (13.147)

Using constraints (13.141) together with (13.144)–(13.147), one can draw the
TVD region for the flux limiter ψi+ 1

2
(r) for the case a > 0.

Before doing that we consider the case a < 0. Now the upwind direction
is on the right hand side of the relevant intercell boundary. The scheme may
now be written as

un+1
i = un

i + D̂Δui+ 1
2

;

D̂ = D − C/r ; r =
Δui+ 1

2

Δui− 1
2

.

⎫
⎪⎬
⎪⎭

(13.148)

Now we regard the position i − 1
2 as the local position so that r remains the

ratio of upwind to local changes. Harten’s TVD conditions (13.102) lead to

0 ≤ −c

[
1 + (β1 − 1)ψi+ 1

2
+ β0ψi− 1

2

1
r

]
≤ 1 . (13.149)

Now we impose the global constraint
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ψB ≤ ψi+ 1
2
≤ ψT . (13.150)

Following the same steps as for the case a > 0 we end up with the conditions

c[1 + (β1 − 1)ψT ] ≤ −cβ0ψi− 1
2

1
r
≤ 1 + c[1 + (β1 − 1)ψB ] (13.151)

for the flux limiter function ψi− 1
2

at the intercell boundary i − 1
2 . Note that

by replacing c with its absolute value |c| conditions (13.151) are identical to
conditions (13.143), with the appropriate interpretation for the local intercell
position.

Thus conditions (13.141) together with (13.144)–(13.147) apply to both
a > 0 and a < 0, provided we replace c by |c| and correctly interpret the ratio
r. Hence, the limiter function at a general intercell position i + 1

2 satisfies

ψB ≤ ψ(r) ≤ ψT , (13.152)

ψ(r)
{
≥ ψL(r) , if r > 0 ,
≤ ψL(r) , if r < 0 ,

(13.153)

ψ(r)
{
≤ ψR(r) , if r > 0 ,
≥ ψR(r) , if r < 0 ,

(13.154)

ψL(r) =
(

ψT − 2
1 − |c|

)
r , (13.155)

ψR(r) =
(

ψB +
2
|c|

)
r , (13.156)

r =
Δupw

Δloc
=

⎧
⎪⎪⎨
⎪⎪⎩

un
i − un

i−1

un
i+1 − un

i

, a > 0 ,

un
i+2 − un

i+1

un
i+1 − un

i

, a < 0 .
(13.157)

The choice of the bottom and top bounds ψB and ψT in (13.152) determines
the functions ψL and ψR in (13.155)–(13.156) and thus the TVD region. Fig.
13.19 shows the resulting TVD region for

ψB ≥ − 2
|c| ; ψT ≤ 2

1 − |c| . (13.158)

As for the derivation of the TVD regions for the waf method in Sect. 13.7.1,
the choice of the bottom and top boundaries ψB and ψT depends on what
schemes one wants to reproduce as boundary schemes. The choice

ψB = 0 ; ψT =
2

1 − |c| . (13.159)

allows for all schemes between the Godunov first–order upwind scheme and
the downwind scheme. In this case the TVD region for r < 0 coalesces to the
single line ψ(r) = 0 (Godunov first–order upwind for negative r).
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L R(r) ψ
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r

Fig. 13.19. General TVD region (dark zone) for flux limiter schemes based on the
Godunov first–order upwind method and the Lax–Wendroff scheme. Compare with
Fig. 13.13 showing the TVD region for the waf method

The Sweby TVD region [470] is reproduced if we take

ψT = 2 ≤ 2
1 − |c| , ∀c ; ψB = 0 (13.160)

and replace 2/|c| by 2 in ψR. See Fig. 13.20. Five flux limiter functions are

2

= r= 2r|c|
2r

1

R
ψψψ

r = 0

0

=
(r)ψ

r

Fig. 13.20. Sweby’s TVD Region, a special case of that shown in Fig. 13.19. Here
the bottom and top boundaries are 0 and 2 respectively, so that the TVD region
and limiters are independent of CFL number

the following: ULTRABEE is given by
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ψub(r) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 , r ≤ 0 ,

2
|c|r , 0 ≤ r ≤ |c|

1 − |c| ,

2
1 − |c| , r ≥ |c|

1 − |c| ,

(13.161)

SUPERBEE is given by

ψsb(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 , r ≤ 0 ,

2r , 0 ≤ r ≤ 1
2 ,

1 , 1
2 ≤ r ≤ 1 ,

r , 1 ≤ r ≤ 2 ,

2 , r ≥ 2 ,

(13.162)

VANLEER is given by

ψvl(r) =

⎧
⎪⎨
⎪⎩

0 , r ≤ 0 ,

2r

1 + r
, r ≥ 0 ,

(13.163)

VANALBADA is given by

ψva(r) =

⎧
⎨
⎩

0 , r ≤ 0 ,

r(1+r)
1+r2 , r ≥ 0 ,

(13.164)

and MINBEE (or MINMOD) is given by

ψmb(r) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 , r ≤ 0 ,

r , 0 ≤ r ≤ 1 ,

1 , r ≥ 1 .

(13.165)

Fig. 13.21 illustrates four of these flux limiters constructed from Sweby’s TVD
region, namely: ULTRABEE, SUPERBEE, VANLEER and MINBEE. These
are related to the waf limiter functions given by (13.122)–(13.126). There is
in fact a direct correspondence between the waf limiter functions φ(r) and
the flux limiter functions ψ(r) of this section. Such correspondence is given
by

φ(r) = 1 − (1 − |c|)ψ(r) , (13.166)

so that for any given conventional flux limiter function ψ(r) there is a corre-
sponding waf limiter function φ(r), and vice–versa.
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Fig. 13.21. Four flux limiter functions constructed from TVD region of Fig. 13.20:
ULTRABEE, SUPERBEE, VANLEER and MINBEE. Compare with waf limiter
of Fig. 13.14

13.7.4 TVD Centred Flux Limiter Schemes

We follow the general flux limiter approach discussed in Sect. 13.7.2. Now,
the low–order flux fLO

i+ 1
2

is assumed to be a centred flux, with general coeffi-
cients α0 and α1 in (13.131). The high–order flux is still assumed to be that
of the Lax–Wendroff method; see equations (13.128) to (13.137).

TVD Criteria for Centred Schemes

Convenient TVD conditions for constructing centred TVD schemes are
first presented. Such conditions are a generalisation of the classical data com-
patibility conditions of Sect. 13.5.5 and the necessary conditions given by
Harten’s Theorem (13.65). We assume scheme (13.129) to be expressed as in
(13.137), namely

un+1
i = un

i − CΔui− 1
2

+ DΔui+ 1
2

, (13.167)

where the coefficients C and D are, in general, data–dependent. By defining

ri ≡
Δuupw

Δudow
≡

Δui− s
2

Δui+ s
2

=

⎧
⎪⎨
⎪⎩

Δu
i− 1

2
Δu

i+ 1
2

, if a > 0 ,

Δu
i+ 1

2
Δu

i− 1
2

, if a < 0 ,
(13.168)

scheme (13.167) produces

R
(s)
i ≡ un+1

i − un
i

un
i−s − un

i

=
{

C − D/ri , if a > 0 ,
D − C/ri , if a < 0 ,

(13.169)

where s = sign(a).
Next we state a result giving sufficient conditions for scheme (13.167) to

be TVD [538].
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Theorem 13.69. Scheme (13.167) for (13.128) is TVD if

− εR

ri
≤ R

(s)
i ≤ εL , if ri > 0 , (13.170)

0 ≤ R
(s)
i ≤ 1 − ε0 − ε0/ri , if ri < 0 , (13.171)

where εL , ε0 , εR are real numbers satisfying

0 ≤ εL , ε0 , εR ≤ 1 . (13.172)

Proof. We first prove result (13.170), which refers to monotone increasing
or monotone decreasing data. Monotonicity is ensured, and thus the TVD
property, if conditions (13.68) are enforced, namely

min
k

{un
k} ≤ un+1

i ≤ max
k

{un
k} . (13.173)

First consider the case of monotone decreasing data

un
i−1 > un

i ≥ un
i+1

and assume

(1 − εR)un
i + εRun

i+1 ≤ un+1
i ≤ (1 − εL)un

i + εLun
i−1 , (13.174)

which, in a sense, is a special case of (13.173), as it is more restrictive than
(13.173). Assuming a > 0, subtracting un

i and dividing through by ui−1−un
i >

0 leads to the sought result (13.170). For a < 0 the proof is similar. The
case of monotone increasing data follows in an analogous manner. Condition
(13.171) refers to extrema, local maxima or local minima. First assume a local
minimum, i.e.

un
i ≤ un

i−1 ; un
i ≤ un

i+1 .

We impose the following monotonicity condition

un
i ≤ un+1

i ≤ (1 − ε0)un
i−1 + ε0u

n
i+1 ,

which is a special case of (13.173). Simple manipulations lead to the sought
result (13.171). The case of a local maximum leads to the same result and
thus the TVD conditions (13.170), (13.171) are proved.

Remark 13.70. The TVD condition (13.170) relates to points away from
extrema and is more relaxed than the Data Compatibility condition (13.85),
namely

0 ≤ R
(s)
i ≤ 1 , (13.175)

which, as discussed previously, is perfectly adequate for deriving limiter func-
tions for the case in which the underlying first–order scheme is the Godunov
first order upwind method [216]. However, for the case in which the underlying
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first order scheme is centred, direct application of (13.175) leads to over restric-
tive TVD regions that may actually exclude the underlying monotone first–
order scheme! The TVD condition (13.171) is more restrictive than (13.75)
but since this condition relates to extrema, for which the scheme is locally
first–order accurate, the TVD conditions (13.170)– (13.171) are overall more
relaxed than (13.175).

TVD Regions

We first prove a result that concerns the construction of the TVD region
for centred flux limiter schemes.

Theorem 13.71. In order to ensure a TVD scheme, flux limiters φ(r)
must lie in a region (the TVD region) satisfying the following constraints

φB ≤ φ(r) ≤ φT , (13.176)

φ+
L(r) ≤ φ(r) ≤ φ+

R(r) , r > 0 , (13.177)

φ−
R ≤ φ(r) ≤ φ−

L (r) , r ≤ 0 , (13.178)

φ+
L(r) = (SL + φT )r , (13.179)

φ+
R(r) = φg + (S+

R + φB)r , (13.180)

φ−
L (r) = φg + (SL + φT )r , (13.181)

φ−
R(r) = (S−

R + φB)r . (13.182)

Here φB, φT are global lower and upper bounds and definitions for the param-
eters SL, φg, S

+
R , S−

R are given in Table 13.3.

a > 0 a < 0 force Lax–Friedrichs Godunov

SL
α0

α1 − β1

α1

α0 − β0

1 + |c|
1 − |c|

1

1 − |c|
2

1 − |c|
φg

α1

α1 − β1

α0

α0 − β0

1 − |c|
1 + |c|

1

1 + |c| 0

S+
R

α0 − 1/|c|
α1 − β1

α1 − 1/|c|
α0 − β0

3 + |c|
1 + |c|

1

1 + |c|
2

|c|
S−

R

α0 − 1/|c| − α1

α1 − β1

α1 − 1/|c| − α0

α0 − β0
2 0

2

|c|

Table 13.3. Values of useful quantities for the force scheme, the Lax– Friedrichs
scheme and the Godunov first order upwind method.

Proof. (For details of proof see Toro and Billett [538]).
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A few remarks are in order. The TVD region is determined by inequalities
involving six straight lines, namely the horizontal bounds φB , φT and the
functions defined by (13.179)–(13.182). Fig. 13.22 depicts the general TVD
region defined by the theorem. We have chosen φB = 0 and φT consistent
with a non–positive slope for φ−

L (r) and φ+
L(r). In fact it suffices to take these

functions to be constant and we may therefore set

φT = − α0

α1 − β1
; a > 0 ; φT = − α1

α0 − β0
; a < 0 . (13.183)

and

φ+
L(r) = 0 ; φ−

L (r) ≡ φg =
{ α1

α1−β1
, a > 0 ,

α0
α0−β0

, a < 0 .
(13.184)

Table 13.3 lists expressions for various quantities involved, for three first–order
schemes, including the Godunov first order upwind method.

Remark 13.72. In the course of the proof of the above theorem [538] it
is found that the convenient values for the parameters εL, ε0, εR in (13.170),
(13.171) are

εL = 1 , ε0 = εR = −cα1 . (13.185)

Had we enforced the usual Data Compatibility Conditions (13.175), we would

g

T

= 0
r = 0

φ

φ

(r)

rB

-
L

-

R

R
+

L

+φ

φ

φ

φ

φ

φ

1

Fig. 13.22. TVD region for flux limiter centred schemes

have had ε0 = εR = 0 and thus the TVD region in Fig. 13.22 would have
excluded limiter functions φ(r) with φ(r) ≤ φg > 0 except for the special
case |c| = 1, for which φg = 0. Even the basic case φ(r) = 0 that reproduces
the low–order monotone scheme in (13.130) would be excluded. For upwind
methods, this difficulty does not arise, as the downwind coefficient (α1 for
a > 0 and α0 for a < 0) is zero, and thus φg = 0 ∀c.
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Construction of Limiters

The task ahead is to construct flux limiters φ(r) to be used in the flux
limiter scheme (13.130). In this connection the following result applies.

Theorem 13.73. The centred TVD flux

f
(c)

i+ 1
2

= fLO
i+ 1

2
+ φi+ 1

2
(r)(fLW

i+ 1
2
− fLO

i+ 1
2
) , (13.186)

where fLO
i+ 1

2
is the flux for some first–order centred monotone scheme and

fLW
i+ 1

2
is the Lax–Wendroff flux, reduces to the flux for the Godunov first–order

upwind flux

f
(g)

i+ 1
2

=
1
2
(1 + s)(aun

i ) +
1
2
(1 − s)(aun

i+1) , (13.187)

with s = sign(a), when
φ(r) = φg , (13.188)

and upwind flux limiters ψ(r) are related to centred flux limiters φ(r) by the
equation

φ(r) = φg + (1 − φg)ψ(r) . (13.189)

Proof. (Left as an exercise).

Remark 13.74. Based on the above result, we call φg the Godunov point,
see Table 13.3, and note that the conventional TVD conditions (13.175), while
suitable for upwind TVD schemes, do not admit flux limiters below φg. That
is, schemes that have larger numerical viscosity such as force and the Lax–
Friedrichs method, are not included in the TVD region.

Remark 13.75. Based on the first result of Theorem (13.73) one can gen-
eralise the Godunov first–order upwind method to non–linear scalar conser-
vation laws by simply defining a flux as in (13.186) with φi+ 1

2
(r) = φg. Such

extension depends on the particular centred low order flux fLO
i+ 1

2
used and on a

Courant number c; this may be obtained from the characteristic speed (local)
or the CFL coefficient (global). A local choice is

ci+ 1
2

=
Δtsi+ 1

2

Δx
, si+ 1

2
≡ |ai+ 1

2
| , (13.190)

where ai+ 1
2

is a characteristic speed at the cell interface i + 1
2 . We note that

such extension does not require the solution of a local Riemann problem, as
does the Godunov first–order upwind method.

Before constructing flux limiters φ(r) we note that the parameters SL,
φg, S+

R , S−
R in (13.179)–(13.182) define the TVD region, and they depend on

the Courant number |c|; see Table 13.3. By identifying possible minimum and
maximum values of |c|, i.e.
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cmin = min |c| , cmax = max |c| , (13.191)

we construct a TVD region based on the most restrictive conditions. The
corresponding values for the relevant parameters are

φT = φT (cmin) , φg = φg(cmax) , S+
R = S+

R (cmax) . (13.192)

Recall that we set φ+
L(r) = 0; φ−

L (r) = φg and SL in (13.179), (13.181) is de-
fined once φT is chosen. For the model equation (13.128) we interpret (13.191)
as meaning cmin = 0 and cmax = 1, leading to a Courant–number indepen-
dent TVD region depicted in Fig. 13.23. It follows that the only possible flux

r

1

0

φ = 2r
(r)φ

Fig. 13.23. TVD region for flux limiter centred schemes, that is independent of
Courant number

limiters are of the MINBEE type [470], [409], the most prominent example
being

φmb(r) =

⎧
⎨
⎩

0 , r ≤ 0 ,
r , 0 ≤ r ≤ 1 ,
1 , r ≥ 1 .

(13.193)

Note that φmb(r) is the conventional upwind flux limiter MINBEE (13.165)
[470], [409]. This is perfectly adequate for most realistic applications but has
the disadvantage of being over diffusive. In general, larger values of φ(r) add
less numerical viscosity than smaller ones. It is therefore desirable to preserve
at least part of the TVD region above φ = 1. Using the relation (13.189)
between conventional upwind flux limiters ψ(r) and the sought centred flux
limiters φ(r) we construct these as follows

φ(r) = φ̂g + (1 − φ̂g)ψ(r) , (13.194)

with

φ̂g =
{

0 , r ≤ 1 ,
φg ≡ φg(cmax) , r ≥ 1 .

(13.195)
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By choosing the upwind flux limiters ULTRABEE, SUPERBEE, VANLEER
and VANALBADA we obtain corresponding centred flux limiters

φub(r) =
{

0 , r ≤ 0 ,
min

{
φT , φg + S+

Rr
}

, r > 0 ,
(13.196)

φsb(r) =

⎧
⎪⎪⎨
⎪⎪⎩

0 , r ≤ 0 ,
2r , 0 ≤ r ≤ 1

2 ,
1 , 1

2 ≤ r ≤ 1 ,
min {2, φg + (1 − φg)r} , r > 1 ,

(13.197)

φvl(r) =

⎧
⎨
⎩

0 , r ≤ 0 ,
2r

1+r , 0 ≤ r ≤ 1 ,

φg + 2(1−φg)r
1+r , r ≥ 1 ,

(13.198)

φva(r) =

⎧
⎪⎨
⎪⎩

0 , r ≤ 0 ,
r(1+r)
1+r2 , 0 ≤ r ≤ 1 ,

φg + (1−φg)r(1+r)
1+r2 , r ≥ 1 ,

(13.199)

We stressed that the corresponding centred limiters (13.196)–(13.199) are only
analogous to the upwind limiters, they are not equivalent.

13.8 Slope Limiter Methods

The MUSCL approach introduced in Sect. 13.4 allows the construction of
high order methods. In Sects. 13.4.2 to 13.4.4 we constructed second and third
order accurate extensions of the Godunov first–order upwind method using
this approach. In Sect. 13.4.5 we constructed second and third order accu-
rate extensions of centred first order schemes following the MUSCL–Hancock
methodology. All of these high order schemes, as stated, will produce spuri-
ous oscillations in the vicinity of high gradients, see Godunov’s theorem in
Sect. 13.5.3. In this section we construct non–linear versions of these schemes
by replacing the slopes Δi in the data reconstruction step (13.23) by limited
slopes Δi, according to some TVD constraints.

13.8.1 TVD Conditions

First we note that in constructing fully discrete second–order explicit TVD
methods, restricting the boundary extrapolated values uL

i , uR
i in (13.24) to

satisfy
min{un

i−1, u
n
i } ≤ uL

i ≤ max{un
i−1, u

n
i } ,

min{un
i+1, u

n
i } ≤ uR

i ≤ max{un
i , un

i+1} .

}
(13.200)

does not lead to useful results. Instead, we impose a restriction on the evolved
boundary extrapolated values uL

i , uR
i , see (13.30) or (13.33), and prove the

following result.
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Theorem 13.76. If the evolved boundary extrapolated values {uL,R
k } sat-

isfy
min{un

i−1, u
n
i } ≤ uL

i ≤ max{un
i−1, u

n
i } , ∀i ,

min{un
i , un

i+1} ≤ uR
i ≤ max{un

i , un
i+1} , ∀i ,

}
(13.201)

then, for any monotone scheme of the form

vn+1
i =

1∑
k=−1

bkvn
i+k (13.202)

applied to {uL,R
k } one has

min
k

{un
k}i+2

k=i−2 ≤ un+1
i ≤ max

k
{un

k}i+2
k=i−1 . (13.203)

Hence the corresponding MUSCL scheme is TVD.

Proof. From conditions (13.201) we have

min
k

{un
k}i+1

k=i−1 ≤ uL,R
i ≤ max

k
{un

k}i+1
k=i−1 , ∀i . (13.204)

For any monotone scheme (13.202) applied to {un
i ;uL,R

k }i+1
k=i−1 we will have

min
k

{un
i ;uL,R

k }i+1
k=i−1 ≤ un+1

i ≤ max
k

{un
i ;uL,R

k }i+1
k=i−1 . (13.205)

But from (13.201)

min{un
k}i+2

k=i−2 ≤ min{un
i ;uL,R

k }i+1
k=i−1 ,

max{un
i ;uL,R

k }i+1
k=i−1 ≤ max{un

k}i+2
k=i−2 .

⎫
⎬
⎭ (13.206)

From (13.205) and (13.206) inequalities (13.203) follow and the result is thus
proved.

13.8.2 Construction of TVD Slopes

Now we construct limited slopes Δi to replace Δi in (13.23), or (13.33),
according to the TVD constraints (13.201) and prove the following result.

Theorem 13.77. If the limited slopes Δi are chosen according to

Δi = 1
2 [sign(Δi− 1

2
) + sign(Δi+ 1

2
)] × min[βi− 1

2
|Δi− 1

2
|, βi+ 1

2
|Δi+ 1

2
|]

βi− 1
2

=
2

1 + c
, βi+ 1

2
=

2
1 − c

,

⎫
⎪⎬
⎪⎭

(13.207)
then the resulting MUSCL scheme is TVD.
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Proof. First assume un
i−1 ≤ un

i . Application of (13.201) leads to

un
i−1 ≤ un

i − 1
2
(1 + c)Δi ≤ un

i .

Use of these two inequalities produces

0 ≤ Δi ≤
2

1 + c
Δi− 1

2
; Δi− 1

2
≥ 0 . (13.208)

The case in which un
i−1 ≥ un

i leads to

2
1 + c

Δi− 1
2
≤ Δi ≤ 0 ; Δi− 1

2
≤ 0 . (13.209)

Similarly, for un
i ≤ un

i+1 one obtains

0 ≤ Δi ≤
2

1 − c
Δi+ 1

2
; Δi+ 1

2
≥ 0 (13.210)

and for un
i ≥ un

i+1 one obtains

2
1 − c

Δi+ 1
2
≤ Δi ≤ 0 ; Δi+ 1

2
≤ 0 . (13.211)

From inspection of conditions (13.208) and (13.210) when Δi− 1
2
≥ 0, Δi+ 1

2
≥

0, one requires Δi to be bounded by zero and the minimum of
2

1 + c
Δi− 1

2
and

2
1 − c

Δi+ 1
2
. Conditions (13.209) and (13.211), when Δi− 1

2
≤ 0, Δi+ 1

2
≤ 0,

require Δi to lie between

sign(Δi− 1
2
) × min{ 2

1 + c
|Δi− 1

2
|, 2

1 − c
|Δi+ 1

2
|}

and zero. When Δi− 1
2

and Δi+ 1
2

are of opposite sign, the only possible choice
is Δi = 0. Hence all the above constraints may then be written as in (13.207).

The reader may easily verify that (13.207) may also be written as

Δi = sign(Δi+ 1
2
)×max{0,min[βi− 1

2
Δi− 1

2
sign(Δi+ 1

2
), βi+ 1

2
Δi+ 1

2
]} . (13.212)

13.8.3 Slope Limiters

The TVD analysis of the previous section is sufficient to construct upwind
and centred slope limiter methods. A re–interpretation of this analysis in terms
of a slope limiter ξi such that

Δi = ξiΔi , (13.213)
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with Δi as given by

Δi =
1
2
(1 + ω)Δui− 1

2
+

1
2
(1 − ω)Δui+ 1

2
, (13.214)

is useful in a number of ways. It leads to a TVD region for ξ(r) given as follows

ξ(r) = 0 for r ≤ 0 , 0 ≤ ξ(r) ≤ min{ξL(r), ξR(r)} for r > 0 , (13.215)

where

ξL(r) =
2βi− 1

2
r

1 − ω + (1 + ω)r
,

ξR(r) =
2βi+ 1

2

1 − ω + (1 + ω)r
,

r =
Δi− 1

2

Δi+ 1
2

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13.216)

The corresponding TVD region is depicted in Fig. 13.24, see also [23]. A

2

RL

ξ

ξ ξ

(r)

1

0 21

r

Fig. 13.24. TVD region for slope limiters. For negative r TVD region is single line
ξ = 0 and for positive r TVD region lies between 0 and min{ξL(r), ξR(r)}.

possible slope limiter function ξ(r) is

ξ(r) =
{

0 , r ≤ 0
min{ξL(r), ξR(r)} , r > 0 (13.217)

This slope limiter is analagous to the flux limiter ULTRABEE, in that one
follows the boundaries of the TVD region. It is expected to be over compressive
for smooth solutions but to give satisfactory results for discontinuities. A slope
limiter that is analagous (not equivalent) to the SUPERBEE flux limiter is

ξ(r) =

⎧
⎪⎪⎨
⎪⎪⎩

0 , if r ≤ 0 ,
2r , if 0 ≤ r ≤ 1

2 ,
1 , if 1

2 ≤ r ≤ 1 ,
min{r, ξR(r), 2} , if r ≥ 1 .

(13.218)
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A van Leer–type slope limiter is

ξ(r) =

{
0 , r ≤ 0 ,

min{ 2r

1 + r
, ξR(r)} , r ≥ 0 .

(13.219)

A van Albada–type slope limiter is

ξ(r) =

⎧
⎨
⎩

0 , r ≤ 0 ,

min{r(1 + r)
1 + r2

, ξR(r)} , r ≥ 0 .
(13.220)

A MINBEE–type slope limiter is

ξ(r) =

⎧
⎨
⎩

0 , r ≤ 0 ,
r , 0 ≤ r ≤ 1 ,
min{1, ξR(r)} , r ≥ 1 .

(13.221)

One issue is the choice of the coefficients βi− 1
2
, βi+ 1

2
in (13.207) and

(13.216). There are two cases to consider, namely the case of positive Courant
number c and the case of negative Courant number c. For schemes that are
stable in the range |c| ≤ 1 one has

{
βi− 1

2
∈ [1, 2] and βi+ 1

2
∈ [2,∞) when a > 0 ,

βi− 1
2
∈ [2,∞) and βi+ 1

2
∈ [1, 2] when a < 0 .

(13.222)

For upwind methods one may exploit the upwind information contained in
the Courant number c. For centred (non–upwind) methods such information
is unavailable in general and we therefore recommend the choice

βi− 1
2

= βi+ 1
2

= 1 , (13.223)

which gives a smaller TVD region, valid for all Courant numbers in the range
|c| ≤ 1. One may improve this by utilising a limited amount of wave informa-
tion via the CFL coefficient, which must be available for any explicit scheme to
solve any hyperbolic system. See Sect. 6.3.2 of Chap. 6 on the CFL condition.

13.8.4 Limited Slopes Obtained from Flux Limiters

By establishing a relationship between upwind–based flux limiter schemes
and MUSCL–type schemes for the model linear advection equation (13.1), one
may select the limited slopes Δi in the reconstruction step so as to reproduce
conventional (upwind) flux–limiters ψi+ 1

2
. From (13.130), the intercell flux for

the flux limiter method resulting from the Godunov first order upwind and
the Lax–Wendroff schemes is

fi+ 1
2

=

⎧
⎨
⎩

aun
i + ψi+ 1

2
[12 (1 − c)Δi+ 1

2
]a , a > 0 ,

aun
i+1 − ψi+ 1

2
[12 (1 + c)Δi+ 1

2
]a , a < 0 ,

(13.224)
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where ψi+ 1
2

is an upwind flux limiter, see Sect. 13.7.3. An upwind–based slope
limiter method has intercell flux

fi+ 1
2

=

⎧
⎨
⎩

aun
i + 1

2 (1 − c)aΔi , a > 0 ,

aui+1 − 1
2 (1 + c)aΔi+1 , a < 0 ,

(13.225)

where Δi and Δi+1 are limited slopes in cells i and i + 1 respectively. See
(13.35), (13.36), (13.43) and (13.49). By comparing (13.224) and (13.225) one
obtains

ψi+ 1
2
Δi+ 1

2
=

⎧
⎨
⎩

Δi , a > 0 ,

Δi+1 , a < 0 .
(13.226)

As ψi+ 1
2

= 1 ∀i reproduces the Lax–Wendroff method in the flux–limiter
scheme, the choice of slopes

Δi =

⎧
⎨
⎩

Δi+ 1
2

, a > 0 ,

Δi− 1
2

, a < 0
(13.227)

in the MUSCL schemes also reproduces the Lax–Wendroff method. Note that
this would be obtained by an appropriate value of the parameter ω in (13.27).
Using this relation one can construct limited slopes

Δi = Δi(Δi− 1
2
,Δi+ 1

2
) (13.228)

so as to reproduce conventional (upwind) flux limiters. The reader can easily
verify that two methods for obtaining limited slopes result from

Δi =

⎧
⎨
⎩

max[0,min(βΔi− 1
2
,Δi+ 1

2
),min(Δi− 1

2
, βΔi+ 1

2
)] , Δi+ 1

2
> 0 ,

min[0,max(βΔi− 1
2
,Δi+ 1

2
),max(Δi− 1

2
, βΔi+ 1

2
)] , Δi+ 1

2
< 0
(13.229)

for particular values of the parameter β. The value β = 1 reproduces the
MINBEE flux limiter (13.165), which may also be written as

ψmi(r) = max[0,min(1, r)] . (13.230)

β = 2 reproduces the SUPERBEE flux limiter (13.162), which may also be
written as

ψsb(r) = max[0,min(2r, 1),min(r, 2)] . (13.231)

The parameter r is defined in (13.157).

Remark 13.78. Note that upwind MUSCL type schemes based on the lim-
ited slopes (13.229) have the Lax–Wendroff as the base second–order scheme,
when applied to the linear advection equation (13.1), and not the Fromm
scheme; see Sect. 13.4.



486 13 High–Order and TVD Methods for Scalar Equations

13.9 Extensions of TVD Methods

In this chapter we have studied a variety of TVD schemes for the scalar,
homogeneous linear partial differential equation (13.1). Crucial questions con-
cern the extension of these methods to scalar inhomogeneous (source terms)
equations, convection–diffusion equations and non–linear systems. The exten-
sion of the schemes to homogeneous non–linear systems is carried out in Chap.
14. Here we make some remarks concerning model PDEs with source terms
and diffusion terms.

13.9.1 TVD Schemes in the Presence of Source Terms

Sweby [471] considered the problem of devising TVD schemes to solve the
inhomogeneous PDE

ut + aux = s(u) , (13.232)

where s(u) is an algebraic function of the unknown u = u(x, t), usually called
a source term, or forcing term. In fact an even more basic problem is that of
just devising numerical methods to solve (13.232) after some fashion. In Chap.
15 we present splitting methods, whereby the full inhomogeneous problem is
split into a homogenous problem, for which a TVD scheme can be applied
directly, and an Ordinary Differential Equation (ODE) that can be solved
by some appropriate ODE solver. This approach carries over to non–linear
inhomogeneous systems of PDEs. For special cases in which a change of vari-
ables allows us to re–write the PDEs as a, new, homogeneous problem, one
applies TVD methods directly to the homogeneous problem and thus to the
full original inhomogeneous problem. See Sweby [471] for a discussion on this
approach and Watson et. al. [576] for an application to the non–linear shallow
water equations with variable bed elevation.

On the question of whether one can construct TVD schemes for general
inhomogeneous PDEs of the form (13.232), it should first be realised that
the TVD concept itself is inappropriate here. The effect of the source term
may cause the Total Variation of the exact solution to increase and it would
therefore be absurd to attempt to produce numerical methods to compute
approximate solutions with properties not enjoyed by the exact solution.

For general problems one resorts to the splitting schemes presented in
Chap. 15.

13.9.2 TVD Schemes in the Presence of Diffusion Terms

Consider the question of devising TVD schemes to solve the convection–
diffusion equation

ut + aux = αphyuxx , (13.233)

where αphy is a physical or natural viscosity coefficient, assumed constant
here. A very simple way of solving this PDE is to deploy the splitting schemes
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studied in Chap. 15. These splitting schemes apply a TVD method to the
convection part ut + aux = 0 and the parabolic PDE ut = αphyuxx is solved
by some other appropriate method. In general these methods are found to be
quite successful for solving the Navier–Stokes equations [82], [529].

Recall however that when a TVD method is applied to ut + aux = 0, one
effectively adds a numerical viscosity term to this pure convection PDE, so
that one solves

ut + aux = αnumuxx , (13.234)

where αnum is a numerical or artificial viscosity coefficient; see Sect. 5.2 of
Chap. 5. The value of αnum depends on the flux or slope limiter used and its
purpose is to avoid spurious oscillations in the vicinity of high gradients in
the numerical solution. As the complete PDE (13.233) to be solved contains
a physical viscosity term, an obvious question is this: is the physical viscosity
by itself sufficient to guarantee oscillation free solutions ? The answer is no, in
general. Toro [507] considered this problem and found that for certain TVD
discretisation schemes one does not require artificial viscosity only if

Rcell ≤
2

1 − |c| , (13.235)

where Rcell is the cell Reynolds number defined as Rcell = |c|
d ; c is the Courant

number and d = αphyΔt
Δx2 is the diffusion number; in this case the physical vis-

cosity is sufficient to guarantee oscillation–free solutions. Otherwise, numer-
ical viscosity is also needed. Viscous flux limiters were constructed in [507],
whereby the absolute minimum of extra numerical viscosity is added to the
physical viscosity to guarantee oscillation–free solutions. These viscous lim-
iters use fully the physical viscosity and minimise the amount of numerical
viscosity; in fact this is turned off when condition (13.235) is satisfied. See
[507] for details on preliminary results for model problems.

In the next section we present some numerical results for the linear advec-
tion equation.

13.10 Numerical Results for Linear Advection

We consider the same two test problems for the linear advection (13.1) as
in Sect. 13.7.2. We take a = 1 and a CFL coefficient Ccfl = 0.8. Computed
results are shown at the output time t = 10 units (1250 time steps). In each
figure we compare the exact solution (shown by full lines) with the numerical
solution (symbols).

The initial conditions for Test 1 (smooth data) and Test 2 (discontinuous
data, square wave) are respectively given by

u(x, 0) = αe−βx2
; u(x, 0) =

⎧
⎨
⎩

0 if x ≤ 0.3 ,
1 if 0.3 ≤ x ≤ 0.7 ,
0 if x ≥ 0.7 .

(13.236)
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For Test 1 we take α = 1.0 and β = 8.0; the initial profile u(x, 0) is evaluated
in the interval −1 ≤ x ≤ 1; the mesh used is Δx = 0.02. For Test 2 the mesh
used is Δx = 0.01. In both test problems the initial profile and that at the
output time is resolved by 100 computing cells.

Results are presented for two classes of methods, namely flux limiter meth-
ods and slope limiter methods. For each of these two classes we consider one
upwind–based method and one centred method. The upwind schemes are high–
order, TVD extensions of the Godunov first–order upwind scheme. The cen-
tred schemes used are second–order, TVD extensions of the force scheme
(with ω = 0), see Sect. 13.2.1. The centred schemes are the Flux LImiter
Centred, or flic, scheme (Sect. 13.7.4) and the Slope LImiter Centred, or
slic, scheme (Sect. 13.8). In the centred TVD schemes we use the force flux
as the low–order flux. All of these schemes are extended to non–linear systems
in Chap. 14.

Results from the flux limiter methods are shown in Figs. 13.25 and 13.26 for
Tests 1 and 2 respectively. Results from the slope limiter methods are shown
in Figs. 13.27 and 13.28 for the same tests. The results of the left column in
each of the figures are those of the upwind based scheme and those on the
right column are obtained with the centred TVD scheme. Four types of limiter
functions have been used, namely SUPERBEE, VANLEER, VANALBADA
and MINBEE; note that the limiters of the upwind scheme are not equivalent
to those of the centred scheme.

The main conclusion that may be drawn from the results is that there
appears to be no obvious advantages, at least for this scalar problem, in using
the upwind based TVD scheme. We note however, as will be seen in Chap. 14,
that for non–linear systems, upwind methods give more accurate solutions.
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Fig. 13.25. Numerical (symbols) and exact (line) solutions for Tests 1 at time
t = 10. Results from Flux–Limiter Upwind and Flux–Limiter Centred (FORCE) are
compared using various flux limiters.
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Fig. 13.26. Numerical (symbols) and exact (line) solutions for Tests 2 at time
t = 10. Results from Flux–Limiter Upwind and Flux–Limiter Centred (FORCE) are
compared using various flux limiters.
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Fig. 13.27. Numerical (symbols) and exact (line) solutions for Tests 2 at time
t = 10. Results from MUSCL–Hancock Upwind and MUSCL–Hancock Centred
(FORCE) are compared using various slope limiters.
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Fig. 13.28. Numerical (symbols) and exact (line) solutions for Tests 2 at time
t = 10. Results from MUSCL–Hancock Upwind and MUSCL–Hancock Centred
(FORCE) are compared using various slope limiters.



14

High–Order and TVD Schemes for Non–Linear
Systems

This chapter is concerned with TVD upwind and centred schemes for non–
linear systems of conservation laws that depend on time t, or a time–like
variable t, and one space dimension x. The upwind schemes are extensions
of the Godunov first order upwind method of Chap. 6 and can be applied
with any of the Riemann solvers presented in Chap. 4 (exact) and Chaps. 9 to
12 (approximate); they can also be used with the Flux Vector Splitting flux
of Chap. 8. The centred schemes are extensions of the First Order Centred
(force) method presented in Chap. 7. All the TVD schemes are in effect the
culmination of work carried out in all previous chapters, particularly Chap.
13, where the TVD concept was developed in the context of simple scalar
problems. The schemes are presented in terms of the time–dependent one
dimensional Euler equations for ideal gases, which are introduced in Chap.
1 and studied in detail in Chap. 3. Applications to other systems may be
easily accomplished. Techniques for extending the methods to systems with
source terms, as for reactive flows for instance, are given in Chap. 15 and to
multidimensional systems in Chap. 16.

14.1 Introduction

We study fully discrete, explicit methods that are suitable for time–
dependent problems. Upwind TVD schemes are more accurate than their
centred TVD counterparts; a disadvantage of upwind schemes is their com-
plexity and the computing cost due to the solution of the Riemann problem,
see Chaps. 4, 6, 8, 9, 10, 11 and 12. For ideal gases the extra expense of
upwind schemes is not significant, if efficient Riemann solvers are used. The
TVD centred schemes presented are considerably simpler to implement and
somewhat more efficient to apply. They are particularly recommended to the
reader who does not want to get involved with the details of the Riemann
problem. Also, for complicated sets of conservation laws for which the solu-
tion of the Riemann problem is not available, or is complex, or is prohibitly

E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 493
c© Springer-Verlag Berlin Heidelberg 2009DOI 10.1007/b7976-1 14,
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expensive to compute, then TVD centred schemes are definitely an option to
consider.

The methods are applied to the Initial–Boundary Value Problem

PDEs : Ut + F(U)x = 0 ,
ICs : U(x, 0) = U(0)(x) ,
BCs : U(0, t) = Ul(t) ; U(L, t) = Ur(t) .

⎫
⎬
⎭ (14.1)

We assume the spatial domain [0, L] to be discretised into M computing
cells Ii = [xi− 1

2
, xi+ 1

2
], and for simplicity we assume the mesh size Δx =

xi+ 1
2
− xi− 1

2
to be constant. The time–dependent Euler equations are typical

conservation laws in (14.1), for which the vectors U of conserved variables
and F = F(U) of fluxes are

U =

⎡
⎣

ρ
ρu
E

⎤
⎦ ; F(U) =

⎡
⎣

ρu
ρu2 + p
u(E + p)

⎤
⎦ (14.2)

respectively. Here ρ is density, u is velocity, p is pressure and E is total energy
per unit volume. See Chaps. 1 and 3 for background on the Euler equations.

We solve the general IBVP (14.1) using the explicit, conservative fully
discrete scheme

Un+1
i = Un

i +
Δt

Δx
[Fi− 1

2
− Fi+ 1

2
] , (14.3)

where Fi+ 1
2

is the numerical flux at the cell interface position xi+ 1
2
. For back-

ground on the meaning of the conservative formula (14.3) the reader is re-
ferred to Sect. 5.3 of Chap. 5 and Chap. 6. The choice of the time step Δt in
(14.3) and the implementation of boundary conditions is addressed in Sect.
14.2. The choice of the numerical flux Fi+ 1

2
in (14.3) determines the scheme.

Here we study two upwind–based second order TVD schemes and two cen-
tred second–order TVD schemes. These are extensions of schemes presented
in detail for scalar conservation laws in Chap. 13. In addition, we present two
upwind second order TVD schemes based on primitive variables and adaptive
primitive–conservative variations of these.

The rest of this chapter is organised as follows: Sect. 14.2 discusses the
application of the CFL condition to compute the time step Δt and the imple-
mentation of boundary conditions. Sects. 14.3 and 14.4 present two upwind
TVD schemes, namely the waf method and the MUSCL–Hancock scheme
respectively. Sect. 14.5 presents two centred TVD schemes; the first method,
called flic, is a flux limiter extension of the First Order Centred (force)
scheme; the other, called slic, is a slope limiter extension of force. Sect. 14.6
presents primitive variable schemes and an adaptive primitive–conservative
scheme. Numerical results are shown in Sect. 14.7.
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14.2 CFL and Boundary Conditions

Before describing particular schemes contained in (14.3) by specifying the
numerical flux, we briefly address two basic problems, namely the choice of
the time step Δt and application of boundary conditions. See Sects. 6.3.2
and 6.3.3 of Chap. 6 for full discussion on these topics, in the context of the
Godunov first order upwind method.

All methods considered in this chapter have linearised stability constraint
|c| ≤ 1, where c is the Courant number. For non–linear systems we implement
this condition as

Δt = Ccfl
Δx

S
(n)
max

, (14.4)

where Δx is the mesh spacing, S
(n)
max is the maximum wave speed present at

time level n and Ccfl is the CFL coefficient, with Ccfl ∈ (0, 1]. See Sect. 6.3.2
of Chap. 6 for details on possible choices for S

(n)
max. A practical choice, which

must be used with caution, is

S(n)
max = max

i
{|un

i | + an
i } , (14.5)

where the range for i must include data arising from boundary conditions. As
remarked in Sect. 6.3.2 of Chap. 6, inappropriate choices for S

(n)
max in (14.4)

can result in the scheme becoming unstable, even for small values of Ccfl.
A detailed discussion on boundary conditions for the first–order Godunov

method is given in Sect. 6.3.3 of Chap. 6, which the reader is encouraged
to consult before proceeding. For the second order methods discussed in this
chapter the application of boundary conditions is fundamentally the same
as for the Godunov method. We assume the computational domain [0, L]
to be discretised by M cells Ii, so that cells i = 1, · · · ,M lie within the
computational domain. In applying boundary conditions we now require two
fictitious cells next to each boundary. For the left boundary at x = 0 the
fictitious cells are denoted by i = −1 and i = 0 and for the right boundary
they are denoted by i = M + 1 and i = M + 2. We discuss two types of
boundary conditions.

Transmissive boundary conditions are given by

Wn
0 = Wn

1 ; Wn
−1 = Wn

2 ,
Wn

M+1 = Wn
M ; Wn

M+2 = Wn
M−1 ,

}
(14.6)

where W may be the vector of conserved variables or some other variables,
such as the primitive variables.

Reflective boundary conditions are applied at reflective, moving or station-
ary, boundaries. Suppose the speed of a reflective solid boundary at x = L
is uwall, then the reflective boundary conditions for the Euler equations are
applied as
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ρn
M+1 = ρn

M ; un
M+1 = −un

M + 2uwall ; pn
M+1 = pn

M ,
ρn

M+2 = ρn
M−1 ; un

M+2 = −un
M−1 + 2uwall ; pn

M+2 = pn
M−1 .

}
(14.7)

For a moving reflective left boundary the situation is entirely analagous to
the case just given.

Having decided on the application of boundary conditions and on a strat-
egy to compute the time step Δt, all that remains to be discussed is the
selection of the intercell flux Fi+ 1

2
, for a scheme (14.3) to be completely de-

termined. Sects. 14.3 to 14.6 present various ways of choosing the intercell
flux.

14.3 Weighted Average Flux (waf) Schemes

The Weighted Average Flux (waf) approach for obtaining second–order
extensions of the Godunov first–order upwind method has its origins in the
Random Flux Method [497], [539]. waf is a deterministic approach and has
two versions. In the first the intercell flux is an integral average of the physical
flux across the full structure of the solution of a local Riemann problem.
The second version computes an averaged state and then Fi+ 1

2
results from

evaluating the physical flux F at this state.
Useful background is found in Sect. 13.3 of Chap. 13, where the waf

approach is presented in detail, when applied to scalar equations.

14.3.1 The Original Version of waf

The simplest waf flux is given as

Fi+ 1
2

=
1

Δx

∫ 1
2 Δx

− 1
2 Δx

F(Ui+ 1
2
(x,

Δt

2
))dx , (14.8)

where Ui+ 1
2
(x, t) is the solution of the Riemann problem with piece–wise

constant data Un
i ,Un

i+1 at the interface position i + 1
2 . Ui+ 1

2
(x, t) is exactly

the same solution as for the Godunov first–order upwind method, see Chap.
6. Chap. 4 gives the detailed, exact solution of the Riemann problem for the
Euler equations. The approximate Riemann solvers of Chaps. 9 to 12 may also
be used here. Fig. 14.1 depicts the structure of the solution of the Riemann
problem for the Euler equations. There are three waves of speeds S1, S2, S3

that separate four constant states: Un
i ,U∗L,U∗R,Un

i+1. The left and right
waves may be shock or rarefaction waves. In the latter case there will be
additional, non–uniform states present, namely those inside rarefaction fans.
Fig 14.2 illustrates the evaluation of the integral average (14.8), for a wave
structure assumed to contain no rarefaction waves. By setting

U(1) = Un
i ; U(2) = U∗L ; U(3) = U∗R ; U(4) = Un

i+1 (14.9)
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Fig. 14.1. Structure of the solution of the Riemann problem with data Un
i , Un

i+1

the integral (14.8) gives

Fi+ 1
2

=
N+1∑
k=1

βkF
(k)

i+ 1
2

, (14.10)

where F(k)

i+ 1
2

= F(U(k)), N is the number of waves in the solution of the
Riemann problem and βk, k = 1, · · · , 4, are the normalised lengths of the
segments Ak−1Ak,

βk =
|Ak−1Ak|

Δx
.

It can be seen easily that, in terms of the wave speeds Sk, the weights are

1 2 3 4

1 2

0

Δx x
2 2

-

3

U U
(1) (4)(2) (3)

U

Δ

Δ

t

t
2

U

Δ

A A A A A

0

SS S

Fig. 14.2. Evaluation of the waf intercell flux. Integral average becomes summation
involving flux terms in regions 1 to 4 with weights obtained by normalising lengths
|A0A1| to |A3A4|

βk = 1
2 (ck − ck−1) ,

ck =
ΔtSk

Δx
, c0 = −1 , cN+1 = 1 .

⎫
⎪⎬
⎪⎭

(14.11)

Here ck is the Courant number for wave k of speed Sk. Formula (14.10) is a
weighted average flux, and thus the name of the scheme.
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Substitution of βk in (14.11) into (14.10) gives an alternative form for the
waf flux

Fi+ 1
2

=
1
2
(Fi + Fi+1) −

1
2

N∑
k=1

ckΔF(k)

i+ 1
2

, (14.12)

where
ΔF(k)

i+ 1
2

= F(k+1)

i+ 1
2

− F(k)

i+ 1
2

(14.13)

is the flux jump across wave k of CFL number ck.

14.3.2 A Weighted Average State Version

A possible variant of the scheme is obtained by first defining a weighted
average state as

Wi+ 1
2

=
1

Δx

∫ 1
2 Δx

− 1
2 Δx

Wi+ 1
2
(x,

1
2
Δt)dx , (14.14)

where W is a suitable vector of variables and Wi+ 1
2

is the solution of the
Riemann problem with data Wn

i ,Wn
i+1. For the assumed wave structure of

Fig. 14.2 this integral becomes

Wi+ 1
2

=
N∑

k=1

βkW
(k)

i+ 1
2

, (14.15)

where the weights βk are as given by (14.11) and W(k)

i+ 1
2

is the value of Wi+ 1
2

in region k. Expanding (14.15) gives

Wi+ 1
2

=
1
2
(Wn

i + Wn
i+1) −

1
2

N∑
k=1

ck[W(k+1)

i+ 1
2

− W(k)

i+ 1
2
] . (14.16)

Compare (14.15), (14.16) with (14.10), (14.12). An intercell flux is now defined
as

Fi+ 1
2

= F(Wi+ 1
2
) . (14.17)

As to the choice of the vector W in (14.17) we recommend the set of primitive
variables, i.e. W = (ρ, u, p)T .

Computationally, formulation (14.17), (14.16) is more efficient than for-
mulation (14.12); it involves only one flux evaluation per component of the
system.
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14.3.3 Rarefactions in State Riemann Solvers

When the Riemann solver provides a state at which the physical flux is
to be evaluated, such as in the exact Riemann solver of Chap. 4 and the ap-
proximate state Riemann solvers of Chap. 9, one requires a special treatment
of rarefaction waves in the WAF method. For other Riemann solvers such as
HLL and HLLC of Chap. 10 such special treatment is not needed.

Let us consider the case of the exact Riemann solver. In the presence of
rarefaction waves in the solution Ui+ 1

2
(x, t) of the Riemann problem, defini-

tions (14.8) and (14.14) still apply. As the exact solution across rarefactions
is available, see Chap. 4, the exact evaluation of (14.8) or (14.14) is possible
and the result is again a summation like (14.10) or (14.15), with extra terms
to account for regions occupied by rarefactions.

2

A A AU 332

t

S S

0

1

t

Δ

Δ

3

U

i i+1

Δ Δ
22

x x

3

(4)

(2)

(1) U
U

S2S

(3)

Fig. 14.3. Treatment of right non–sonic rarefaction when evaluating the waf flux

For the Euler equations, waves 1 (left) and 3 (right) may be shocks or
rarefactions; wave 2 (middle) is always a contact discontinuity of speed S2 =
u∗. See Sect. 3.1.3 of Chap. 3. Fig. 14.3 depicts the case in which the right
wave is a rarefaction, whose bounding characteristics have speeds

Ŝ3 = STR = u∗ + a∗R (Tail) ; S3 = SHR = un
i+1 + an

i+1 (Head) .

Evaluation of the integral (14.8) gives one term for the zone across the rar-
efaction, namely

1
Δx

∫ A3

Â3

F(Ui+ 1
2
(x,

Δt

2
))dx , (14.18)

which can be found exactly, if desired. This results in one extra state, one
extra weight βk and one extra wave speed Ŝ3.

Computational experience suggests that for the purpose of evaluating the
integral (14.8) or (14.14) one may ‘lump’ the rarefaction state together with
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the closest constant state in the direction of the t–axis. The integral in the
resulting enlarged zone, A2 to A3 in Fig. 14.3, is then approximated as

1
Δx

∫ A3

A2

F(Ui+ 1
2
(x,

Δt

2
))dx ≈ 1

2
(c3 − c2)F

(3)

i+ 1
2

, (14.19)

where

S3 = SHR = un
i+1 + an

i+1 ,

F(3)

i+ 1
2

=
{

F(U(3)) : non–sonic rarefaction ,
F(Ui+ 1

2
(0)) : sonic rarefaction .

⎫
⎪⎬
⎪⎭

(14.20)

Fig. 14.4 illustrates the case in which the right rarefaction is sonic. The re-
quired state lies inside the rarefaction along the t–axis. Recall that for ideal
gases the solution inside rarefactions is given in closed form, see Sect. 4.4 of
Chap. 4.

For a left rarefaction we have

1
Δx

∫ A2

A1

F(Ui+ 1
2
(x,

Δt

2
))dx ≈ 1

2
(c2 − c1)F

(2)

i+ 1
2

, (14.21)

where

S1 = SHL = un
i − an

i ,

F(2)

i+ 1
2

=
{

F(U(2)) : non–sonic rarefaction ,
F(Ui+ 1

2
(0)) : sonic rarefaction .

⎫
⎪⎬
⎪⎭

(14.22)

Note that the flux term evaluated at Ui+ 1
2
(0) is the Godunov flux, which is

t

t
2

S S S

Δ

0

Δ

U

Δ Δx x
2 2

i+1

t

1 2 3

i+1/2
(0)

i

Fig. 14.4. Treatment of right sonic rarefaction when evaluating the waf flux

always part of the waf flux.
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The special treatment of rarefactions, just described, also applies when us-
ing the Approximate–State Riemann Solvers of Chap. 9. When using the HLL
and HLLC Riemann solvers of Chap. 10, no need for this special treatment
arises; this is also the case if one was to use the Flux Vector Splitting intercell
flux of Chap. 8.

14.3.4 TVD Version of waf Schemes

As seen in Sect. 13.3 of Chap. 13, the waf schemes are second order
accurate in space and time. According to Godunov’s Theorem, Sect. 13.5.3
of Chap. 13, spurious oscillations in the vicinity of high gradients are to be
expected. Here we extend the Total Variation Diminishing (TVD) version of
the waf method derived in Sect. 13.7.1 to non–linear systems.

Strictly speaking, the extension to non–linear systems is somewhat empir-
ical but is found to work well in practice. In the scalar case, for which the
TVD property was enforced rigourously, there is one conservation law and
one wave. In the case of the Euler equations in (14.1), (14.2) there are three
conservation laws and three wave families. For the purpose of applying a TVD
constraint to non–linear systems, a valuable, though empirical, observation is
that the solution to the complete system may be characterised by jumps in
a single quantity q, across each of the three waves. We therefore require the
computation of three limiter functions φi+ 1

2
(r) per intercell boundary. The

reader is encouraged to review carefully Sect 13.7.1 before proceeding with
the rest of this section.

The TVD modification of the waf flux (14.12) is

Fi+ 1
2

=
1
2
(Fi + Fi+1) −

1
2

N∑
k=1

sign(ck)φ(k)

i+ 1
2
ΔF(k)

i+ 1
2

, (14.23)

where
φ

(k)

i+ 1
2

= φi+ 1
2
(r(k)) (14.24)

is a waf limiter function, as derived in Sect. 13.7.1 of Chap. 13. The flow
parameter r(k) refers to wave k in the solution Ui+ 1

2
(x, t) of the Riemann

problem and is the ratio

r(k) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Δq
(k)

i− 1
2

Δq
(k)

i+ 1
2

, if ck > 0 ,

Δq
(k)

i+ 3
2

Δq
(k)

i+ 1
2

, if ck < 0 .

(14.25)

As has already been indicated, one selects a single quantity q which is known
to change across each wave family in the solution of the Riemann problem.
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For the Euler equations the choices q ≡ ρ (density) or q ≡ e (specific inter-
nal energy) give very satisfactory results. For multidimensional problems, see
Chap. 16, jumps in tangential velocity components must also be used. Δq

(k)

i− 1
2

denotes the jump in q across wave k in the solution Ui− 1
2
(x, t) of the Riemann

problem with data (Un
i−1,U

n
i ), Δq

(k)

i+ 3
2

is the jump in q across wave k in the

solution Ui+ 3
2
(x, t) of the Riemann problem with data (Un

i+1,U
n
i+2); Δq

(k)

i+ 1
2

is
the corresponding jump across wave k in the local Riemann problem solution
Ui+ 1

2
(x, t) with data (Un

i ,Un
i+1).

The TVD version of the weighted average state version of the scheme has

Wi+ 1
2

=
1
2
(Wn

i + Wn
i+1) −

1
2

N∑
k=1

sign(ck)φk(W(k+1)

i+ 1
2

− W(k)

i+ 1
2
) (14.26)

and the TVD flux is
Fi+ 1

2
= F(Wi+ 1

2
) .

As to the waf limiters φ one may use any of the following

φsa(r, |c|) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if r ≤ 0 ,

1 − 2(1 − |c|)r if 0 ≤ r ≤ 1
2 ,

|c| if 1
2 ≤ r ≤ 1 ,

1 − (1 − |c|)r if 1 ≤ r ≤ 2 ,

2|c| − 1 if r ≥ 2 ,

(14.27)

φvl(r, |c|) =

⎧
⎪⎪⎨
⎪⎪⎩

1 if r ≤ 0 ,

1 − (1−|c|)2r
1+r if r ≥ 0 ,

(14.28)

φva(r, |c|) =

⎧
⎨
⎩

1 if r ≤ 0 ,

1 − (1−|c|)r(1+r)
(1+r2) if r ≥ 0 ,

(14.29)

φma(r, |c|) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if r ≤ 0 ,

1 − (1 − |c|)r if 0 ≤ r ≤ 1 ,

|c| if r ≥ 1 .

(14.30)
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For convenience, subscripts and superscripts have been omitted. The waf

limiter functions are related, and are entirely equivalent, to conventional flux
limiters ψ(r) via

φ(r) = 1 − (1 − |c|)ψ(r) .

φsa is related to superbee, φvl is related to van Leer’s limiter, φva is related
to van Albada’s limiter and φma is related to minbee. See Sect. 13.7.1 of Chap.
13, for details on the derivation of limiter functions for the waf method.

14.3.5 Riemann Solvers

The waf method may be used with the exact Riemann solver or approx-
imate Riemann solvers. An exact Riemann solver is given in Chap. 4 for the
Euler equations. Approximate Riemann solvers for the Euler equations are
given in Chaps. 9 to 12; one may also use the Flux–Vector splitting intercell
flux given in Chap. 8. We particularly recommend the adaptive, approximate–
state Riemann solvers of Chap. 9 and the HLLC approximate Riemann solver
presented in Chap. 10 for the Euler equations. The waf approach may be gen-
eralised to irregular grids. A Courant–number 2 extension of the waf method
is reported in [527]. Numerical results are presented in Sect. 14.7

14.3.6 Summary of the waf Method

For a given domain [0, L] and a mesh size Δx, determined by the choice
of the number M of computing cells, one first sets the initial conditions U0 ≡
U(x, 0) at time t = 0. Then, for each time step n one performs the following
operations

Operation (I): Boundary conditions. This is carried out according to
(14.6) or (14.7), for example.

Operation (II): Computation of time step. This is carried out accord-
ing to (14.4) and (14.5). A choice of Ccfl must be made
at the beginning of the computations. One usually takes
Ccfl = 0.9. Recall however that the choice of S

(n)
max is cru-

cial and given that (14.5) produces somewhat unreliable es-
timates for the true speeds we recommend that when solv-
ing problems with shock–tube like data, the CFL coefficient
Ccfl be set to small number, e.g. 0.2, for a few time steps,
e.g. 5.

Operation (III): Solution of Riemann problem. For each pair of data
states (Un

i ,Un
i+1), compute the solution of Riemann prob-

lem and compute: states Uk, fluxes Fk
i+ 1

2
, wave speeds Sk

and wave jumps Δqi+ 1
2
, where q may be chosen to be den-

sity, when solving the Euler equations.
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Operation (IV): TVD intercell flux. At each cell interface i + 1
2 compute

the ratios rk according to (14.25), compute Courant num-
bers ck according to (14.11), compute limiter functions ac-
cording to any of (14.27) to (14.30), and, finally compute the
intercell flux at position i+ 1

2 according to (14.23); alterna-
tively one computes the intercell flux according to (14.17),
(14.26).

Operation (V): Updating of solution. Proceed to update the conserved
variables according to the conservative formula (14.3)

Operation (VI): Next time level. Go to (I).

14.4 The MUSCL–Hancock Scheme

Here we present a scheme that achieves second order accuracy by apply-
ing the MUSCL approach [554], [555], [556], [557], [558], [559], [562]. MUSCL
stands for Monotonic Upstream–Centred Scheme for Conservation Laws. An
introduction to this general approach was given in Sect. 13.4 of Chap. 13,
in the context of scalar conservation laws. Three MUSCL type schemes were
presented in detail, namely the MUSCL–Hancock method [562], [400], the
Piece–Wise Linear method (PLM) of Colella [133] and the Generalised Rie-
mann Problem (GRP) approach of Ben–Artzi and Falcovitz [37], [38], [36].
The reader is encouraged to review Sects. 13.4.1 and 13.4.2 of Chap. 13 be-
fore proceeding.

14.4.1 The Basic Scheme

In this section we present the extension of the MUSCL–Hancock scheme
to any system of non–linear hyperbolic conservation laws

Ut + F(U)x = 0 (14.31)

and discuss the details when (14.31) are the Euler equations, with the vector
of conserved variables U and fluxes F(U) as given by (14.2). The objective
is to construct a flux Fi+ 1

2
in (14.3) that is a second order extension of the

Godunov first–order upwind method, Chap. 6. Given that the bases of the
scheme were discussed in great detail in Sects. 13.4.1 and 13.4.2 of Chap.
13, we restrict ourselves here to a succinct, algorithmic presentation of the
method.

The MUSCL–Hancock approach achieves a second order extension of the
Godunov first order upwind method if the intercell flux Fi+ 1

2
is computed

according to the following steps:

Step (I): Data Reconstruction. In the following, we assume a choice of
variables W has been made. One possibility is the conserved vari-
ables W = U of course; another choice is offered by the primitive
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or physical variables. For the Euler equations (14.1), (14.2) these
are W = (ρ, u, p)T . Here we present the scheme in terms of the
conserved variables U. In the data reconstruction step, data cell
average values Un

i are locally replaced by piece–wise linear func-
tions in each cell Ii = [xi− 1

2
, xi+ 1

2
], namely

Ui(x) = Un
i +

(x − xi)
Δx

Δi , x ∈ [0,Δx] . (14.32)

Δi is a suitably chosen slope vector (actually a difference) of Ui(x)
in cell Ii. The extreme points x = 0 and x = Δx, in local co–
ordinates, correspond to the intercell boundaries xi− 1

2
and xi+ 1

2
,

in global co–ordinates, respectively. The values of Ui(x) at the
extreme points are

UL
i = Un

i − 1
2
Δi ; UR

i = Un
i +

1
2
Δi (14.33)

and are usually called boundary extrapolated values. Note that U
and Δi are vectors of three components for the Euler equations
and thus there are six scalar extrapolated values in (14.33).

Step (II): Evolution. For each cell Ii, the boundary extrapolated values
UL

i ,UR
i in (14.33) are evolved by a time 1

2Δt, according to

U
L

i = UL
i +

1
2

Δt

Δx
[F(UL

i ) − F(UR
i )] ,

U
R

i = UR
i +

1
2

Δt

Δx
[F(UL

i ) − F(UR
i )] .

⎫
⎪⎬
⎪⎭

(14.34)

Note that this evolution step is entirely contained in each cell Ii,
as the intercell fluxes are evaluated at the boundary extrapolated
values of each cell. At each intercell position i + 1

2 there are two
fluxes, namely F(UR

i ) and F(UL
i+1), which are in general distinct.

This does not really affect the conservative character of the overall
method, as this step is only an intermediate step; the intercell flux
Fi+ 1

2
to be used in (14.3) is yet to be evaluated.

Step (III): The Riemann Problem. To compute the intercell flux Fi+ 1
2

one now solves the conventional Riemann problem with data

UL ≡ U
R

i ; UR ≡ U
L

i+1 (14.35)

to obtain the similarity solution Ui+ 1
2
(x/t). The intercell flux

Fi+ 1
2

is now computed in exactly the same way as in the Godunov
first order upwind method, namely

Fi+ 1
2

= F(Ui+ 1
2
(0)) . (14.36)
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Here Ui+ 1
2
(0) denotes the value of Ui+ 1

2
(x/t) at x/t = 0, i.e. the

value of Ui+ 1
2
(x/t) along the t–axis. Fig. 14.5 illustrates only one

of the ten possible wave patterns in the solution of the Riemann
problem that must be taken into account when computing the
Godunov flux. See Chaps. 4 and 6 for details.

A possible choice for the slope vector Δi in (14.32), (14.33) is

Δi =
1
2
(1 + ω)Δi− 1

2
+

1
2
(1 − ω)Δi+ 1

2
, (14.37)

where
Δi− 1

2
≡ Un

i − Un
i−1 ; Δi+ 1

2
≡ Un

i+1 − Un
i . (14.38)

and ω ∈ [−1, 1].

i+1i

3

UU n

U (0)
i+1/2

1

n

SS
t

0
x

Fig. 14.5. Evaluation of the Godunov flux for a particular wave pattern occuring
in the solution of the local Riemann problem

14.4.2 A Variant of the Scheme

It is possible to modify steps (I) and (II) above by formulating the recon-
struction process in terms of a vector W of primitive variables. For the Euler
equations we may choose W = (ρ, u, p)T and we have

Wt + A(W)Wx = 0 . (14.39)

Then steps (I) and (II) can be reduced to a single step. As the evolution step
does not need to be performed in terms of the conserved variables, we replace
(14.34) by the scheme

W
L,R

i = WL,R
i +

1
2

Δt

Δx
A(Wn

i )[WL
i − WR

i ] . (14.40)

Here A(Wn
i ) denotes the matrix A in (14.39) evaluated at the data cell av-

erage Wn
i . Substitution of WL

i , WR
i , as obtained from (14.33), into (14.40)

gives
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W
L

i = Wn
i − 1

2
[I +

Δt

Δx
A(Wn

i )]Δi ,

W
R

i = Wn
i +

1
2
[I − Δt

Δx
A(Wn

i )]Δi ,

⎫
⎪⎬
⎪⎭

(14.41)

where I is the identity matrix. Thus the complete MUSCL–Hancock scheme
reduces to solving the Riemann problem with data

WL = Wn
i +

1
2
[I − Δt

Δx
A(Wn

i )]Δi ,

WR = Wn
i+1 −

1
2
[I +

Δt

Δx
A(Wn

i+1)]Δi+1 ,

⎫
⎪⎪⎬
⎪⎪⎭

(14.42)

to find Wi+ 1
2
(x/t) and evaluate the intercell flux as

Fi+ 1
2

= F(Wi+ 1
2
(0)) ,

in which the vector Ui+ 1
2
(0) in (14.36) is replaced by Wi+ 1

2
(0). See also Sect.

14.6.3.
For primitive variables, in the one–dimensional time dependent Euler equa-

tions, we have

A =

⎛
⎝

u ρ 0
0 u 1

ρ

0 ρa2 u

⎞
⎠ , (14.43)

where a is the speed of sound. See Chap. 3 for matrices for the Euler equations
in three space dimensions. See also Chap. 8.

14.4.3 TVD Version of the Scheme

As seen in Sect. 13.4.2 of Chap. 13, the MUSCL–Hancock scheme is
second–order accurate in space and time for any value of the parameter ω in
the slopes (14.37), when applied to the linear advection equation ut+aux = 0.
For ω = 0 the scheme reduces to the Fromm method. It follows from Go-
dunov’s Theorem, see Sect. 13.5.3 of Chap. 13, that spurious oscillations will
be produced in the vicinity of strong gradients. The purpose here is to remedy
this problem using some Total Variation Diminishing (TVD) constraint.

We present TVD versions of the scheme. These are extensions of the anal-
ysis of Sect. 13.8 of Chap. 13, for the linear advection equation, to non–linear
systems of conservation laws (14.31). The extension is somewhat empirical;
the rigour of the scalar case can not be preserved for non–linear systems.
In spite of this, the TVD versions of the schemes work well and computed
solutions are, in the main, oscillation free. The TVD version of the scheme
is obtained by replacing the slopes Δi in (14.33) by limited slopes Δi. As
discussed in Sect. 13.8, there are essentially two ways of achieving this.
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Limited Slopes

A well established approach [12], [400] is to select limited slopes directly
from forcing equivalence of the schemes with conventional flux limiter meth-
ods, for the model scalar equation. Limited slopes are thus obtained from

Δi =

⎧
⎨
⎩

max[0,min(βΔi− 1
2
,Δi+ 1

2
),min(Δi− 1

2
, βΔi+ 1

2
)] , Δi+ 1

2
> 0 ,

min[0,max(βΔi− 1
2
,Δi+ 1

2
),max(Δi− 1

2
, βΔi+ 1

2
)] , Δi+ 1

2
< 0

(14.44)
for particular values of the parameter β. The value β = 1 reproduces the
minbee (or minmod) flux limiter and β = 2 reproduces the superbee flux
limiter. Recall that Δi is a vector and thus the limiting process is applied to
each component of the system being solved.

As noted in Sect. 13.4 of Chap. 13, upwind MUSCL type schemes based
on the limited slopes (14.44) have the Lax–Wendroff as the base second–order
scheme, when applied to the linear advection equation, and not the Fromm
scheme.

A refinement of the above approach is the so called characteristic limiting
or wave–by–wave limiting; see for instance [400] and [510]. First note that the
slope Δi in cell i is a function of the jumps Δi− 1

2
, Δi+ 1

2
given in (14.38),

namely
Δi = Δi(Δi− 1

2
,Δi+ 1

2
) . (14.45)

In this approach one decomposes the arguments Δi− 1
2
, Δi+ 1

2
above into jumps

across characteristic fields emerging respectively from the Riemann problem
solutions with data (Un

i−1,U
n
i ) and (Un

i ,Un
i+1), namely

Δi− 1
2

=
N∑

k=1

Δ
(k)

i− 1
2

; Δi+ 1
2

=
N∑

k=1

Δ
(k)

i+ 1
2

(14.46)

where Δ
(k)

i+ 1
2

is the jump across wave k at interface i+ 1
2 and N is the number

of waves. See Fig. 14.6. One then replaces (14.45) by the summation

Δi =
N∑

k=1

Δ
(k)

i (Δ(k)

i− 1
2
,Δ

(k)

i+ 1
2
) , (14.47)

where
Δ

(k)

i = Δ
(k)

i (Δ(k)

i− 1
2
,Δ

(k)

i+ 1
2
) (14.48)

is simply a limited slope as applied to a scalar problem, obtained from (14.44),
for instance.

The application of characteristic limiting requires the solution of the Rie-
mann problem with data (Un

i ,Un
i+1) at each cell interface i + 1

2 . Note that
this means that the MUSCL–Hancock scheme, or some other MUSCL–type
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i-1/2 i-1/2 i-1/2 i+1/2

(3)(2) (3) (1) (2)
i+1/2

n
i-1 i i+1

n

i+1/2

U U U
n

(1)
Δ Δ Δ ΔΔ

x
i-1/2 i+1/2

i

Δ

Fig. 14.6. Characteristic limiting. Wave–by–wave decomposition of gradients ob-
tained from local solutions of Riemann problems, with cell averages as initial data

schemes, requires the solution of two Riemann problems per cell interface per
time step. As for the purpose of characteristic limiting, accuracy and robust-
ness of the Riemann solver are not of paramount importance, one may use
the simplest Riemann solver available. Quirk [400] reports satisfactory re-
sults when using the Primitive–Variable Linearised Riemann solver presented
in Sect. 9.3 of Chap. 9; see [502]. The collective experience of using charac-
teristic limiting is generally a positive one and is well worth the extra cost,
particularly when high resolution of contact and shear waves is required.

Use of Slope Limiters

Another approach is to find a slope limiter ξi such that

Δi = ξiΔi , (14.49)

with Δi as given by (14.37), for example. This approach leads to a TVD region
for ξ(r) given as follows:

ξ(r) = 0 for r ≤ 0 , 0 ≤ ξ(r) ≤ min{ξL(r), ξR(r)} for r > 0 , (14.50)

where

ξL(r) =
2βi− 1

2
r

1 − ω + (1 + ω)r
,

ξR(r) =
2βi+ 1

2

1 − ω + (1 + ω)r
,

r =
Δi− 1

2

Δi+ 1
2

,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(14.51)

and
βi− 1

2
=

2
1 + c

, βi+ 1
2

=
2

1 − c
. (14.52)

The coefficients βi− 1
2

and βi+ 1
2

above are derived for the scalar case in Sect.
13.8.3 of Chap. 13 and c is the Courant number for the single wave present.
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By considering the limit values of βi− 1
2

and βi+ 1
2

one may eliminate the de-
pendence on c and simply set βi− 1

2
= βi+ 1

2
= 1 in (14.52). A more refined

approach would be to adopt the characteristic limiting approach described
earlier in this section. This would require solving extra Riemann problems to
find jumps across each wave and their respective Courant numbers, so that
one may define coefficients βi+ 1

2
as functions of Courant numbers c

(k)

i+ 1
2
.

In Chap. 13 we constructed slope limiters that are analogous to conven-
tional flux limiters, such as superbee and minbee. We stress however that
they are only analogous, not equivalent. A slope limiter that is analogous to
the superbee flux limiter is

ξsb(r) =

⎧
⎪⎪⎨
⎪⎪⎩

0 , if r ≤ 0 ,
2r , if 0 ≤ r ≤ 1

2 ,
1 , if 1

2 ≤ r ≤ 1 ,
min{r, ξR(r), 2} , if r ≥ 1 .

(14.53)

A van Leer–type slope limiter is

ξvl(r) =

{
0 , r ≤ 0 ,

min{ 2r

1 + r
, ξR(r)} , r ≥ 0 .

(14.54)

A van Albada–type slope limiter is

ξva(r) =

⎧
⎨
⎩

0 , r ≤ 0 ,

min{r(1 + r)
1 + r2

, ξR(r)} , r ≥ 0 .
(14.55)

A minbee–type slope limiter is

ξmb(r) =

⎧
⎨
⎩

0 , r ≤ 0 ,
r , 0 ≤ r ≤ 1 ,
min{1, ξR(r)} , r ≥ 1 .

(14.56)

As to Riemann solvers to be used the reader is referred to Sect. 14.3.5.

14.4.4 Summary of the MUSCL–Hancock Method

For a given domain [0, L] and a mesh size Δx, determined by the choice
of the number M of computing cells, one first sets the initial conditions U0 ≡
U(x, 0) at time t = 0. Then, for each time step n one performs the following
operations

Operation (I): Boundary conditions. This is carried out according to
(14.6) or (14.7), for example.
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Operation (II): Computation of time step. This is carried out accord-
ing to (14.4) and (14.5). A choice of Ccfl must be made
at the beginning of the computations. One usually takes
Ccfl = 0.9. Recall however that the choice of S

(n)
max is cru-

cial and given that (14.5) produces somewhat unreliable es-
timates for the true speeds we recommend that when solv-
ing problems with shock–tube like data, the CFL coefficient
Ccfl be set to small number, e.g. 0.2, for a few time steps,
e.g. 5.

Operation (III): Boundary extrapolated values. This involves Steps (I)
and (II) of Sect. 14.4.1, where the slopes Δi in (14.32),
(14.33) are replaced by the limited slopes Δi, which are to
be obtained by applying the methods of Sect. 14.4.3. The
operation results in TVD, evolved boundary extrapolated
values U

L,R

i , for each cell i.
Operation (IV): Solution of Riemann problem. At each intercell position

i + 1
2 one finds the solution of Riemann problem with data

(U
R

i , U
L

i+1) and computes the intercell flux according to
(14.36).

Operation (V): Updating of solution. Proceed to update the conserved
variables according to conservative formula (14.3)

Operation (VI): Next time level. Go to (I).

In the next section we present centred (non upwind) TVD schemes for
non–linear systems of conservation laws.

14.5 Centred TVD Schemes

In this section we present two second–order TVD schemes that are ex-
tensions of the First–Order Centred (force) scheme [513], [515]. The first
scheme is a flux limiter blending of the force scheme and the Richtmyer
scheme [402]. The second scheme is of the slope limiter type and results from
replacing the Godunov flux by the force flux in the MUSCL–Hancock scheme
of Sect. 14.4. Details on the construction and theory of these TVD centred
schemes are found in Toro and Billett [526], [538].

A key issue in constructing TVD centred schemes is the fact that the depen-
dence of the scheme, via the limiter functions, on the direction of wave prop-
agation is impossible to implement or is simply undesirable. Upwind based
TVD schemes have plenty of local information on directionality supplied by
the Riemann problem or some other type of characteristic information. This
upwind information is usually put to good use in constructing limiter functions
with a minimum of artificial viscosity.
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14.5.1 Review of the force Flux

We solve systems of hyperbolic conservation laws

Ut + F(U)x = 0 (14.57)

such as the Euler equations, for which U and F(U) are given by (14.2). A clas-
sical scheme of first order accuracy to solve (14.57) is that of Lax–Friedrichs,
whose numerical flux at the interface of two states UL,UR is

FLF
i+ 1

2
= FLF

i+ 1
2
(UL,UR) =

1
2
[F(UL) + F(UR)] +

1
2

Δx

Δt
[UL − UR] . (14.58)

A second–order accurate scheme of interest to us here is the Richtmyer scheme
[402], which computes a numerical flux by first defining an intermediate state

URI
i+ 1

2
≡ URI

i+ 1
2
(UL,UR) =

1
2
(UL + UR) +

1
2

Δt

Δx
[F(UL) − F(UR)] (14.59)

and then setting
FRI

i+ 1
2

= F(URI
i+ 1

2
) . (14.60)

The First Order Centred (force) scheme [513] was derived in Chap. 7 for
non–linear systems (14.57) and has numerical flux

Fforce

i+ 1
2

= Fforce

i+ 1
2

(UL,UR) =
1
2
[FLF

i+ 1
2
(UL,UR) + FRI

i+ 1
2
(UL,UR)] . (14.61)

Remark 14.1. We note that the force flux results from replacing random
values in the staggered–grid version of the Random Choice Method by inte-
gral averages; an unexpected outcome is that it turns out to be a simple mean
value of the Lax–Friedrichs and Richtmyer fluxes. Motivated by the averaging
outcome, one may find the optimal averaging of the Lax–Friedrichs and Richt-
myer fluxes to reproduce the Godunov first order upwind method for model
problems; however, this depends on upwind information.

In the next two sections we construct second–order TVD extensions of the
force scheme for non–linear systems.

14.5.2 A Flux Limiter Centred (flic) Scheme

The general flux limiter approach combines a low order monotone flux
FLO

i+ 1
2

and a high order flux FHI
i+ 1

2
as

Fi+ 1
2

= FLO
i+ 1

2
+ φi+ 1

2
[FHI

i+ 1
2
− FLO

i+ 1
2
] , (14.62)

where φi+ 1
2

is a flux limiter. For details on the flux limiter approach as applied
to scalar problems see Sect. 13.7.2 of Chap. 13.

Here we construct a Flux LImiter Centred (flic) scheme by taking
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FLO
i+ 1

2
≡ Fforce

i+ 1
2

; FHI
i+ 1

2
≡ FRI

i+ 1
2

(14.63)

where Fforce

i+ 1
2

and FRI
i+ 1

2
are the fluxes for the force and Richtmyer schemes

given respectively by (14.61) and (14.60). The scalar version of this scheme was
studied in detail in Sect. 13.7.4, where a Total Variation Diminishing (TVD)
version of the scheme was also constructed. Here we extend that analysis to
non–linear systems in a somewhat empirical manner.

The analysis for the scalar case contains wave propagation information
via the Courant number c. For non–linear systems it will be actually possible
to retain, at no cost, some of this information by making use of the CFL
coefficient Ccfl in (14.4) required to compute a stable time step Δt in (14.3).

In Sect. 13.7.4 of Chap. 13 we established a relationship between conven-
tional upwind flux limiters ψ(r) and centred flux limiters φ(r), so that these
may be found as follows

φ(r) = φ̂g + (1 − φ̂g)ψ(r) , (14.64)

with

φ̂g =
{

0 , r ≤ 1 ,
φg ≡ (1 − cmax)/(1 + cmax) , r ≥ 1 .

(14.65)

The function φg above retains some upwinding at no extra cost, as one may
set for instance cmax = Ccfl. First order centred schemes other than force

may also be used, in which case the expression for φg is different. See Sect.
13.7.4 of Chap. 13 for details. By choosing the upwind flux limiters super-

bee, vanleer, vanalbada and minbee we obtain corresponding centred flux
limiters

φsb(r) =

⎧
⎪⎪⎨
⎪⎪⎩

0 , r ≤ 0 ,
2r , 0 ≤ r ≤ 1

2 ,
1 , 1

2 ≤ r ≤ 1 ,
min {2, φg + (1 − φg)r} , r > 1 ,

(14.66)

φvl(r) =

⎧
⎨
⎩

0 , r ≤ 0 ,
2r

1+r , 0 ≤ r ≤ 1 ,

φg + 2(1−φg)r
1+r , r ≥ 1 ,

(14.67)

φva(r) =

⎧
⎪⎨
⎪⎩

0 , r ≤ 0 ,
r(1+r)
1+r2 , 0 ≤ r ≤ 1 ,

φg + (1−φg)r(1+r)
1+r2 , r ≥ 1 ,

(14.68)

φmb(r) =

⎧
⎨
⎩

0 , r ≤ 0 ,
r , 0 ≤ r ≤ 1 ,
1 , r ≥ 1 .

(14.69)
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For the Euler equations we recommend the following procedure: we first define
q ≡ E (total energy) and set

rL
i+ 1

2
=

Δqi− 1
2

Δqi+ 1
2

; rR
i+ 1

2
=

Δqi+ 3
2

Δqi+ 1
2

. (14.70)

Then we compute a single flux limiter

φLR = min{φ(rL
i+ 1

2
), φ(rR

i+ 1
2
)} , (14.71)

where φ is any of the limiter functions (14.66)–(14.69). Then the single limiter
φLR is applied to all three flux components in (14.62). For other systems,
some experimentation might be necessary before arriving at some satisfactory
procedure. A fairly general approach for a system whose vector of conserved
variables has components uk, k = 1, . . . ,m, is to first apply (14.70)–(14.71) to
every component uk and obtain a limiter φLR

k . Then, one can select the final
limiter as

φLR = mink

(
φLR

k

)
, k = 1, . . . , m .

Methods for extending the flic scheme to systems with source terms are
given in Chap. 15 and techniques for solving multidimensional problems are
given in Chap. 16. Numerical results are presented in Sect. 14.7.

In the next section we present another centred TVD scheme.

14.5.3 A Slope Limiter Centred (slic) Scheme

Here we construct another second order extension of the force scheme
[513]. This results from replacing the Godunov upwind flux in the MUSCL–
Hancock scheme [562] by the force flux. The scheme as applied to the scalar
case was presented in Sect. 13.8 of Chap 13. The TVD version, derived in Sect.
13.8.2 and 13.8.3, results from limiting the slopes in the data reconstruction
step.

The Slope LImiter Centred (slic) scheme has three steps. Steps (I) and
(II) are exactly the same as in the MUSCL–Hancock scheme, see Sect. 14.3.
The first step results in boundary extrapolated values

UL
i = Un

i − 1
2
Δi ; UR

i = Un
i +

1
2
Δi (14.72)

in each cell Ii = [xi− 1
2
, xi+ 1

2
], where Δi is a slope vector (a difference). The

second step evolves UL
i ,UR

i by a time 1
2Δt according to

U
L

i = UL
i + 1

2
Δt
Δx [F(UL

i ) − F(UR
i )] ,

U
R

i = UR
i + 1

2
Δt
Δx [F(UL

i ) − F(UR
i )] .

⎫
⎬
⎭ (14.73)

Now, instead of solving the Riemann problem with data
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WL ≡ U
R

i ; WR ≡ U
L

i+1 (14.74)

to find the Godunov flux at the intercell position i+ 1
2 , we evaluate the force

flux
Fforce

i+ 1
2

= Fforce

i+ 1
2

(U
R

i ,U
L

i+1) , (14.75)

as given by (14.61). For the slopes Δi in (14.72) we take

Δi =
1
2
(1 + ω)Δi− 1

2
+

1
2
(1 − ω)Δi+ 1

2
, (14.76)

where ω ∈ [−1, 1] is a parameter and Δi− 1
2
,Δi+ 1

2
denote jumps across inter-

faces i − 1
2 and i + 1

2 respectively, see (14.38).
As seen in section 13.4.5 of Chap. 13, this scheme is second–order accurate

in space and time and stable with Courant number c satisfying |c| ≤ 1, for any
ω ∈ [−1, 1], when applied to the scalar, linear advection equation. According
to Godunov’s theorem, see Sect. 13.5.3, spurious oscillations will be produced
in the vicinity of strong gradients. To avoid this difficulty, a Total Variation
Diminishing (TVD) version of the scheme for the scalar case was constructed
in Sect. 13.8. This was achieved by replacing the slopes Δi by limited slopes
Δi. The extension to non–linear systems is somewhat empirical. Any of the
slope limiters given by (14.53) to (14.56), with βi− 1

2
= βi+ 1

2
= 1 in (14.51)

will lead to satisfactory results.

Remark 14.2. The choice of limited slopes given by (14.44) will not in
general give a TVD method when the underlying first order scheme is centred,
and therefore (14.44) is not a choice of limiting to be considered here.

In the next section we present upwind TVD schemes based on non–
conservative formulations of the equations.

14.6 Primitive–Variable Schemes

Here we construct two second–order TVD upwind schemes for hyperbolic
systems expressed in non–conservative form. The schemes are respectively
based on the waf and MUSCL–Hancock approaches presented in Sects. 14.3
and 14.4 for constructing conservative methods. Modifications of the PLM
[133] and the GRP [37] approaches have also been used to construct primi-
tive and conservative schemes [510], [262]. Full details on the construction of
primitive, conservative and adaptive schemes are given in [517].

14.6.1 Formulation of the Equations and Primitive Schemes

We shall call primitive–variable method or simply primitive method, any
scheme that is based on the non-conservative form of the equations, namely
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Wt + A(W)Wx = 0 , (14.77)

where A is a coefficient matrix that depends on the particular choice of vari-
ables W. See Sect. 3.2.2 of Chap. 3, for various possible formulations of the
governing equations. Note that (14.77) includes the case in which W is the
vector of conserved variables.

It is well known that primitive–variable schemes will compute shock waves
with the wrong strength and thus the wrong speed of propagation. At the nu-
merical level there is some recent work by Hou and Le Floch [259] which is also
relevant here. However, if the problem is shock free then primitive–variable
schemes are perfectly adequate. Conservative methods, on the other hand,
have been reported to give erroneous solutions when computing material in-
terfaces by Clarke et. al. [118] and by Karni [278]. As a matter of fact, there
are classes of initial–value problems (IVPs) for which conservative methods
give erroneous solutions [508], [512], while primitive–variable schemes success-
fully avoid some of these difficulties. These IVPs include material interfaces,
shear waves and symmetric data Riemann problems. Other relevant examples
in which primitive methods would be adequate are (i) the artificial compress-
ibility equations associated with the incompressible Navier–Stokes equations,
[514] (ii) linear constant coefficient hyperbolic systems, see Chap. 5, (iii) sys-
tems admitting very weak shock waves such as in Acoustics and (iv) hyperbolic
systems with unknown conservative formulations [549]; we note however that
if such systems contain shocks, then their primitive form will not give the
correct solutions. There is a large body of work concerned with primitive–
variable schemes and their combination with shock–fitting techniques; see for
instance the works of Moretti and co–workers [355], [353], [354], [157]. Up-
wind TVD primitive–variable schemes have been constructed by Karni [278],
Toro [508], [511], [510] and more recently by Abgrall [1]. Obviously, if shock
waves are present then primitive schemes must be ruled out. However, by
making use of adaptive schemes, where shock waves are treated by a conser-
vative method, one can preserve the advantages of both approaches. Adaptive
primitive–conservative schemes have been put forward by Toro [508], [511],
Karni [279] and Abgrall [1]; see also Ivings et. al. [262].

We describe the schemes for the augmented, one dimensional time depen-
dent Euler equations, see Chaps. 1 and 3. We express the equations in terms
of the primitive variables W = (ρ, u, p, q)T , where q is any passive scalar.
The governing equations are of the form (14.77), where the coefficient matrix
A(W) is

A(W) =

⎛
⎜⎜⎝

u ρ 0 0
0 u 1

ρ 0
0 ρa2 u 0
0 0 0 u

⎞
⎟⎟⎠ . (14.78)

The variable q = q(x, t) may represent a reaction progress variable when mod-
elling chemically active flows, a variable associated with a material interface,
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the concentration of some chemical species, or simply the tangential velocity
component in two–dimensional gas dynamics.

Now we propose a two–step finite–difference scheme to solve (14.77),
namely

Wn+1
i = Wn

i +
Δt

Δx
Ai

[
Wn+ 1

2
i− 1

2
− Wn+ 1

2
i+ 1

2

]
. (14.79)

Fig. 14.7 shows the stencil of the scheme. At the half–time level n + 1
2 , the

matrix Ai is defined at the grid point i and the intermediate states Wn+ 1
2

i+ 1
2

are defined at the intermediate positions i + 1
2 . The scheme is completely

determined once Ai and Wn+ 1
2

i+ 1
2

are defined. We note that the problem of

finding Wn+ 1
2

i+ 1
2

is similar to that of finding an intercell flux in conservative
methods, see equation (14.3). We shall study two approaches.

n+1/2

n+1

W W

W
n

i-1 i-1/2 i i+1/2 i+1

W

n+1/2

x

t

A i

n+1/2

n
i

i
n+1

i-1/2 i+1/2

Fig. 14.7. Stencil for primitive–variable schemes on a staggered grid. Point values

Wn
i are updated to Wn+1

i , intermediate values are W
n+ 1

2
i− 1

2
and W

n+ 1
2

i+ 1
2

14.6.2 A waf–Type Primitive Variable Scheme

Here we follow the waf approach of Sect. 14.3 for constructing the inter-
mediate vectors Wn+ 1

2
i+ 1

2
and the coefficient matrix Ai. First we define

Wn+ 1
2

i+ 1
2

=
1

Δx

∫ 1
2 Δx

− 1
2 Δx

Wi+ 1
2
(x,

1
2
Δt)dx . (14.80)

See equation (14.14). So far this is identical to the Weighted Average State
version of waf, see Sect. 14.3.2. Here Wi+ 1

2
(x, t) is the solution of the con-

ventional Riemann problem with data (Wn
i ,Wn

i+1). An approximation to the
integral is
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Wn+ 1
2

i+ 1
2

=
N∑

k=1

βkW
(k)

i+ 1
2

, (14.81)

where N is the total number of waves in the solution of the Riemann problem
(N = 4 in the present case). The weights or coefficients are given by

βk = 1
2 (ck − ck−1) ,

ck =
ΔtSk

Δx
, c0 = −1 , cN+1 = 1 ,

⎫
⎪⎬
⎪⎭

(14.82)

where ck is the Courant number for wave k of speed Sk. Manipulation of
(14.81)–(14.82) leads to

Wn+ 1
2

i+ 1
2

=
1
2
(Wn

i + Wn
i+1) −

1
2

N∑
k=1

ck[W(k+1)

i+ 1
2

− W(k)

i+ 1
2
] . (14.83)

To compute the coefficient matrix Ai we first define a state Wi and then
set

Ai = A(Wi) . (14.84)

The simplest choice is obviously Wi = Wn
i , which we do not believe to be

sufficiently robust to be used with confidence. A sophisticated choice for Ai

is

Wi =
1

Δx

∫ 1
2 Δx

0

Wi− 1
2
(x,

1
2
Δt)dx +

1
Δx

∫ 0

− 1
2 Δx

Wi+ 1
2
(x,

1
2
Δt)dx , (14.85)

which is an integral average of the solutions Wi− 1
2
(x/t) and Wi+ 1

2
(x/t) of

the two Riemann problems affecting mesh point i, at the half–time level. See
Fig. 14.8. A suitable approximation to this integral is

(x/t) i+1/2i-1/2 W

i i+1i-1

W

Δ

i+1/2

Wi

(x/t)

i-1/2

Δ

t

t
2

Fig. 14.8. State Wi to compute the coefficient matrix is and integral average of
solutions of Riemann problems affecting mesh point i
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Wi =
N+1∑
j=jL

β
(j)

i− 1
2
W(j)

i− 1
2

+
jR∑

j=1

β
(j)

i+ 1
2
W(j)

i+ 1
2

, (14.86)

with the coefficients defined as

β
(j)

i− 1
2

= 1
2 (cj − cj−1) for j > jL ; βjL

i− 1
2

= 1
2cjL

,

β
(j)

i+ 1
2

= 1
2 (cj − cj−1) for j < jR ; βjR

i+ 1
2

= − 1
2cjR .

⎫
⎬
⎭ (14.87)

The superscript jL refers to the value of k in the solution of the Riemann
problem with data (Wn

i−1,W
n
i ) such that the speed Sk−1 is negative and Sk

is positive. A similar interpretation holds for jR. Another approximation to
(14.85) that is reported to work well [262] is

Wi =
1
2
(Wn+ 1

2
i− 1

2
+ Wn+ 1

2
i+ 1

2
) , (14.88)

which makes use of information made available by (14.83).
In approximating the integrals (14.80) and (14.85) by the summations

(14.81) and (14.86) we have assumed the simplified wave structure of Figs.
14.2 and 14.8. The treatment of rarefactions is entirely analogous to the con-
servative version of the scheme and is discussed in Sect. 14.3.3.

Exercise 14.3. Apply the primitive scheme (14.79) to the model equation

ut + aux = 0 , a = constant. (14.89)

Verify that for a > 0 and a < 0 the resulting scheme is the Lax–Wendroff
method, see Chap. 13, which is second–order accurate in space and time.

Show also that if the intermediate state (14.80) is computed by a mid–point
rule, then the scheme reduces to the Godunov first–order upwind scheme, see
Chap. 6, which is monotone.

Remark 14.4. If the above observation is generalised and we compute the

intermediate state vectors W
n+ 1

2
i+ 1

2
in (14.80) by a mid–point rule approxima-

tion, then one obtains a first–order accurate primitive scheme, that is the
non–conservative counterpart of Godunov’s conservative method studied in
Chap. 6.

Based on the first–order primitive scheme above one can construct a Total
Variation Diminishing (TVD) version of the second–order primitive method.
This is most easily accomplished by replacing (14.83) by

Wn+ 1
2

i+ 1
2

=
1
2
(Wn

i + Wn
i+1) −

1
2

N∑
k=1

sign(ck)φk[W(k+1)

i+ 1
2

− W(k)

i+ 1
2
] , (14.90)

where φk is any of the waf limiter functions (14.27)–(14.30). See Chap. 13
for general background on TVD schemes and limiter functions.
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We summarise the application of the primitive waf scheme as applied
to (14.77): One first solves the Riemann problems with data (Wn

i ,Wn
i+1) to

find Wi+ 1
2
(x/t); one then computes the intermediate state vectors Wn+ 1

2
i+ 1

2

according to (14.90) and the coefficient matrix Ai according to (14.84), with
W obtained from (14.85) or (14.88); the primitive scheme (14.79) is thus
completely determined. The linearised stability condition of the scheme is
|c| ≤ 1.

Remark 14.5. The primitive waf scheme is most easily converted into the
conservative waf scheme of Sect. 14.3.2 by simply computing an intercell flux
as Fi+ 1

2
= F(Wn+ 1

2
i+ 1

2
) and advancing the solution via the conservative formula

(14.3). See Sect. 14.3.2.

Concerning Riemann solvers the reader is referred to Sect. 14.3.5.

14.6.3 A MUSCL–Hancock Primitive Scheme

A different primitive scheme results if the computation of Wn+ 1
2

i+ 1
2

and the

coefficient matrix Ai in (14.79) is carried out via the MUSCL–Hancock ap-
proach, first put forward for constructing conservative methods [562]. See Sect.
14.4 for details on this approach.

First we define a procedure for computing the intermediate values Wn+ 1
2

i+ 1
2

.
This is done in essentially the same way as for conservative schemes. After
the reconstruction step (14.32) in terms of W, there are three distinct steps,
namely

Step (I): Extrapolation. Using the reconstructed solution in (14.32) in
terms of the vector of primitive variables W we obtain the bound-
ary extrapolated values

WL
i = Wn

i − 1
2
Δi ; WR

i = Wn
i +

1
2
Δi . (14.91)

Step (II): Evolution. We evolve the values WL,R
i by a time 1

2Δt according
to

W
L,R

i = WL,R
i +

1
2

Δt

Δx
A(Wn

i )(WL
i − WR

i ) . (14.92)

Step (III): The Riemann problem. In order to compute Wn+ 1
2

i+ 1
2

we find
the solution Wi+ 1

2
(x/t) of the Riemann problem with piece–wise

constant data (W
R

i ,W
L

i+1) and set

Wn+ 1
2

i+ 1
2

= Wi+ 1
2
(0) , (14.93)
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which requires a solution sampling procedure entirely analogous
to that of the Godunov method described in Chap. 6. See also
Chap. 9.

There are several possible choices for the matrix Ai in (14.79). By using
(14.84) one only requires the computation of a state Wi. A possible choice is

Wi =
1
2
(W

L

i + W
R

i ) . (14.94)

Some algebra gives the simple expression

Wi = Wn
i − 1

2
Δt

Δx
A(Wn

i )Δi . (14.95)

Another choice is given by (14.85), where now Wi+ 1
2
(x/t) is the solution of the

Riemann problem in Step (III) above. The integral may now be approximated
as in (14.86), (14.87). A trapezium–rule approximation gives another choice,

Wi =
1
2
(Wn+ 1

2
i− 1

2
+ Wn+ 1

2
i+ 1

2
) . (14.96)

Exercise 14.6. Apply the primitive MUSCL–Hancock scheme described
to the model equation (14.89). Verify that for a > 0 and a < 0 the resulting
scheme is the Fromm scheme, see Chap. 13, which is second–order accurate
in space and time.

Verify also that if the slopes Δi in (14.91) are identically zero, then the
scheme reduces to the Godunov first–order upwind scheme (the CIR scheme),
see Chap. 13, which is monotone.

Solution 14.7. Left to the reader.

Remark 14.8. Based on the remark above one can construct a first–order
primitive scheme for non–linear systems by setting the slopes to zero. The re-
sulting scheme is the primitive counterpart of Godunov’s conservative method
studied in Chap. 6 and which is identical to the primitive first order scheme
obtained via the waf approach in Sect. 14.6.2.

A Total Variation Diminishing (TVD) version of the second–order primi-
tive MUSCL–Hancock method is easily constructed. To this end one replaces
the slopes Δi by limited slopes Δi in the same way as in the conservative
MUSCL–Hancock scheme described in Sect. 14.4.3.

Remark 14.9. The primitive MUSCL–Hancock scheme is most easily con-
verted into the conservative MUSCL–Hancock scheme by simply computing
an intercell flux as Fi+ 1

2
= F(Wn+ 1

2
i+ 1

2
), where Wn+ 1

2
i+ 1

2
is given by (14.93), and

advancing the solution via the conservative formula (14.3). See Sects. 14.4.1
and 14.4.2.

Concerning Riemann solvers the reader is referred to Sect. 14.3.5.
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14.6.4 Adaptive Primitive–Conservative Schemes

Here we present an adaptive procedure whereby a conservative scheme
is used at shocks only and a primitive scheme is used elsewhere. Details of
the approach are found in [508], [511], [517]; see also Ivings et. al. [262]. The
experience reported in [539], [540] in constructing adaptive schemes is useful
here.

Consider a mesh point i as depicted in Fig. 14.8. This mesh point is up-
dated by a conservative method only if any of the two neighbouring Riemann
problem solutions Wi− 1

2
(x/t), Wi+ 1

2
(x/t) contains a shock travelling in the

direction of the mesh point i. The local solutions Wi− 1
2
(x/t), Wi+ 1

2
(x/t)

contain all the required information and thus the adaptive scheme is easily
implemented. Denote by p∗

i− 1
2

and p∗
i+ 1

2
the solutions for pressure in the star

regions of Wi− 1
2
(x/t) and Wi+ 1

2
(x/t) respectively. See Chaps. 4 and 9 for

details on the structure of the solution of the Riemann problem. Define

Sstr = 1 + PTOL , (14.97)

where PTOL is a small positive quantity yet to be defined. If

p∗
i− 1

2
/pn

i > Sstr and Si− 1
2

> 0 ,

or if
p∗

i+ 1
2
/pn

i > Sstr and Si+ 1
2

< 0

⎫
⎪⎬
⎪⎭

(14.98)

then mesh point i is advanced via a conservative method (14.3); otherwise one
advances the solution via a primitive scheme (14.79) of Sect. 14.6.1.

In (14.98) Si− 1
2

denotes the speed of a shock wave contained in the solution
Wi− 1

2
(x/t) of the Riemann problem and Si+ 1

2
denotes the speed of a shock

wave contained in the solution Wi+ 1
2
(x/t). Experience reported in [508] and

[262] suggests that the choice of PTOL in (14.97) is not too critical and any
value in the range (0, 0.1) gives satisfactory results. If PTOL is too large one
risks computing shocks of moderate strength with the primitive scheme, which
will lead to shock waves being in the wrong position. Small values of PTOL
simply mean that the conservative method is used almost everywhere.

Note that these adaptive schemes are essentially primitive, whereby con-
servative methods are only used at isolated shocked points. Given that any of
the primitive schemes presented can most easily be converted into their con-
servative counterparts, the adaptive primitive–conservative approach is easily
implemented. Alternative hybrid schemes have been presented by Karni [279]
and independently by Abgrall [1].

In the next section we present some numerical results for a test problem
with exact solution.
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14.7 Some Numerical Results

Here we present numerical results for some of the schemes studied in this
chapter, as applied to the Euler equations. As a test problem with exact solu-
tion we use Test 1 of Sect. 6.4 of Chap. 6, which has initial data consisting of
two constant states WL = [ρL, uL, pL]T and WR = [ρR, uR, pR]T , separated by
a discontinuity at a position x = 0.3. The data states are WL = [1.0, 0.0, 1.0]T

and WR = [0.125, 0.0, 0.1]T . The ratio of specific heats is chosen to be γ = 1.4.
The exact and numerical solutions are found in the spatial domain 0 ≤ x ≤ 1.
The numerical solution is computed with M = 100 cells and the Courant
number coefficient is Ccfl = 0.9; boundary conditions are transmissive and
S

(n)
max is found using the simplified formula (14.5). The test problem is a mod-

ified version of the popular Sod’s test [453]; the solution consists of a right
shock wave, a right travelling contact wave and a left sonic rarefaction wave,
a feature that is very useful for assessing the entropy satisfaction property
of numerical methods. The exact solution was found by running the code
HE-E1RPEXACT of the library NUMERICA [519]. The numerical solutions
were obtained by running the codes HE-E1WAF, HE-E1MUSHAN and HE-
E1SLIC of NUMERICA.

We present four sets of results. The first two sets correspond to upwind
methods and include the waf method of Sect. 14.3, see Figs. 14.9 and 14.10,
and the MUSCL–Hancock method of Sect. 14.4, see Figs. 14.11 to 14.14. All
upwind results have been obtained with the HLLC Riemann solver of Sect.
10.4 of Chap. 10. The third and fourth sets of results correspond to centred
methods and include the Flux Limiter Centred (flic) scheme of Sect. 14.5.2,
see Figs. 14.15 and 14.16, and the Slope Limiter Centred (slic) scheme of
Sect. 14.5.3, see Figs. 14.17 and 14.18. For each method we show results for
at least two limiter functions.

14.7.1 Upwind TVD Methods

Figs. 14.9 and 14.10 show results for the waf method using the limiter
functions that are equivalent to the flux limiters superbee (14.27) and min-

bee (14.30); the first result gives very sharp resolution of discontinuities but
small spurious oscillations are just visible on the plots; the second result using
minbee has no signs of spurious oscillations but discontinuities are somewhat
smeared, especially the contact discontinuity. In practice one tends to use some
limiter in between minbee and superbee, such as vanleer or vanalbada,
given respectively by (14.28) and (14.29).

Figs. 14.11 to 14.14 show results from the MUSCL–Hancock method. The
results of Figs. 14.11 and 14.12 were obtained from the limited slopes (14.44),
the first one corresponds to the flux limiter superbee and the second one
corresponds to the flux limiter minbee. Compare with Figs. 14.9 and 14.10
respectively. The result from superbee gives sharp discontinuities but has
visible spurious oscillations, specially in the internal energy plot. The details
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of the particular Riemann solver being used may also have an effect. The result
from minbee has virtually eliminated the spurious oscillations but disconti-
nuities are somewhat smeared. The results of Fig. 14.13 are obtained from
the slope limiter (14.53), which is analogous to superbee, and the results
of Fig. 14.14 are obtained from the slope limiter (14.56), which is analogous
to minbee. In both slope limiters we have set c = Ccfl in (14.51), (14.52).
Overall, the waf method appears to give better results than the MUSCL–
Hancock scheme, although the use of characteristic limiting, see Sect. 14.4.3,
would improve the quality of the MUSCL scheme, but at the cost of solving
an extra, though cheaper, Riemann problem per cell interface per time step.
All results should be compared with those obtained from the Godunov first
order upwind method of Chap. 6; see Fig. 6.8.

14.7.2 Centred TVD Methods

Figs. 14.15 and 14.16 show results from the Flux Limiter Centred method,
flic, for two centred flux limiter functions, namely (14.66) and (14.69); these
are analogous to superbee and minbee respectively. Overall these results
are less accurate than those from the upwind methods. Note however that
the results of Fig. 14.15 are comparable with those of Figs. 14.10, 14.12 and
14.14, obtained from the most diffusive of upwind limiters used. Also, the
most compressive limiter for upwind methods tends to overshoot, which does
not happen with the most compressive limiter for the centred method.

Figs. 14.17 and 14.18 show results from the Slope Limiter Centred method,
slic, for two slope limiter functions, namely (14.53) and (14.56). In fact these
limiters are the same as those used for the upwind MUSCL–Hancock scheme
to produce the results of Figs. 14.13 and 14.14. Overall these results are very
similar to those obtained from the other centred method, flic, and thus the
same remarks apply.

In order to appreciate the gains in going from first–order schemes to
second–order TVD schemes, the reader should compare all the results of this
chapter with those obtained from (i) the Godunov method of Chap. 6 (Fig.
6.8), (ii) the Lax–Friedrichs scheme of Chap. 5 (Fig. 6.13) and (iii) the force

scheme of Chap. 7 (Fig. 7.18). They should also be compared with those ob-
tained from a non–TVD second order method, such as the Richtmyer scheme
of Chap. 5 (Fig. 6.18).
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Fig. 14.9. WAF Scheme with HLLC Riemann solver and SUPERBEE applied to
Test 1. Numerical (symbol) and exact (line) solutions at time 0.2 units
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Fig. 14.10. WAF Scheme with HLLC Riemann solver and MINBEE applied to
Test 1. Numerical (symbol) and exact (line) solutions at time 0.2 units
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Fig. 14.11. MUSCL–Hancock scheme, HLLC Riemann solver and SUPERBEE for
to Test 1. Numerical (symbol) and exact (line) solutions at time 0.2 units
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Fig. 14.12. MUSCL–Hancock Scheme with HLLC Riemann solver and MINBEE
applied to Test 1. Numerical (symbol) and exact (line) solutions at time 0.2 units
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Fig. 14.13. MUSCL–Hancock Scheme, HLLC Riemann solver and SUPERBEEsl
for Test 1. Numerical (symbol) and exact (line) solutions at time 0.2 units
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Fig. 14.14. MUSCL–Hancock Scheme with HLLC Riemann solver and MINBEEsl
applied to Test 1. Numerical (symbol) and exact (line) solutions at time 0.2 units
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Fig. 14.15. Flux Limiter Centred (FLIC) scheme with Superbee applied to Test 1.
Numerical (symbol) and exact (line) solutions at time 0.2 units
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Fig. 14.16. Flux Limiter Centred (FLIC) scheme with Minbee applied to Test 1.
Numerical (symbol) and exact (line) solutions at time 0.2 units
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Fig. 14.17. Slope Limiter Centred (SLIC) scheme with Superbee applied to Test
1. Numerical (symbol) and exact (line) solutions at time 0.2 units
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Fig. 14.18. Slope Limiter Centred (SLIC) scheme with Minbee applied to Test 1.
Numerical (symbol) and exact (line) solutions at time 0.2 units



15

Splitting Schemes for PDEs with Source Terms

15.1 Introduction

This chapter is concerned with numerical methods for solving non–linear
systems of hyperbolic conservation laws with source terms

Ut + F(U)x = S(U) . (15.1)

U is the vector of unknowns, F(U) is the vector of fluxes and S(U) is a vector
of sources, which in general is an algebraic function of U or other physical
parameters of the problem at hand. In Chap. 2 we studied some properties
for the pure advection hyperbolic problem

Ut + F(U)x = 0 . (15.2)

This homogeneous system, in which S(U) ≡ 0 (no sources) is a simplified
version of (15.1). The time–dependent one dimensional Euler equations of
Chap. 3 are one example of a homogeneous system of this kind. Another
simplification of (15.1) results from the assumption of no spatial variations,
F(U)x = 0, in which case one obtains

d

dt
U = S(U) , (15.3)

which is a system of Ordinary Differential Equations (ODEs).
Inhomogeneous systems of the form (15.1), S(U) �= 0, arise naturally

in many problems of practical interest. A whole class of inhomogeneous sys-
tems are derived when reducing the spatial dimensionality of multidimensional
problems. For example, under the assumption of spherically or cylindrically
symmetric flow, the three or two dimensional Euler equations become a one–
dimensional system of the form (15.1); see Sect. 1.6.2 of Chap. 1. In this case
the source terms are geometric in character. Sources of similar type are present
in the shallow water equations for flow on non–horizontal channels; see Sect.
1.6.3 of Chap. 1.

E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 531
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Important examples of inhomogeneous systems of the form (15.1) arise in
the study of the fluid dynamics of reactive gaseous mixtures, where in addition
to the fluid dynamics governed by a system like (15.2), there are chemical
reactions between the constituent gases, which in the absence of fluid flow
may be modelled by systems of the form (15.3). Examples of problems of this
kind arise in the study of hypersonic flows [119], [9] and detonation waves, see
for instance [191], [72], [78], [118] and [363].

Chemically active flows contain a range of widely varying time scales,
which leads to stiff ODEs of the form (15.3), [296]. The problem of stiffness in
ODEs may be resolved by resorting to implicit methods. For chemically active
flow models (15.1), stiffness may not be resolved by simply using implicit
methods. If the mesh is not sufficiently fine in both space and time, then
spurious solutions travelling at unphysical speeds may be computed [136],
[314], [49], [78], [227]. See also the recent review paper by Yee and Sweby
[594]. There are still a number of unresolved problems in solving systems like
(15.2), which are the subject of current research.

There are essentially two ways of constructing methods to solve inhomo-
geneous systems of the form (15.1). One approach attempts to preserve some
coupling between the two processes in (15.1). These two processes might be
represented by the systems (15.2) (advection) and (15.3) (reaction–like). LeV-
eque and Yee [314] report on a predictor–corrector scheme of the MacCormack
type with a TVD constraint. The idea of upwinding the source terms [412],
may be seen as an attempt to couple the two processes involved, although the
eigenstructure used in projecting the source terms is oblivious to the influence
of these.

Another approach is to split (15.1), for a time Δt, into the advection prob-
lem (15.2) and the source problem (15.3). At first sight this might appear
unreasonable. However, for the case of a model inhomogeneous PDE, splitting
is actually exact. For more general problems, the fact that one can construct
high–order splitting schemes following this approach is also somewhat reassur-
ing. In addition, computational experience suggests that splitting is a viable
approach, if used with caution. The main attraction of splitting schemes is in
the fact that one can deploy the optimal, existing schemes for each subprob-
lem. For instance, to solve the homogeneous subproblem (15.2) one may use
directly any of the schemes presented in Chaps. 6 to 14, or any other appro-
priate method. To solve the subproblem (15.3) one may use directly any of
the ODE solvers available. If the system is known to be stiff, then stiff solvers
must be used.

This chapter is concerned with splitting schemes to solve (15.1). In Sect.
15.2 we show that for a model equation, splitting is exact; in Sect. 15.3 we
present numerical schemes based on the splitting approach; in Sect. 15.4 we
briefly review some basic aspects of numerical methods for Ordinary Differ-
ential Equations (ODEs). Concluding remarks are given in Sect. 15.5.
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15.2 Splitting for a Model Equation

The simplest model hyperbolic equation of the form (15.1) is given by

ut + aux = λu , (15.4)

where a is constant wave propagation speed and λ is a constant parame-
ter. This simple model equation will prove very useful in discussing possible
strategies for solving (15.1) numerically.

Consider the initial value problem (IVP) for (15.4), namely

PDE : ut + aux = λu ,
IC : u(x, 0) = u0(x) .

}
(15.5)

Here u = u(x, t), −∞ < x < ∞, t > 0 and u0(x) is the initial data for the
problem at t = 0. It is easy to verify that the exact solution of IVP (15.5) is

u(x, t) = u0(x − at)eλt . (15.6)

Note in particular that if λ = 0 we recover the exact solution for the homo-
geneous equation ut + aux = 0, namely u0(x − at); see Sect. 2.2 of Chap.
2.

A geometric interpretation of the original IVP (15.5) results if we view
(15.5) as an IVP involving an ODE along characteristics, namely

d
dtu = λu ; u(0) = u(x0) ,
d
dtx = a ; x(0) = x0 .

}
(15.7)

Fig. 15. 1 illustrates the situation. The ODE in (15.7) requires initial data at

x

x = x  + at

dx

t
0

0

 = a
dt

Fig. 15.1. Illustration of operator splitting scheme for model PDE with source term

the foot of the characteristic curve x = x0 +at, namely the point x0. Actually
the initial data is then u(0) = u(x0) = u(x − at), which is the solution of the
homogeneous problem in (15.5), λ = 0.

Next we show that the exact solution (15.6) can also be obtained by solving
exactly a pair of initial value problems in succession.
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Theorem 15.1 (Splitting of Source Term).
The exact solution (15.6) of the inhomogeneous IVP (15.5) can be found

by solving exactly the following pair of IVP’s.

PDE : rt + arx = 0 ,
IC : r(x, 0) = u0(x) ,

}
=⇒ r(x, t) (15.8)

ODE : d
dts = λs ,

IC : s(0) = r(x, t) ,

}
=⇒ u(x, t) (15.9)

Note here that the initial condition of IVP (15.8) is the actual initial
condition for the original IVP (15.5) and the initial condition for IVP (15.9)
is the solution r(x, t) of IVP (15.8).

Proof. Clearly the solution of IVP (15.8) is r(x, t) = u0(x − at), while
the exact solution of IVP (15.9) is s(x(t), t) = s(0)eλt. But s(0) = r(x, t) =
u0(x − at) and thus the resulting solution of IVPs (15.8) and (15.9) is

s(x, t) = u0(x − at)eλt ,

which is the exact solution (15.6) of the original inhomogeneous IVP (15.5),
and the theorem is thus proved.

The result on the splitting scheme obtained by solving in succession (15.8),
(15.9) can be expressed in the succinct form

u(x, t) = S(t)C(t)[u0(x)] . (15.10)

We interpret C(t) as the solution operator for the advection problem (15.8)
applied over a time t and S(t) as the solution operator for the ODE (15.9)
applied for a time t.

Exercise 15.2. Show that the exact solution u(x, t) of IVP (15.5) can be
obtained by solving

PDE : ut + f(u)x = 0 ; f(u) = au ,
IC : u(x, 0) = u0(x)

}
=⇒ un+1 (15.11)

and
ODE : d

dxf(u) = λu ,
IC : un+1

}
=⇒ un+1 (15.12)

in succession.

This result says that the splitting scheme (15.8), (15.9) modified by replacing
the ODE in time by an ODE in space also gives the exact solution. This
splitting scheme can be expressed in the succinct form

u(x, t) = S(x)C(t)[u0(x)] , (15.13)

where S(x) denotes the solution operator for the ODE in x in (15.12).
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Solution 15.3. Left to the reader.

Glimm, Marshall and Plohr [214] constructed numerical splitting schemes
of the form (15.11), (15.12) to solve numerically one–dimensional flows with
area variation. In this case the source term involves a spatial derivative and
does not depend on time.

In the next section we construct numerical methods based on the splitting
approach, or fractional step approach [466], [588].

15.3 Numerical Methods Based on Splitting

We have shown that for the model inhomogeneous PDE (15.4) the splitting
approach, as described in the previous section, is exact. For non–linear systems
(15.1) this result is no longer valid. However, approximate, numerical schemes
based on the splitting approach can be constructed. We first consider the
scalar case.

15.3.1 Model Equations

The splitting scheme (15.8)–(15.9), represented by (15.10), is exact if the
operators C and S are exact. Here we are interested in constructing numerical
methods for the scalar IVP

PDE : ut + f(u)x = s(u) : 0 ≤ x ≤ L ,
IC : u(x, tn) = un ,

}
(15.14)

To this end we replace the exact operators C(t) and S(t) in (15.10) by approx-
imate operators and re–state the problem in a numerical context. Given the
IVP (15.14), we want to evolve the solution from its initial value un at a time
tn, by one time step of size Δt, to a value un+1 at time tn+1 = tn + Δt. We
assume the spatial domain [0, L] has been discretised into a finite number M
of cells i (finite volume approach) or grid points i (finite difference approach).
Here un is a set of discrete values un

i at time tn. The discrete analogue of the
splitting scheme (15.8)–(15.9) is now

PDE : ut + f(u)x = 0 ,
IC : u(x, tn) = un ,

}
=⇒ un+1 (15.15)

ODE : d
dtu = s(u) ,

IC : un+1 .

}
=⇒ un+1 (15.16)

The initial condition for the advection problem (15.15) is the initial condition
for the complete problem (15.14). The solution of (15.15) after a time Δt
is denoted by un+1 and is used as the initial condition for the second IVP
(15.16). This second IVP accounts for the presence of the source term s(u)
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and is also solved for a complete time step Δt; this solution is then regarded
as an approximation to the solution un+1 of the full problem (15.14) at a
time tn+1 = tn + Δt. If the numerical analogues of S(t) and C(t) in (15.10)
are still denoted by S and C, then we can write the splitting of (15.14) into
(15.15)–(15.16) as

un+1 = S(Δt)C(Δt)(un) . (15.17)

Each numerical sub–problem (15.15), (15.16) is dealt with separately, for a
time step Δt. One requires a numerical method to solve the homogeneous ad-
vection problem (15.15) and another numerical method to solve the ordinary
differential equation in (15.16), with the initial data taken from the solution
of (15.15). This procedure for solving inhomogeneous systems is exceedingly
simple but is only first–order accurate in time, when S and C are at least
first–order accurate solution operators. A second–order accurate scheme is

un+1 = S( 1
2 Δt)C(Δt)S( 1

2 Δt)(un) , (15.18)

where S and C are at least second–order accurate solution operators.

15.3.2 Schemes for Systems

Here we extend the application of the splitting scheme of the previous
section to non–linear systems of the form (15.1). The generalisation of (15.15),
(15.16) to solve (15.1) is straightforward. Given the IVP

PDE’s : Ut + F(U)x = S(U) ; 0 ≤ x ≤ L ,
IC : U(x, tn) = Un ,

}
(15.19)

we want to evolve Un from time t = tn to the new value Un+1 at t = tn+1 in
a time step Δt = tn+1 − tn. The splitting (15.15), (15.16) becomes

PDE’s : Ut + F(U)x = 0 ,
IC : U(x, tn) = Un

}
=⇒ U

n+1
, (15.20)

PDE’s : d
dtU = S(U) ,

IC’s : U
n+1

}
=⇒ Un+1 . (15.21)

The analogue of the first–order scheme (15.17) is

Un+1 = S(Δt)C(Δt)(Un) . (15.22)

A second–order accurate scheme for systems is

Un+1 = S( 1
2 Δt)C(Δt)S( 1

2 Δt)(Un) . (15.23)

A splitting scheme based on (15.11), (15.12) is
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PDEs : Ut + F(U)x = 0 ,
IC : U(x, tn) = Un ,

}
=⇒ U

n+1
(15.24)

ODEs : d
dxF(U) = S(U) ,

IC : U
n+1

.

}
=⇒ Un+1 (15.25)

There appears to be little experience in using this approach. For source terms
that are independent of time or involve spatial derivatives, this approach may
be advantageous. See [214].

The attraction of splitting schemes is in the freedom available in choos-
ing the numerical operators S and C. In general, one may choose the best
scheme for each type of problems. For solving the advection (homogeneous)
IVP (15.20) one can, for instance, use any of the schemes studied in Chaps.
6 to 14, or some other method. For solving the ODEs in (15.21), (15.25) one
may choose some appropriate ODE solver, see next section.

15.4 Remarks on ODE Solvers

There is a vast literature on ODEs and on numerical methods for solving
ODEs. For theoretical properties of ODEs see for example Brown [81], Ince
and Sneddon [260], Sánchez [423] and Coddington and Levinson [130]. Almost
any textbook on Numerical Analysis will contain some chapter on schemes for
ODEs. See for example Hildebrand [249]; Mathews [347]; Conte and de Boor
[139]; Maron and Lopez [337]; Johnson and Riess [273]; Kahaner, Moler and
Nash [275]. Advanced textbooks are those of Gear [200], Lambert [296] and
Shampine [441].

15.4.1 First–Order Systems of ODEs

Here we recall some very basic facts about first–order systems of ODEs

d

dt
U(t) ≡ U′ = S(t,U(t)) . (15.26)

Here U = U(t) and S(t,U(t)) are vector–valued functions of m components

U = [u1, u2, . . . , um]T ; S = [s1, s2, . . . , sm]T (15.27)

and the independent variable t is a time–like variable. The Jacobian A(U) is
defined as the matrix

A(U) = ∂S/∂U =

⎡
⎢⎢⎢⎣

∂s1/∂u1 . . . ∂s1/∂um

∂s2/∂u1 . . . ∂s2/∂um

...
...

...
∂sm/∂u1 . . . ∂sm/∂um

⎤
⎥⎥⎥⎦ . (15.28)
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The entries aij of A(U) are partial derivatives of the components si of the vec-
tor S with respect to the components uj of the vector U, that is aij = ∂si/∂uj .
The eigenvalues λi of A are the solutions of the characteristic polynomial

|A − λI| = det(A − λI) = 0 , (15.29)

where I is the identity matrix. Generally, the eigenvalues are complex numbers.
Trivially, the eigenvalue of the model ODE

u′(t) = λu(t) (15.30)

is λ. The behaviour of a system of ODEs is, in the main, determined by the
behaviour of its eigenvalues. For instance, the exact solution of (15.30) with
initial condition u(0) = 1 is u(t) = eλt. For t close to 0 the solution varies
rapidly if the eigenvalue is negative and large in absolute value. For t away
from zero the solution is almost indistinguishable from 0.

An important property of ODEs is that of stability. Generally speaking
stable solutions are bounded. Note that the solution of the linear ODE (15.30)
is bounded only if λ < 0. Geometrically, a solution U(t) is stable if any other
solution of the ODE whose initial condition is sufficiently close to that of
U(t) remains in a tube enclosing U(t). If the diameter of the tube tends to 0
as t tends to ∞, the solution is said to be asymptotically stable. Stability of
solutions U(t) is characterised in terms of the eigenvalues λj of the Jacobian
matrix. In particular if the real part of every eigenvalue is negative the solution
is asymptotically stable.

Another feature of ODEs is that of stiffness. Stiff ODEs are usually associ-
ated with processes operating on disparate time scales. Chemical kinetics is a
classical source of stiff ODEs. The stiffness of a system is generally determined
by the behaviour of the eigenvalues of the system. In addition, the time inter-
val over which the solution is sought is also a consideration in determining the
stiffness of the system. There will be intervals of rapid variations (transient)
of the solution and intervals of slow variation. The single ODE (15.30) is stiff
for λ � 0 and for time t in the vicinity of 0.

Following Lambert [296], a nonlinear system of the form (15.26) is said to
be stiff if

• (i) Re(λj) < 0 , j = 1, 2, . . . ,m and
• (ii) λmax ≡ maxj |Re(λj)| � λmin ≡ minj |Re(λj)|.

Here Re(λj) denotes the real part of the complex number λj . The stiffness
ratio is defined as Rstif = λmax/λmin. Modest values of Rstif , e.g. 20, are
sufficient to cause serious numerical difficulties to explicit methods. In real
applications Rstif may be as large as 106.

Before thinking of numerical methods to solve ODEs, a fundamental ques-
tion is to investigate whether the ODEs are stiff or not; this will determine
the appropriate numerical methods to be used for solving the equations. See
Kahaner, Moler and Nash [275], Gear [200] and Lambert [296].
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15.4.2 Numerical Methods

We are interested in solving the Initial Value Problem (IVP) for (15.26)
with initial condition

U(t0) = U0. (15.31)

Discretise the domain of integration [t0, tf ] through the partition t0 < t1 <
t2 . . . < tn < tn+1 . . . < tf . One way of constructing numerical methods to
solve the IVP (15.26), (15.31) is by using Taylor series expansions. Another
way is to integrate (15.26) between tn and tn+1 to obtain

U(tn+1) = U(tn) +
∫ tn+1

tn

S(t,U(t))dt . (15.32)

Various numerical methods are obtained depending on the way the integral is
evaluated. The Euler Method results from evaluating the integral at the old
time,

Un+1 = Un + ΔtS(tn,Un) . (15.33)

where Δt = tn+1 − tn is the time step and Un ≈ U(tn). The Euler method is
explicit and first–order accurate. The Backward Euler Method, also first order
accurate but implicit, results from evaluating the integral at the new time
tn+1, namely

Un+1 = Un + ΔtS(tn+1,Un+1) . (15.34)

A second–order implicit method results from a trapezium rule approximation
to the integral, giving the Trapezoidal Method

Un+1 = Un +
1
2
Δt[S(tn,Un) + S(tn+1,Un+1)] . (15.35)

A second–order, two stage Runge–Kutta method (explicit) is

K1 = ΔtS(tn,Un) ,
K2 = ΔtS(tn + Δt,Un + K1) ,
Un+1 = Un + 1

2 [K1 + K2] .

⎫
⎬
⎭ (15.36)

A fourth–order, four stage Runge–Kutta method (explicit) is

K1 = ΔtS(tn,Un) ,
K2 = ΔtS(tn + 1

2Δt,Un + 1
2K1) ,

K3 = ΔtS(tn + 1
2Δt,Un + 1

2K2) ,
K4 = ΔtS(tn + Δt,Un + K3) ,
Un+1 = Un + 1

6 [K1 + 2K2 + 2K3 + K4] .

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(15.37)

Stability of numerical methods is a most important issue. To illustrate this
point consider the model ODE (15.30) as solved by the explicit Euler method
(15.33). The scheme reads
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un+1 = (1 + Δtλ)un . (15.38)

Clearly, for stability one requires that the ODE itself be stable, λ < 0, and
that the amplification factor satisfy |1+λΔt| ≤ 1. Therefore the time step Δt
must satisfy the stability restriction

Δt ≤ 2
|λ| . (15.39)

For large |λ| (stiff ODE) Δt can be extremely small, which means that the
method becomes very inefficient or even useless in practice.

On the other hand, the Trapezoidal method (15.35), which is implicit,
gives

un+1 =
(1 + 1

2Δtλ)
(1 − 1

2Δtλ)
un . (15.40)

This is stable for any Δt, provided λ ≤ 0, that is whenever the ODE itself is
stable.

Explicit methods are much simpler to use than implicit methods. The lat-
ter require the solution of non–linear algebraic equations at each time step and
are therefore much more expensive. However, as illustrated, for stiff problems
implicit methods are the only methods to use in any practical situation.

15.4.3 Implementation Details for Split Schemes

There are two facts that need to be emphasised when solving ODEs in the
context of the splitting schemes described in Sect. 15.3. First, at every time
tn, at each mesh point i one has a system of ODEs to solve; second, the time
evolution of the ODEs is generally short and is dictated by the time step in
the overall splitting scheme. This second point is relevant when choosing ODE
solvers.

Before selecting a method, an analysis of the ODEs must be performed. If
the problem is non–stiff then a high–order explicit method is recommended.
A stability analysis of the method must be carried out and enforced when
selecting the size of the time step Δt. For simplicity, let us assume we want
to implement the first–order splitting scheme (15.22). A practical problem is
to determine the time step Δt. One first determines the time step Δtc for the
advection problem (15.20). If this problem is solved by some explicit method,
e.g. Godunov’s first order upwind method (see Chap. 6), then Δtc is found
from some stability constraint, i.e. the Courant condition, see Chap. 6. The
solution of the advection problem is found at every mesh point i and this
gives U

n+1
, which is then used as the initial data for the ODE step (15.21). If

the ODEs are solved by some implicit method, then there will be no stability
restriction on the time step, and therefore one can advance the solution via the
ODE solver by a time Δts = Δtc, in one go. However, if an explicit method
is used to solve the ODEs, then a stable time step Δts must first be found.
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If Δts ≥ Δtc, then one may again advance the solution via the ODEs by a
time Δtc in one go. Hence the final solution at time tn+1 has been advanced
by a time Δt = Δtc. If Δts < Δtc, then one possibility is to update via
the ODEs in k steps of size Δtk = Δtc/k, where k is a positive integer such
such Δtk is a stable time step for the ODE solver. The previous observations
apply directly when implementing the second–order splitting scheme (15.23).
A useful reference is Chiang and Hoffmann [108].

15.5 Concluding Remarks

We have only presented one approach for treating source terms. There are
other approaches, but at the present time there appears to be no clear, and
sufficiently general, alternative to splitting. The idea of upwinding the source
terms proposed by Roe [412] appears to work well for certain problems. See
for instance the work of Vázquez [568] and that of Bermúdez and Vázquez
[51]. See also the recent paper of Vázquez [569], which addresses the issue of
geometric and friction source terms in shallow water models. For steady–state
problems computed by time–marching schemes the reader should consult the
recent paper by LeVeque [310].

The reader is strongly encouraged to utilise problems with exact solutions,
whenever available, to carefully assess the numerical methods before applying
them to the real problem. The simplest test problem is the IVP (15.5) with
exact solution (15.6). More scalar test problems are found in [314], [136], [227].
A test problem with exact solution for a 2 × 2 non–linear system is the so
called Fickett detonation analogue [191], see also example 2.4.3 of Sect. 2.4.2
in Chap. 2. This problem is exploited in [118] for testing numerical methods
for detonation waves in high–energy solids. For the Euler equations, a test
problem with exact solution is reported in [120]. Details of the solution are
given in [115] and applications are also shown in [412] and [471].

For certain types of problems, such as detonation waves, there are seri-
ous difficulties in designing numerical methods to properly account for the
fluid dynamics and the chemistry. For sufficiently fine meshes such difficulties
may be overcome but at a cost that is impossible to meet with current com-
puting resources, if realistic problems in multidimensions are to be solved.
Since the early papers by Colella, Majda and Roytburd [136] and that of
LeVeque and Yee [314], there has been a noticeable increase in the interest
for hyperbolic systems with source terms, both numerically and theoretically.
See, amongst others: Griffiths, Stuart and Yee [227]; Berkenbosch, Kaasschi-
eter and Boonkkamp [49]; Bourlioux, Majda and Roytburd [78]; Fey, Jeltsch
and Müller [190]; Chalabi [98], [99], [100], [101]; Benkhaldoun and Chalabi
[44]; Pember [377], [378]; Schroll and Tveito [432]; Schroll and Winther [434];
Schroll, Tveito and Winther [433]; Corberán and Gascón [140]; Lorenz and
Schroll [333]; Lafon and Yee [294], [295]; and especially the review paper of
Yee and Sweby [594].
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The splitting approach may also be applied to treat diffusion like terms
[82], [529] in exactly the same manner as for algebraic source terms. The
splitting approach also offers one way of solving multidimensional problems;
this topic is dealt with in Chap. 16.



16

Methods for Multi–Dimensional PDEs

16.1 Introduction

This chapter is concerned with numerical methods for solving non–linear
systems of hyperbolic conservation laws in multidimensions. For Cartesian
geometries one may write the equations of our interest here as

Ut + F(U)x + G(U)y + H(U)z = 0 , (16.1)

where t denotes time or a time–like variable and x, y, z are Cartesian coor-
dinate directions. U is the vector of conserved variables and F(U), G(U),
H(U) are vectors of fluxes in the x, y, z directions respectively. A prominent
example are the time–dependent three dimensional Euler equations studied in
Sect. 3.2 of Chap. 3. Other examples are the time–dependent two dimensional
shallow water equations and the artificial compressibility equations. See Sect.
1.6.3 of Chap. 1.

We shall present two ways of solving (16.1) numerically. The first approach
is dimensional splitting or method of fractional steps [466], [588]. This method
is also known as time–operator splitting. In this approach one applies one–
dimensional methods in each coordinate direction. A simple extension of the
one–dimensional methods is required to solve the one–dimensional conserva-
tion laws augmented by the extra components of velocity present in multidi-
mensional problems. Any of the methods studied in Chaps. 6 to 14 can be
applied to solve (16.1), in conjunction with dimensional splitting. The other
approach studied here is the finite volume method, whereby in updating the
solution within some control volume one includes all the intercell flux contribu-
tions in a single step. Only some of the one–dimensional approaches discussed
in Chaps. 6 to 14 can be extended to multidimensional problems following
the (unsplit) finite volume approach. There is a close relationship between
dimensional splitting and the finite volume method. If the schemes used in
the dimensional splitting approach are of the finite–volume type in one space
dimension, see Chaps. 5 to 12 and 14, then the resulting splitting schemes may

E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 543
c© Springer-Verlag Berlin Heidelberg 2009DOI 10.1007/b7976-1 16,
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be viewed as being predictor–corrector type finite volume schemes in multi-
dimensions. Both the dimensional splitting and the finite volume approaches
may be extended to deal with non–Cartesian geometries.

16.2 Dimensional Splitting

Before introducing splitting schemes for multidimensional systems of con-
servation laws, we study the splitting approach as applied to a model con-
servation law in three space dimensions, for which the dimensional splitting
method can be shown to be exact.

16.2.1 Splitting for a Model Problem

Consider the Initial–Value Problem (IVP) for the linear advection equation
in three space dimensions

PDE : ut + a1ux + a2uy + a3uz = 0 ,
IC : u(x, y, z, tn) = u0(x, y, z) ≡ un .

}
(16.2)

Here a1, a2 and a3 are the three velocity components of a constant velocity
vector V = (a1, a2, a3). Let us consider three one–dimensional IVPs in the x,
y and z directions respectively. The IVP in the x–direction, or x sweep, is

PDE : ut + a1ux = 0
IC : un

}
Δt=⇒ un+ 1

3 . (16.3)

The initial data for this IVP is the initial data for the original full IVP (16.2)
and its solution after a time Δt is denoted by un+ 1

3 . The y–direction IVP, or
y sweep, is

PDE : ut + a2uy = 0
IC : un+ 1

3

}
Δt=⇒ un+ 2

3 . (16.4)

The initial data for this IVP is the solution un+ 1
3 of IVP (16.3) and its solution

after a time Δt is denoted by un+ 2
3 . The z–direction IVP, or z sweep, is

PDE : ut + a3uz = 0
IC : un+ 2

3

}
Δt=⇒ un+1 . (16.5)

The initial data for this IVP is the solution un+ 2
3 of IVP (16.4) and its solution

after a time Δt is denoted by un+1, which is then regarded as the solution to
the full problem (16.2) after a time Δt.

Let us denote by X (t), Y(t) and Z(t) the solution operators for IVPs (16.3),
(16.4) and (16.5) respectively, when solved exactly for a time t. Then the
following result can be proved.
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Proposition 16.1 (Dimensional Splitting). The exact solution un+1

of the three–dimensional IVP (16.2) after a time Δt can be obtained by solving
exactly the sequence of three one–dimensional IVPs (16.3)–(16.5), each for a
time Δt, that is

un+1 = Z(Δt)Y(Δt)X (Δt)(un) . (16.6)

Proof. (Left as an exercise. See [308]).

16.2.2 Splitting Schemes for Two–Dimensional Systems

For non–linear systems, dimensional splitting is not exact but one may
construct approximate splitting schemes. Consider the two–dimensional initial
value problem

PDE : Ut + F(U)x + G(U)y = 0 ,
IC : U(x, y, tn) = Un .

}
(16.7)

The initial data at a time tn is given by the set Un of discrete cell average
values Un

i,j ; index i refers to the x–coordinate direction and index j refers to
the y–coordinate direction. Fig. 16.1 illustrates a finite volume discretisation
of a two–dimensional domain in the x–y plane.

ii-1 i+1

Δ

Δ

x

y
y

j-1

j

j+1

x

Fig. 16.1. Discretisation of two–dimensional Cartesian domain into finite volumes
Iij of area Δx × Δy

The dimensional splitting approach replaces (16.7) by a pair of one–
dimensional IVPs. The simplest version of the approach replaces (16.7) by
the sequence of IVPs

PDEs : Ut + F(U)x = 0
ICs : Un

}
Δt=⇒ Un+ 1

2 (16.8)

and
PDEs : Ut + G(U)y = 0
ICs : Un+ 1

2

}
Δt=⇒ Un+1 . (16.9)
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In the first IVP (16.8) one solves a one–dimensional problem in the x–direction
for a time step Δt. This is called the x sweep and its solution is denoted
by Un+ 1

2 . Note that for each strip labelled j, see Fig. 16.1, one solves the
one–dimensional problem (16.8). In the next IVP (16.9) one solves a one–
dimensional problem in the y–direction, also for a time step Δt. This is called
the y sweep. The initial condition for the second IVP (16.9) is the solution
Un+ 1

2 of IVP (16.8). Note here that for each strip labelled i, see Fig. 16.1, one
solves the one–dimensional problem (16.9). Both sweeps have a common time
step Δt; in Sec. 16.3.2 we discuss ways of determining Δt.

If X (t) and Y(t) are approximate solution operators for IVPs (16.8) and
(16.9), then the splitting (16.8), (16.9) of the original two–dimensional IVP
(16.7) can be written thus

Un+1 = Y(Δt)X (Δt)(Un) . (16.10)

There is no particular reason for applying the operators in the order just
described. An equivalent scheme is

Un+1 = X (Δt)Y(Δt)(Un) . (16.11)

It can be shown, see Strang [466], that for general systems both splitting
schemes (16.10) and (16.11) are first–order accurate in time if the individual
operators X and Y are at least first–order accurate accurate in time. A second–
order accurate splitting [466] is

Un+1 =
1
2

[
X (Δt)Y(Δt) + Y(Δt)X (Δt)

]
(Un) , (16.12)

provided each of the solution operators are at least second–order accurate in
time. Note however that this scheme requires double the amount of work of
schemes (16.10) and (16.11). More attractive second–order schemes are

Un+1 = X ( 1
2 Δt)Y(Δt)X ( 1

2 Δt)(Un) (16.13)

and
Un+1 = Y( 1

2 Δt)X (Δt)Y( 1
2 Δt)(Un) . (16.14)

Schemes (16.13) and (16.14) require about 50% more work than the first order
schemes (16.10) and (16.11). Strang [466] suggested a modification to schemes
(16.13) and (16.14) so that they become as efficient as (16.10) or (16.11), while
still preserving formal second–order accuracy. Suppose (16.13) is applied over
m time steps of size Δt

Un+m =
(
X ( 1

2 Δt)Y(Δt)X ( 1
2 Δt)

)m

(Un) . (16.15)

For example, two successive applications of (16.13) give

X ( 1
2 Δt) Y(Δt) X ( 1

2 Δt) X ( 1
2 Δt) Y(Δt) X ( 1

2 Δt)(Un) .
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The two successive applications of X ( 1
2 Δt) can be combined into a single ap-

plication of X (Δt). It is then easy to see that (16.15) can be expressed as

Un+m = X ( 1
2 Δt)

[
Y(Δt)X (Δt)

]m−1

Y(Δt)X ( 1
2 Δt)(Un) (16.16)

or
Un+m = X ( 1

2 Δt)Y(Δt)
[
X (Δt)Y(Δt)

]m−1

X ( 1
2 Δt)(Un) . (16.17)

Note that in the manipulations above we have assumed that the size of the
time step Δt is constant for at least m time steps. For linear systems this can
certainly be imposed but not for non–linear systems, as Δt depends on the
wave speeds. In practice one still applies the above schemes (16.16), (16.17),
where the choice of m depends on the required output times. In implementing
these schemes it is reasonable to ensure that the size of the time step Δt in the
operators outside the squared brackets is constant. These splitting schemes
are almost as efficient as the first–order splittings (16.10), (16.11).

Two more second–order accurate schemes are

Un+2 = X (Δt)Y(Δt)Y(Δt)X (Δt)(Un) (16.18)

and
Un+2 = Y(Δt)X (Δt)X (Δt)Y(Δt)(Un) . (16.19)

These can be shown to be second–order accurate every other time step, see
Warming and Beam [574], and are as efficient as the first–order schemes
(16.10) and (16.11).

The principle of dimensional splitting applies directly to three–dimensional
problems, which is the subject of the next section.

16.2.3 Splitting Schemes for Three–Dimensional Systems

Consider the three–dimensional IVP

PDE : Ut + F(U)x + G(U)y + H(U)z = 0 ,
IC : U(x, y, z, tn) = Un .

}
(16.20)

The initial data Un at a time tn is a set of discrete cell averages Un
i,j,k on a

three–dimensional Cartesian computational domain. The simplest version of
the dimensional splitting approach replaces (16.20) by three one–dimensional
IVPs, namely

PDEs : Ut + F(U)x = 0
ICs : Un

}
Δt=⇒ Un+ 1

3 , (16.21)

PDEs : Ut + G(U)y = 0
ICs : Un+ 1

3

}
Δt=⇒ Un+ 2

3 , (16.22)

and
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PDEs : Ut + H(U)z = 0
ICs : Un+ 2

3

}
Δt=⇒ Un+1 . (16.23)

The first IVP (16.21) solves an augmented one–dimensional problem in the
x–direction, the x sweep, for a time step Δt and the solution is denoted by
Un+ 1

3 . The next IVP (16.22) solves a one–dimensional (augmented) problem
in the y–direction, the y sweep, for a time step Δt; the initial condition for the
second IVP (16.22) is the solution of IVP (16.21). The next IVP (16.23) solves
an augmented one–dimensional problem in the z–direction, the z sweep, for a
time step Δt. The initial condition for the third IVP (16.23) is the solution
of IVP (16.22). It is important to realise that the size of the time step Δt in
each one–dimensional IVP is constant during one time step. Un+1 is regarded
as the solution of IVP (16.20) after a time Δt.

If X (t), Y(t) and Z(t) are approximate solution operators for IVPs (16.21),
(16.22) and (16.23) respectively, then the simplest, first–order accurate, split-
ting based on (16.21)–(16.23) can be written thus

Un+1 = Z(Δt)Y(Δt)X (Δt)(Un) . (16.24)

Naturally, other orderings of the operators are possible to produce other first–
order splitting schemes. A three–dimensional splitting, see Shang [442], that
is second–order accurate every other time step is

Un+2 = X (Δt)Y(Δt)Z(Δt)Z(Δt)Y(Δt)X (Δt)(Un) . (16.25)

A three–dimensional splitting scheme that is second–order accurate every time
step [61] is

Un+1 = X ( 1
2 Δt)Y( 1

2 Δt)Z(Δt)Y( 1
2 Δt)X ( 1

2 Δt)(Un) . (16.26)

Other combinations of one–dimensional operators will produce other sec-
ond order accurate splitting schemes. The tools for constructing splitting
schemes and analysing their accuracy, see Strang [466] and Shang [442], rely
on Taylor series expansions and therefore the derived splitting schemes are
strictly valid only for problems with smooth solutions. For discontinuous so-
lutions splitting schemes may produce erroneous results. Ironically, the failure
of dimensional splitting procedures is closely related to how successful the
one–dimensional schemes used are for computing discontinuous solutions. For
instance, the Random Choice Method (RCM), see Chap. 7, has the unique
property of computing contact surfaces and shock waves as true discontinu-
ities. However, dimensional splitting schemes based on the RCM have been
shown to be a complete failure, see Colella [132]. An exception to these diffi-
culties are contact surfaces; these waves can be correctly preserved by splitting
schemes based on the RCM, see Toro [500].

In general, schemes that smear discontinuities in one space dimension work
well in dimensional splitting procedures. We particularly recommend the use
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of the one–dimensional schemes presented in Chaps. 6 to 14, except for the
Random Choice method of Chap. 7.

In the next section we illustrate via an example, some of the practical
details involved when implementing dimensional splitting schemes to solve
three–dimensional time dependent problems.

16.3 Practical Implementation of Splitting Schemes in
Three Dimensions

As an example, we consider the time–dependent, three dimensional Euler
equations

Ut + F(U)x + G(U)y + H(U)z = 0 , (16.27)

with

U =

⎡
⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
E

⎤
⎥⎥⎥⎥⎦

, F =

⎡
⎢⎢⎢⎢⎣

ρu
ρu2 + p

ρuv
ρuw

u(E + p)

⎤
⎥⎥⎥⎥⎦

,

G =

⎡
⎢⎢⎢⎢⎣

ρv
ρuv

ρv2 + p
ρvw

v(E + p)

⎤
⎥⎥⎥⎥⎦

, H =

⎡
⎢⎢⎢⎢⎣

ρw
ρuw
ρvw

ρw2 + p
w(E + p)

⎤
⎥⎥⎥⎥⎦

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16.28)

See Chaps. 1 and 3 for details on the Euler equations.

16.3.1 Handling the Sweeps by a Single Subroutine

For simplicity let us assume we apply the first–order splitting scheme
(16.24). For convenience we re–order the equations so that every sweep is
handled by a single one–dimensional subroutine. In the x sweep we solve

⎡
⎢⎢⎢⎢⎣

ρ
ρu
E
ρv
ρw

⎤
⎥⎥⎥⎥⎦

t

+

⎡
⎢⎢⎢⎢⎣

ρu
ρu2 + p
u(E + p)

ρuv
ρuw

⎤
⎥⎥⎥⎥⎦

x

= 0 . (16.29)

In the the y sweep one solves
⎡
⎢⎢⎢⎢⎣

ρ
ρv
E
ρu
ρw

⎤
⎥⎥⎥⎥⎦

t

+

⎡
⎢⎢⎢⎢⎣

ρv
ρv2 + p
v(E + p)

ρvu
ρvw

⎤
⎥⎥⎥⎥⎦

y

= 0 . (16.30)
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In the z sweep one solves
⎡
⎢⎢⎢⎢⎣

ρ
ρw
E
ρu
ρv

⎤
⎥⎥⎥⎥⎦

t

+

⎡
⎢⎢⎢⎢⎣

ρw
ρw2 + p
w(E + p)

ρwu
ρwv

⎤
⎥⎥⎥⎥⎦

z

= 0 . (16.31)

In the x sweep (16.29) u is the normal velocity components and the first
three equations look identical to the pure one–dimensional problem in x. Note
however that the full problem (16.29) differs from the pure one–dimensional
problem in two respects, namely (i) there are two extra equations for momen-
tum in the y and z directions and (ii) the total energy E involves contributions
from the tangential velocity components v and w via the kinetic energy.

As seen in Sect. 3.1.2 of Chap. 3, use of the continuity equation into the
expanded form of the y and z momentum equations gives the two advection
equations

vt + uvx = 0 , wt + uwx = 0 . (16.32)

These say that the tangential velocity components v and w are passively ad-
vected with the normal velocity component u. As a matter of fact, the extra
equations for momentum in the y and z directions have exactly the same form
as species equations present in the study of reactive mixtures.

For the y sweep (16.30) the normal velocity component is v and the tan-
gential velocity components are u and w. For the z sweep (16.31) the normal
velocity component is w and the tangential velocity components are u and v.

It is now obvious that a single subroutine can be used to deal with all
three sweeps in a dimensional splitting scheme. Suppose we are solving the x
sweep. Then an explicit conservative method, see Chaps. 5 to 14, reads

Un+ 1
3

i,j,k = Un
i,j,k +

Δt

Δx
[Fn

i− 1
2 ,j,k − Fn

i+ 1
2 ,j,k] ,∀j ,∀k , (16.33)

where Fn
i+ 1

2 ,j,k
is the numerical flux at the cell interface position xi+ 1

2
. For

background on the meaning of the conservative formula (16.33) the reader
is referred to Chap. 5, Sect. 5.3 and Chap. 6. For the y sweep (16.30) the
updating conservative formula reads

Un+ 2
3

i,j,k = Un+ 1
3

i,j,k +
Δt

Δy
[Gn+ 1

3
i,j− 1

2 ,k
− Gn+ 1

3
i,j+ 1

2 ,k
] ,∀i ,∀k , (16.34)

and for the z sweep (16.31) the updating conservative formula reads

Un+1
i,j,k = Un+ 2

3
i,j,k +

Δt

Δz
[Hn+ 2

3
i,j,k− 1

2
− Hn+ 2

3
i,j,k+ 1

2
] ,∀i ,∀j . (16.35)

Obviously, given the way the equations have been re–ordered, all three
sweeps (16.33)–(16.35) can be handled by a single subroutine. Let us denote
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the subroutine by ONED(. . .). Then, sweeps (16.33)–(16.35) are dealt with by
doing

for the x sweep CALL ONED(ρ, u, v, w, p,Δt,Δx, ...) ,
for the y sweep CALL ONED(ρ, v, u, w, p,Δt,Δy, ...) ,
for the z sweep CALL ONED(ρ,w, u, v, p,Δt,Δz, ...) .

⎫
⎬
⎭ (16.36)

Note that we simply interchange the order of the velocity components in the
single subroutine to solve for all the x, y and z sweeps. To implement some
of the other splitting schemes such as (16.25) or (16.26), the order in (16.36),
as well as the size of the time step, are appropriately changed.

16.3.2 Choice of Time Step Size

The explicit conservative schemes considered here require the computation
of a time step Δt to be used in (16.33)–(16.35), such that stability of the
numerical method is ensured. The choice of Δt depends on (i) the intercell
flux used, i.e. the particular method used, (ii) the wave speeds present and
(iii) the dimensions of the mesh used. See Sect. 6.3.2 for a full discussion of
this topic for one–dimensional problems. To preserve some generality let us
assume that the dimensions of cell Ii,j,k are Δxi,j,k, Δyi,j,k and Δzi,j,k. Then,
one way of choosing Δt is

Δt = Ccfl × mini,j,k[
Δxi,j,k

Sn,x
i,j,k

,
Δyi,j,k

Sn,y
i,j,k

,
Δzi,j,k

Sn,z
i,j,k

] . (16.37)

Here Sn,d
i,j,k is the speed of the fastest wave present at time level n travelling

in the d direction, with d = x, y, z. Cclf is the CFL coefficient and is chosen
according to the linear stability condition of the particular numerical method
in use, which depends on the numerical flux. For the Godunov first–order
upwind method 0 < Cclf ≤ 1 and in practice one usually takes Cclf ≈ 0.9.
Perhaps the most critical point is finding reliable estimates for the speeds
Sn,d

i,j,k. The simplest choice is

Sn,d
i,j,k = |dn

i,j,k| + an
i,j,k (16.38)

where dn
i,j,k is the particle velocity component in the d–direction and an

i,j,k is
the sound speed at time level n in cell Ii,j,k. As remarked in Sect. 6.3.2 of Chap.
6 for one–dimensional problems, choice (16.38) is inadequate for problems with
initial conditions involving severe gradients. One may underestimate the wave
speeds, for instance, when the initial conditions are of the shock–tube problem
type. In such cases dn

i,j,k might be zero and the only contribution to Sn,d
i,j,k is

the sound speed an
i,j,k, which then results in a gross underestimate for Sn,d

i,j,k.
As a consequence a gross overestimate for Δt is computed which leads the
method outside its stability range at the beginning of the computations.
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16.3.3 The Intercell Flux and the tvd Condition

In discussing the choice of the intercell fluxes in (16.33)–(16.35) we shall
consider the case of a single sweep, the x sweep say. The intercell flux Fn

i+ 1
2 ,j,k

in (16.33) may be computed by any of the methods discussed in Chaps. 6 to
12 or the high–order tvd schemes of Chaps. 13 and 14.

The computation of Fn
i+ 1

2 ,j,k
by the Godunov first–order upwind method

of Chap. 6 is straightforward. What is new in multidimensional problems is
the presence of tangential velocity components. Locally, these are related to
shear waves. The particular details of the flux can have a profound effect in
the accuracy with which shear waves and vortices are resolved by the method.
The Godunov method with the exact Riemann solver of Chap. 4, see Sect. 4.8,
gives accurate resolution of shear waves. The approximate Riemann solvers of
Chaps. 9, 11, 12 and the HLLC Riemann solver of Chap. 10 will also resolve
shear waves accurately. The Flux Vector Splitting schemes of Chap. 8, except
for the version of Sect. 8.4.4, and the HLL Riemann solver of Sect. 10.3 of
Chap. 10 will smear contact surfaces and shear waves. The force flux of
Chap. 7, see also Chap. 14, will smear contacts and shear waves too.

High–order tvd extensions of the previous methods will generally improve
the overall accuracy, but if shear waves are unduly smeared by the underly-
ing first–order scheme then their resolution by the high–order extensions will
also be unsatisfactory. The implementation of the MUSCL–Hancock scheme
to compute Fn

i+ 1
2 ,j,k

is a straightforward application of the one–dimensional
approach, see Sect. 14.4 of Chap. 14. The same is true for of the centred
schemes flic and slic presented of Sects. 14.5.2 and 14.5.3 of Chap. 14.

The limiting process in enforcing the tvd constraints will now involve
the tangential velocity components. For MUSCL–type schemes this is carried
out automatically for each equation. The details of the particular Riemann
solver used will become important in attempting to resolve contacts and shear
waves. Moreover, when applying characteristic limiting, see Sect. 14.4.3, the
particular characteristic decomposition used must properly account for the
presence of contact and shear waves. For flux–limiter type schemes, such as
the waf and flic methods the limiting procedures are different.

The Weighted Average Flux (waf) method of Sect. 14.3 has intercell flux

Fi+ 1
2 ,j,k =

1
2
(Fn

i,j,k + Fn
i+1,j,k) − 1

2

5∑
k=1

sign(ck)φ(k)

i+ 1
2
ΔF(k)

i+ 1
2

, (16.39)

where
φ

(k)

i+ 1
2

= φ
(k)

i+ 1
2
(r(k)) (16.40)

is a limiter function for wave k and r(k) = r(k)(q) is the flow parameter,
computed from ratios of wave jumps of a quantity q, see Sect. 14.3.4. Recall
that in the eigenstructure of x–split three–dimensional Euler equations one has
one eigenvalue of multiplicity three, that is λ2 = λ4 = λ5 = u. Note that we
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have re–ordered the eigenvalues, consistently with the order of the equations
in (16.29). These are associated with three linear waves: λ2 is associated with
a contact wave of speed u, λ4 is associated with a v–shear wave of speed
u and λ5 is associated with a w–shear wave of speed u; λ1 = u − a and
λ3 = u+a correspond to the left and right non–linear waves in the solution of
the Riemann problem. See Sect. 4.8 for details. For the limiting process one
needs to compute five limiter functions, one for each wave; they are

φ
(1)

i+ 1
2

is the limiter function for the left non–linear wave ,

φ
(2)

i+ 1
2

is the limiter function for the contact wave ,

φ
(3)

i+ 1
2

is the limiter function for the right non–linear wave ,

φ
(4)

i+ 1
2

is the limiter function for the v–shear wave ,

φ
(5)

i+ 1
2

is the limiter function for the w–shear wave .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16.41)

These limiters are then applied to each flux component in (16.39). Recall that
the limiter function depends on a flow parameter r, which is computed from a
selected quantity q. For the first three limiters one takes q = ρ, or the specific
internal energy e; for limiter 4 one takes q = v and for limiter 5 one takes
q = w.

The application of the limiter functions in (16.39) may be viewed as apply-
ing the un–limited waf flux to a dissipated wave structure, where the original
wave paths are displaced. Fig. 16.2 (a) shows the un–limited wave structure

ρu,u,u uuu

x

v

(b)(a)

MR

ML

W

W w

t t

x
00

Fig. 16.2. Wave structure for the linear waves (contact and shear waves). (a) un–
limited structure before applying the tvd condition, (b) limited structure after ap-
plying the tvd condition

for the contact and shear waves; Fig. 16.2. (b) illustrates one possible wave
pattern in the dissipated wave structure, where uρ, uv and uw denote the new
speeds of the contact, v–shear and w–shear waves respectively. Then the wave
pattern of Fig. 14.2. (b) corresponds to

φ
(2)

i+ 1
2
≤ φ

(4)

i+ 1
2
≤ φ

(5)

i+ 1
2

and we call this the 2–4–5 order. The dissipated wave structure results in two
new intermediate states WML and WMR, with corresponding fluxes FML



554 16 Methods for Multi–Dimensional PDEs

and FMR; here W = (ρ, u, v, w, p)T denotes the vector of primitive variables.
For the two–dimensional Euler equations there are only two possible orders;
for the three–dimensional case there are six possible orders. Table 16.1 lists
all six possible orders for ρ, v and w. The values for p and u are simply p�

and u� respectively.

Middle left Middle right
Order ρ v w ρ v w

2–4–5 ρ�R vL wL ρ�R vR wL

2–5–4 ρ�R vL wL ρ�R vR wR

4–2–5 ρ�L vR wL ρ�R vR wL

4–5–2 ρ�L vR wL ρ�L vR wR

5–2–4 ρ�L vL wR ρ�R vL wR

5–4–2 ρ�L vL wR ρ�L vR wR

Table 16.1. Six possible cases in dissipated wave structure occuring in limiting the
waf flux for the three dimensional Euler equations

A simple procedure is to take the maximum dissipation as the single dis-
sipation to be applied to all three linear waves, that is

φ(2)
max ≡ φ

(2)

i+ 1
2

= φ
(4)

i+ 1
2

= φ
(5)

i+ 1
2

= max[φ(2)

i+ 1
2
, φ

(4)

i+ 1
2
, φ

(5)

i+ 1
2
] . (16.42)

This will obviously result in excessive dissipation for some of the waves and
is not recommended.

Another approach is this. First apply the limiting procedure for waves 1,
2 and 3 as for the one–dimensional case, the first three equations in (16.29).
Waves 4 and 5 are treated separately by regarding the equations for the y and
z momentum components as scalar equations of the form

(ρη)t + (f1
i+ 1

2
η)x = 0 , (16.43)

where η = v, w and f1
i+ 1

2
= ρu is the tvd flux for the mass equation. Then,

the tvd flux component for the η momentum equation is

(ρη)tvd = [
1
2
(1 + φη)ηn

i,j,k +
1
2
(1 − φη)ηn

i+1,j,k] × f1
i+ 1

2
, (16.44)

where φη is a limiter function based on jumps in η across the η–shear wave.

Remark 16.2. The attraction of the approach just described is its simplicity
as well as its ability to treat, in an entirely similar manner, any passive scalar
η. More importantly, one can apply the same procedure for any number of
passive scalars, as, for example, in the study of reactive multicomponent flows.



16.4 Unsplit Finite Volume Methods 555

Remark 16.3. The equation for total energy per unit mass E, unlike the
pure one dimensional case, contains the tangential velocity components and
therefore the limiting for the first three equations in (16.29) based on ρ alone
is somewhat unsatisfactory.

In the next section we study a methodology to solve multidimensional
problems that is distinct from the splitting approach discussed so far in this
chapter, namely unsplit finite volume methods. Some of the previous remarks
on intercell fluxes and applying the tvd condition will carry over to finite
volume methods.

16.4 Unsplit Finite Volume Methods

In this section we present the unsplit, finite volume approach for solving
multidimensional problems. This is an alternative to dimensional splitting,
presented in Sect. 16.2. When finite volume one–dimensional schemes are
applied in conjunction with dimensional splitting, there exists a close rela-
tionship between both approaches. Both approaches are based on enforcing
the integral form of the conservation laws on discrete or finite volumes, as
explained in Sect. 16.5 for general non–Cartesian geometries. The difference
stems from the fact that in the so–called unsplit finite volume method the
solution is advanced by accounting for all flux contributions in a single step.
In what follows, a finite volume scheme will be understood as an unsplit finite
volume scheme. We present two approaches for constructing second–order up-
wind finite volumes schemes in two and three space dimensions, namely the
Muscl–Hancock and the waf approaches. These were introduced in Chap.
14 for constructing one–dimensional schemes; in Sects. 16.2 and 16.3 of this
chapter these schemes were utilised for solving multidimensional problems via
dimensional splitting. There are other approaches for constructing upwind fi-
nite volume schemes for multidimensional hyperbolic conservations laws. The
reader is referred to the works of Colella [134], LeVeque [309] and Casper and
Atkins [88]. The review paper by Vinokur [570] is highly recommended.

16.4.1 Introductory Concepts

Consider a time–dependent two dimensional system of conservation laws

Ut + F(U)x + G(U)y = 0 . (16.45)

For simplicity assume that the boundaries of the computational domain are
aligned with the coordinate directions x and y. Consider a typical finite volume
or computational cell Ii,j of dimensions Δx×Δy, as depicted in Fig. 16.3. The
cell average Un

i,j is assigned to the centre of the cell, which gives rise to cell
centred methods. To each intercell boundary there corresponds a numerical
flux.
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Fig. 16.3. Finite Volume discretisation of Cartesian domain. Typical computing
cell Ii,j has four intercell boundaries with corresponding intercell fluxes

An explicit finite volume scheme to solve (16.45) reads

Un+1
i,j = Un

i,j +
Δt

Δx
[Fi− 1

2 ,j − Fi+ 1
2 ,j ] +

Δt

Δy
[Gi,j− 1

2
− Gi,j+ 1

2
] . (16.46)

The cell average Un
i,j in cell Ii,j at time level n is updated to time level n+1 via

(16.46) in a single step, involving flux contributions from all intercell bound-
aries. This conservative formula is the natural extension of one–dimensional
conservative formulae, such as (16.33)–(16.35) for example, and is completely
determined once the intercell numerical fluxes are specified and a choice of
mesh has been made.

The simplest, upwind finite volume scheme results from applying the Go-
dunov first–order upwind fluxes across each intercell boundary, in exactly the
same way as done for one–dimensional problems, that is

Fi+ 1
2 ,j = F(Ui+ 1

2 ,j(0)) ; Gi,j+ 1
2

= G(Ui,j+ 1
2
(0)) , (16.47)

where Ui+ 1
2 ,j(x/t) is the solution of the Riemann problem

Ut + F(U)x = 0 ,

U(x, 0) =
{

Un
i,j if x < 0 ,

Un
i+1,j if x > 0

⎫
⎬
⎭ (16.48)

and Ui,j+ 1
2
(y/t) is the solution of the Riemann problem

Ut + G(U)y = 0 ,

U(y, 0) =
{

Un
i,j if y < 0 ,

Un
i,j+1 if y > 0 .

⎫
⎬
⎭ (16.49)

For details on one–dimensional fluxes see Chaps. 5 to 14.
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Example 16.4 (Godunov Finite Volume Method). Consider the linear ad-
vection equation

ut + f(u)x + g(u)y = 0 ; f(u) = a1u , g(u) = a2u , (16.50)

where a1 and a2 are constant velocity components in the x and y directions
respectively. By assuming that a1 > 0, a2 > 0, it is easy to verify that the
Godunov finite volume scheme (16.46)–(16.47) as applied to (16.50) reads

un+1
i,j = un

i,j + c1(un
i−1,j − un

i,j) + c2(un
i,j−1 − un

i,j) , (16.51)

where
c1 =

a1Δt

Δx
; c2 =

a2Δt

Δy
(16.52)

are the Courant numbers in the x and y directions respectively. The stencil
of the scheme is shown in Fig. 16.4. The centre of the stencil is the point
(i, j). In addition to the cell average un

i,j at the centre of the stencil there
are only two more data values contributing to the updating. These are un

i−1,j ,
which is the upwind value in the x–direction, and un

i,j−1, which is the upwind
value in the y–direction. Note the scheme reduces identically to the Godunov
first–order upwind method, see Sect. 5.3.2 of Chap. 5, if a1 = 0 or a2 = 0. In
two dimensions the upwinding is not complete; for instance the most obvious
upwind value for a1 > 0 and a2 > 0 in a two–dimensional sense is un

i−1,j−1,
and this does not contribute to the updating of un

i,j via (16.51).

j+1

j-2

j-1

j

i i+1i-1i-2

Fig. 16.4. Stencil of the Godunov finite volume scheme for the linear advection
equation with positive velocity components a1 and a2. The arrow represents the
direction of the velocity vector

For three–dimensional time dependent systems of conservation laws

Ut + F(U)x + G(U)y + H(U)z = 0 , (16.53)
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finite volume schemes read

Un+1
i,j,k = Un

i,j,k + Δt
Δx [Fi− 1

2 ,j,k − Fi+ 1
2 ,j,k] + Δt

Δy [Gi,j− 1
2 ,k − Gi,j+ 1

2 ,k]
+ Δt

Δz [Hi,j,k− 1
2
− Hi,j,k+ 1

2
] .

}

(16.54)
Consider the three–dimensional linear advection equation

ut + f(u)x + g(u)y + h(u)z = 0 ; f(u) = a1u , g(u) = a2u , h(u) = a3u ,
(16.55)

where a1, a2 and a3 are constant velocity components in the x, y and z
directions respectively.

Exercise 16.5. Assume that a1 > 0, a2 > 0, a3 > 0 and show that the
three–dimensional finite volume scheme obtained by straight application of
the one–dimensional Godunov flux is

un+1
i,j,k = un

i,j,k + c1(un
i−1,j,k −un

i,j,k)+ c2(un
i,j−1,k −un

i,j,k)+ c3(un
i,j,k−1−un

i,j,k) ,
(16.56)

where
c1 =

a1Δt

Δx
; c2 =

a2Δt

Δy
; c3 =

a3Δt

Δz
(16.57)

are the Courant numbers in the x, y and z directions respectively.

16.4.2 Accuracy and Stability of Multidimensional Schemes

Accuracy Theorems

A useful theorem due to Roe [408] concerning the accuracy of general
constant coefficient schemes for the one–dimensional linear advection equation
was stated in Sect. 13.2.1 of Chap. 13. We now state the generalisation of this
result to two and three dimensional schemes [62].

Two–dimensional schemes such as (16.51) can be written in the general
form

un+1
i,j =

∑
α,β

bα,βun
i+α,j+β , (16.58)

where bα,β are the, constant, coefficients of the scheme. Schemes of the form
(16.58) are a straight generalisation of the one–dimensional schemes studied
in Sect.13.2.1 of Chap. 13. We now state the following result.

Theorem 16.6. The two–dimensional scheme (16.58) to solve (16.50) is
mth–order accurate in space and time if and only if the coefficients satisfy

∑
α,β

αqβrbα,β = (−c1)q(−c2)r (16.59)

for all integer pairs (q, r) such that q ≥ 0, r ≥ 0 and q + r ≤ m. Here c1 and
c2 are the directional Courant numbers (16.52).
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Proof. For details of the proof see Billett and Toro [62].

Three–dimensional schemes, such as (16.56), to solve the three–dimensional
linear advection equation (16.55) can be written as

un+1
i,j,k =

∑
α,β,γ

bα,β,γun
i+α,j+β,k+γ , (16.60)

where bα,β,γ are the coefficients of the scheme, assumed to be constant. The
following result is a generalisation of the previous accuracy theorem to three–
dimensional schemes.

Theorem 16.7. The three–dimensional scheme (16.60) to solve (16.55)
is mth–order accurate in space and time if and only if the coefficients bα,β,γ

satisfy ∑
α,β,γ

αqβrγsbα,β,γ = (−c1)q(−c2)r(−c3)s (16.61)

for all integer triples (q, r, s) such that q ≥ 0, r ≥ 0, s ≥ 0 and q + r + s ≤ m.
Here c1, c2 and c3 are the directional Courant numbers (16.57).

Proof. For details of the proof see Billett and Toro [62].

Exercise 16.8. Apply the two previous accuracy theorems (16.6) and
(16.7) to show that the Godunov finite volume schemes (16.51) and (16.56)
to solve the linear advection equations (16.50) and (16.55) are first–order ac-
curate in space and time.

Solution 16.9. (Left to the reader).

Computational Test for Linear Stability

There are various methods for analysing the stability of schemes for the
linear advection equation; see Hirsch [251], Chaps. 7 to 10, for a comprehensive
presentation of techniques. Here we assume the reader to be familiar with the
popular von Neumann method.

For a one–dimensional scheme whose coefficients depend only on the
Courant number c1 the von Neumann method derives an algebraic expres-
sion

A = A(c1, θ1)

for the amplification factor, where c1 is the Courant number and θ1 is the
phase angle in the range 0 ≤ θ1 ≤ π. For sufficiently simple schemes the
stability condition ||A|| ≤ 1 can be used to derive, algebraically, conditions on
the Courant number for the scheme to be linearly stable. There are instances,
however, where the algebraic task becomes intractable. In this case, drawing a
contour plot of ||A||, the modulus of the complex number A, for a large number
of values (c1, θ1) in a rectangle [0, cmax

1 ] × [0, π], will give an indication as to
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the linear stability region of the scheme. Here cmax
1 is chosen to be larger than

the expected stability limit.
For two–dimensional schemes the amplification factor reads

A = A(c1, c2, θ1, θ2) .

Here c1, c2 are the Courant numbers in the x and y directions and θ1, θ2 are
phase angles in the the x and y directions. Deriving algebraic conditions for the
scheme to be stable is now generally much harder than in the one–dimensional
case. A numerical test can be performed as follows [62]. For a given pair
c1, c2 of Courant numbers in the rectangle [0, cmax

1 ] × [0, cmax
2 ] compute ||A||

for a large number Mang of values (θ1, θ2) of phase angles in the rectangle
[0, π]× [0, π]. Record the number Mcfl for which ||A|| ≤ 1 and define the ratio

S = S(c1, c2) =
Mcfl

Mang
.

If S = 1 the scheme is regarded as stable for the pair c1, c2. A contour plot
of S = S(c1, c2) for a large number of pairs (c1, c2) in the range [0, cmax

1 ] ×
[0, cmax

2 ] will give an indication of the linear stability of the two–dimensional
scheme.

In three space dimensions the amplification factor reads

A = A(c1, c2, c3, θ1, θ2, θ3)

and one draws contour plots on planes within [0, cmax
1 ]× [0, cmax

2 ]× [0, cmax
3 ].

Remark 16.10. The above stability tests, useful in practice as they may
be, do not constitute proofs of linear stability, and caution is needed when
quoting the conclusions of the tests.

Example 16.11. Application of the stability test just described to the Go-
dunov finite volume scheme (16.51) indicates that the scheme has linear sta-
bility condition

c1 + c2 ≤ 1 . (16.62)

For c1 = c2 one has c1 = c2 ≤ 1
2 , which is half the stability range of the

one–dimensional Godunov scheme. For the the three–dimensional Godunov
finite volume scheme (16.56), application of the above test suggests that the
scheme is linearly stable under the condition

c1 + c2 + c3 ≤ 1 . (16.63)

For c1 = c2 = c3 one has c1 = c2 = c3 ≤ 1
3 , which is one third of the stability

limit of the one–dimensional, Godunov first–order upwind scheme.

The previous example illustrates the fact that in constructing finite vol-
ume schemes by straightforward application of one–dimensional fluxes one,



16.5 A Muscl–Hancock Finite Volume Scheme 561

at best, ends up with schemes with a reduced stability range. There are cases
in which this approach leads to unconditionally unstable finite volume meth-
ods, even though the one–dimensional operators are stable for the respective
one–dimensional method.

In the next section we construct a finite volume method that is second–
order accurate in space and time.

16.5 A Muscl–Hancock Finite Volume Scheme

Here we extend the second–order Muscl–Hancock approach, presented
in Chap. 14 for one–dimensional systems, to construct unsplit finite volume
schemes for multi–dimensional conservation laws. We present the details of
the approach for the two–dimensional case and construct a scheme of the
form (16.46). Background on the Muscl–Hancock approach for scalar one–
dimensional problems is found in Sect. 13.4.2 of Chap. 13; Sect. 14.4 of
Chap. 14 gives details of the approach for one–dimensional non–linear sys-
tems. The reader is encouraged to review the details of the one dimensional
Muscl–Hancock scheme before proceeding with this section. As in the one–
dimensional case the scheme has the following three steps

(I) Data Reconstruction and Boundary Extrapolated Values. The
cell averages Un

i,j are reconstructed, independently, in the x and y
directions by selecting respective slope vectors (differences) Δi and
Δj . Boundary extrapolated values are

U−x
i,j = Un

i,j − 1
2Δi ; U+x

i,j = Un
i,j + 1

2Δi ;

U−y
i,j = Un

i,j − 1
2Δj ; U+y

i,j = Un
i,j + 1

2Δj .

⎫
⎬
⎭ (16.64)

(II) Evolution of Boundary Extrapolated Values.

Û
l

i,j = Ul
i,j +

Δt

2Δx
[F(U−x

i,j ) − F(U+x
i,j )] +

Δt

2Δy
[G(U−y

i,j ) − G(U+y
i,j )]

(16.65)
for l = −x,+x,−y,+y.

(III) Solution of Riemann problems. At each intercell position (i+ 1
2 , j)

one solves the x–split one–dimensional Riemann problem with data
Û

+x

i,j , Û
−x

i+1,j to find a solution Ui+1/2,j(x/t). Similarly, at each inter-
face position (i, j + 1

2 ) one solves the y–split one–dimensional Riemann

problem with data Û
+y

i,j , Û
−y

i,j+1 to find a solution Ui,j+1/2(y/t). The
corresponding intercell fluxes are found as in the one–dimensional Go-
dunov method, namely

Fi+ 1
2 ,j = F(Ui+ 1

2 ,j(0)) ; Gi,j+ 1
2

= G(Ui,j+ 1
2
(0)) . (16.66)
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Example 16.12. Here we apply the Muscl–Hancock finite volume scheme
to the linear advection equation (16.50). It is easily shown that the intercell
fluxes are

fi+ 1
2 ,j = a1[un

i,j + 1
2 (1 − c1)Δi − 1

2c2Δj ] ,

gi,j+ 1
2

= a2[un
i,j + 1

2 (1 − c2)Δj − 1
2c1Δi] .

⎫
⎬
⎭ (16.67)

By taking central difference approximations for the slopes Δi, Δj and substi-
tuting the resulting fluxes into the finite volume formula (16.46) one obtains
the scheme

un+1
i,j = un

i,j

−c1

{
(un

i,j − un
i−1,j) + 1

4 (1 − c1)[(un
i+1,j − un

i,j) − (un
i−1,j − un

i−2,j)]
}

+1
4c1c2[(un

i,j+1 − un
i,j−1) − (un

i−1,j+1 − un
i−1,j−1)]

−c2

{
(un

i,j − un
i,j−1) + 1

4 (1 − c2)[(un
i,j+1 − un

i,j) − (un
i,j−1 − un

i,j−2)]
}

+1
4c1c2[(un

i+1,j − un
i−1,j) − (un

i+1,j−1 − un
i−1,j−1)] .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16.68)
The stencil of the scheme as applied to (16.50) with a1 > 0 and a2 > 0 is
shown in Fig. 16.5 and has 10 points.

Exercise 16.13. Apply the accuracy theorem (16.6), see equation (16.59),
to show that scheme (16.68) is second–order accurate in space and time.

Solution 16.14. Left to the reader.

Remark 16.15. Stability tests according to the method of Sect. 16.4.2 sug-
gest that the Muscl–Hancock scheme (16.68) has the same stability condition
(16.62), as the first–order Godunov finite volume scheme (16.51). The unsplit
finite volume MUSCL–Hancock scheme has increased the accuracy of the Go-
dunov finite volume scheme but not its stability range.

Exercise 16.16. Attempt to extend the MUSCL–Hancock approach to
construct a three–dimensional finite volume scheme for non–linear systems of
conservations laws. Apply the scheme to the three–dimensional linear advec-
tion equation (16.55) and show that it is second–order accurate in space and
time.

Solution 16.17. Left to the reader.

As to the computation of the numerical fluxes, these can be found by using
the exact Riemann solver, given in Chap. 6 for the Euler equations, or any of
the approximate Riemann solvers presented in Chaps. 9 to 12. One can also
use the Flux Vector Splitting schemes of Chap. 8.
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j-1

j-2

j+1

: Second order scheme : First order scheme

j

i i+1i-1i-2

Fig. 16.5. Stencil of the Muscl–Hancock Finite Volume scheme for the linear ad-
vection equation with positive velocity components a1 and a2. The arrow represents
the direction of the velocity vector. Also shown is the stencil of the first–order version
of the scheme

In order to control spurious oscillations in the two–dimensional schemes,
one applies one–dimensional tvd constraints in exactly the same manner as
for one–dimensional problems, by replacing the slopes by limited slopes; see
Chaps. 13 and 14. The resulting schemes are usually referred to, incorrectly, as
two–dimensional tvd schemes. The same remark applies to three–dimensional
schemes. We first note that the schemes are not strictly tvd as understood
for one–dimensional model equations, see Chap. 13; the second order slope
limited scheme will still produce spurious oscillations near high gradients.
Also note that if the tvd conditions were to be enforced in a two–dimensional
sense, then, as proved by Goodman and LeVeque [219], the scheme would be
oscillation free but at most first–order accurate.

16.6 WAF–Type Finite Volume Schemes

The Weighted Average Flux (waf) approach was first introduced [499],
[506] to construct schemes to solve one–dimensional hyperbolic systems of
conservation laws. The waf schemes are of the Godunov type and of sec-
ond order accuracy in space and time. Detailed descriptions of the schemes
along with their tvd constraints are presented in Sect. 13.7 of Chap. 13 for
scalar problems and in Sects. 14.2–14.3 of Chap. 14 for non–linear systems.
By means of dimensional splitting these waf schemes may be applied to solve
multidimensional problems. See Sects. 16.2–16.3 of this chapter about details
for the two and three dimensional Euler equations.

The waf approach may be extended to derive unsplit finite volume
schemes for multi–dimensional hyperbolic systems [59], [63], [61]. In the next
section we first present some details of the approach as applied to the two
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and three dimensional linear advection equations. Then we study two of the
possible extensions to multidimensional non–linear systems in two and three
space dimensions.

16.6.1 Two–Dimensional Linear Advection

Consider the two–dimensional linear advection equation with constant co-
efficients

ut + f(u)x + g(u)y = 0 ; f(u) = a1u ; g(u) = a2u (16.69)

and finite volume schemes of the form

un+1
i,j = un

i,j +
Δt

Δx
[fi− 1

2 ,j − fi+ 1
2 ,j ] +

Δt

Δy
[gi,j− 1

2
− gi,j+ 1

2
] (16.70)

to solve (16.69). The objective is to prescribe the intercell fluxes fi+ 1
2 ,j and

gi,j+ 1
2
. The waf approach specifies a flux in the x–direction as follows

fi+ 1
2 ,j =

1
V (B)

∫ t2

t1

∫ x2

x1

∫ y2

y1

f(ui+ 1
2
(x, y, t)) dx dy dt , (16.71)

where B ≡ [t1, t2] × [x1, x2] × [y1, y2] is the domain of integration in t–x–y
space, that includes the relevant intercell boundary at xi+ 1

2
; V (B) denotes

the volume of B. In general f(u) is the flux component perpendicular to
the intercell boundary. An analogous definition holds for gi,j+ 1

2
. Particular

schemes are obtained by specifying (i) the spatial and temporal domain of
integration, (ii) the integrand and (iii) integration schemes to evaluate (16.71).
Here we make the following choices

t1 = 0 , t2 = Δt , c1 ≤ 1 , c2 ≤ 1 ,
x1 = − 1

2Δx , x2 = 1
2Δx , y1 = 0 , y2 = Δy .

}
(16.72)

Fig. 16.6 depicts the spatial integration range to compute the intercell flux.
The choice of Δt and the conditions on the Courant numbers c1 and c2 are
obviously related. The integrand is determined by specifying ui+ 1

2
(x, y, t).

Here we assume ui+ 1
2
(x, y, t) to be the solution of relevant two–dimensional

Riemann problems for (16.69), with initial data u(x, y, 0) = un
i,j for (x, y) in

the computing cell Ii,j , overlapping the spatial range of integration in a time
Δt.

For the model equation (16.69) the solution of the two–dimensional Rie-
mann problem is trivial. Exact integration in (16.71) leads to a second–order
accurate scheme in space and time, see [59], [63]. Here we only consider
schemes arising from approximate evaluation of the integral (16.71).

Assume that a1 > 0 and a2 > 0 in (16.69) and restrict the Courant num-
bers to satisfy c1 ≤ 1

2 and c2 ≤ 1
2 ; this in turn restricts the number of states
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ii-1 i+1

i+1/2

y

x

Δ

j-1

j

j+1

Δ

Fig. 16.6. Spacial integration range for evaluating the waf intercell flux at i + 1
2

that influence fi+ 1
2 ,j to four, namely un

i,j , un
i+1,j , un

i,j−1 and un
i+1,j−1. These

states are laid out in the four quadrants of a rectangle centred at (xi+ 1
2
, yj− 1

2
),

and form the initial conditions of a two–dimensional Riemann problem. For
different signs of a1 and a2 the relevant two–dimensional Riemann problem
has different initial conditions.

Having specified the integration domain and the integrand in (16.71), we
are left with the task of choosing integration schemes to evaluate the integral.

First–Order Schemes

Apply exact integration in time, the midpoint rule perpendicular to the
boundary, and exact integration parallel to the boundary. The integral form
of the intercell flux (16.71) simplifies in this case to

fi+ 1
2 ,j =

1
Δt

1
Δy

∫ Δt

0

∫

B
⋂

{x=0}
f(ui+ 1

2
(0, y, t)) dy dt , (16.73)

where we integrate over the plane x = 0, in local coordinates. This gives

fi+ 1
2 ,j =

1
2
(2 − c2)fi,j +

1
2
c2fi,j−1 . (16.74)

The flux gi,j+ 1
2

follows similarly. Substitution of all four intercell fluxes into
the finite volume formula (16.70) produces the scheme

un+1
i,j = (1 − c1 − c2 + c1c2)un

i,j + c2(1 − c1)un
i,j−1

+c1(1 − c2)un
i−1,j + c1c2u

n
i−1,j−1 .

}
(16.75)

This waf two–dimensional finite volume scheme turns out to be identical to
the Corner Transport Upwind (ctu) scheme of Colella [134].

Exercise 16.18. Using the accuracy theorem (16.6), see (16.59), show
that the ctu scheme (16.75) is first–order accurate in space and time.
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Fig. 16.7 shows the stencil of two–dimensional first–order upwind scheme
(16.75). Compare with the stencil for the Godunov finite volume method
shown in Fig. 16.4. The ctu (waf ) finite volume scheme does contain the up-
wind point un

i−1,j−1 and is the natural two–dimensional extension of the one–
dimensional Godunov first–order upwind scheme. Colella proved the scheme
(16.75) to be stable under the condition

max{c1, c2} ≤ 1 . (16.76)

Thus, the waf approach is capable of producing first–order two dimensional
finite volume schemes with twice the stability limit of the Godunov finite
volume scheme (16.51), which is constructed by straightforward application
of the Godunov one–dimensional fluxes.

j+1

j-2

j-1

j

i i+1i-1i-2

Fig. 16.7. Stencil of the first–order waf finite volume scheme (identical to the ctu

scheme of Colella) for the two–dimensional linear advection equation with positive
a1 and a2. The arrow indicates the direction of the velocity vector

A Second–Order Scheme

We now consider the midpoint rule in time combined with exact integration
in both space directions in (16.71) and assume that c1 ≤ 1, c2 ≤ 1. This gives
the intercell flux

fi+ 1
2 ,j = 1

4 (1 + c1)(2 − c2)fi,j + 1
4 (1 − c1)(2 − c2)fi+1,j

+ 1
4 (1 + c1)c2fi,j−1 + 1

4 (1 − c1)c2fi+1,j−1 .

}
(16.77)

The flux gi,j+ 1
2

follows similarly. Substitution of all fluxes into the finite vol-
ume formula (16.70) gives the scheme in full as

un+1
i,j =

[
1 − 1

2c2
1(2 − c2) − 1

2c2
2(2 − c1)

]
un

i,j

− 1
4c1(1 − c1)(2 − c2)un

i+1,j − 1
4 (2 − c1)c2(1 − c2)un

i,j+1

− 1
4c1c2(1 − c1)un

i+1,j−1 − 1
4c1c2(1 − c2)un

i−1,j+1

+ 1
4

[
c1(1 + c1)(2 − c2) − 2c1c

2
2

]
un

i−1,j

+ 1
4c1c2(2 + c1 + c2)un

i−1,j−1 .

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(16.78)
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j

j-1

j-2

j+1

i-2 i i+1i-1

Fig. 16.8. Stencil of the second–order waf finite volume scheme for the two–
dimensional linear advection equation with positive a1 and a2. Compare with stencil
of first–order scheme of Fig. 16.7

When c1 = 0 or c2 = 0, the scheme reduces to the one dimensional Lax–
Wendroff scheme, and when c1 = c2 = 1, it reduces to un+1

i,j = un
i−1,j−1, which

reproduces the exact solution under the given initial conditions.

Exercise 16.19. Apply the accuracy theorem (16.6) to show that scheme
(16.78) is second–order accurate in space and time.

Solution 16.20. Left to the reader.

The eight–point stencil for the second–order waf finite volume scheme
(16.78) is shown in Fig. 16.8; compare with the ten–point stencil for the
second–order Muscl–Hancock scheme (16.68) shown in Fig. 16.5. Numeri-
cal stability tests, as described in Sect. 16.4.2, suggest that scheme (16.78)
is stable provided the condition (16.76) holds. The Muscl–Hancock scheme
(16.68) has stability restriction c1+c2 ≤ 1, which is half that of this waf finite
volume scheme. Both waf finite volume schemes (16.75) (ctu) and (16.78)
are much more stable than the two–dimensional Lax–Wendroff scheme [303],
[252].

16.6.2 Three–Dimensional Linear Advection

The waf approach is now extended to generate finite volume schemes for
the linear advection equation in three space dimensions

ut + f(u)x + g(u)y + h(u)z = 0 ; f(u) = a1u , g(u) = a2u , h(u) = a3u .
(16.79)

The finite volume schemes have the form

un+1
i,j,k = un

i,j,k + Δt
Δx [fi− 1

2 ,j,k − fi+ 1
2 ,j,k] + Δt

Δy [gi,j− 1
2 ,k − gi,j+ 1

2 ,k]
+ Δt

Δz [hi,j,k− 1
2
− hi,j,k+ 1

2
] ,

}

(16.80)
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where fi+ 1
2 ,j,k, gi,j+ 1

2 ,k and hi,j,k+ 1
2

are the intercell fluxes in the x, y and z
directions respectively. A general waf intercell flux in three space dimensions
reads

fi+ 1
2 ,j,k =

1
V (B)

∫ t2

t1

∫ x2

x1

∫ y2

y1

∫ z2

z1

f(ui+ 1
2
(x, y, z, t)) dx dy dz dt , (16.81)

where B = [t1, t2] × [x1, x2] × [y1, y2] × [z1, z2] is the domain of integration
in t–x–y–z space; V (B) = (t2 − t1) × (x2 − x1) × (y2 − y1) × (z2 − z1) is the
volume of B. The fluxes gi,j+ 1

2 ,k and hi,j,k+ 1
2

are defined similarly.

A First–Order Scheme

A three–dimensional version of the first–order waf scheme for the two–
dimensional linear advection equation is now derived. A choice of parameter
values consistent with (16.72) is assumed. By using the midpoint rule in time,
the midpoint rule in space perpendicular to the boundary, and exact integra-
tion in space in both directions parallel to the boundary, the resulting intercell
flux is

fi+ 1
2 ,j,k =

1
Δy Δz

∫

B
⋂

{x=0}
f(ui+ 1

2
(0, y, z,

1
2
Δt)) dy dz . (16.82)

This can be written explicitly as

fi+ 1
2 ,j,k = 1

4 (2 − c2)(2 − c3)fi,j,k + 1
4c2(2 − c3)fi,j−1,k

+1
4 (2 − c2)c3fi,j,k−1 + 1

4c2c3fi,j−1,k−1 .

}
(16.83)

The derivation of the fluxes gi,j+ 1
2 ,k and hi,j,k+ 1

2
follows by symmetry. Sub-

stituting these into the finite volume formula (16.80) gives the scheme as

un+1
i,j,k =

[
1 − 1

4c1(2 − c2)(2 − c3) − 1
4 (2 − c1)(2 − c2)c3

]
un

i,j,k

−
[
1
4 (2 − c1)c2(2 − c3) − 1

4 (2 − c1)(2 − c2)c3

]
un

i,j,k

+c1

[
(1 − c2)(1 − c3) − 1

4c2c3

]
un

i−1,j,k

+ 1
4 (4 − 3c1)c2c3u

n
i,j−1,k−1

+c2

[
(1 − c1)(1 − c3) − 1

4c1c3

]
un

i,j−1,k

+ 1
4c1(4 − 3c2)c3u

n
i−1,j,k−1

+c3

[
(1 − c1)(1 − c2) − 1

4c1c2

]
un

i,j,k−1

+ 1
4c1c2(4 − 3c3)un

i−1,j−1,k

+ 3
4c1c2c3u

n
i−1,j−1,k−1 .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16.84)

By setting c1 = c2 = c3 = c in (16.84) it can be seen that not all the coefficients
are positive if c ≥ 2

3 ; see for example the coefficient of ui−1,j,k. A sufficient
condition for the scheme to remain monotone is

max{c1, c2, c3} ≤ 2
3

. (16.85)
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Exercise 16.21. Apply the accuracy theorem (16.7) to show that scheme
(16.84) is first–order accurate in space and time. This scheme is a natural
three–dimensional extension of the one–dimensional Godunov first–order up-
wind scheme.

A Second Order Scheme

Working from the experience of the two dimensional case, the midpoint
rule in time and exact integration in all three space directions will now be
used to generate a second–order scheme. The flux in the x–direction becomes

fi+ 1
2 ,j,k =

1
V (B)

∫

B

f(ui+ 1
2
(x, y, z,

1
2
Δt)) dx dy dz , (16.86)

where ui+ 1
2
(x, y, z, t) is the exact solution to the three–dimensional Riemann

problem for (16.79) with initial conditions {un
i,j,k}. By assuming a1 > 0, a2 >

0, a3 > 0 in (16.79) and performing the integration we obtain the intercell
flux

fi+ 1
2 ,j,k = 1

8 (1 + c1)(2 − c2)(2 − c3)fi,j,k

+ 1
8 (1 − c1)(2 − c2)(2 − c3)fi+1,j,k

+ 1
8 (1 + c1)c2(2 − c3)fi,j−1,k

+ 1
8 (1 − c1)c2(2 − c3)fi+1,j−1,k

+ 1
8 (1 + c1)(2 − c2)c3fi,j,k−1

+ 1
8 (1 − c1)(2 − c2)c3fi+1,j,k−1

+ 1
8 (1 + c1)c2c3fi,j−1,k−1

+ 1
8 (1 − c1)c2c3fi,j−1,k−1 .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16.87)

The fluxes gi,j+ 1
2 ,k and hi,j,k+ 1

2
follow by symmetry. Substituting all the fluxes

into the finite volume formula (16.80) gives the scheme

un+1
i,j,k = un

i,j,k

− 1
4

[
c2
1(2 − c2)(2 − c3) + (2 − c1)c2

2(2 − c3) + (2 − c1)(2 − c2)c2
3

]
un

i,j,k

+ 1
8c1

[
(1 + c1)(2 − c2)(2 − c3) − 2c2

2(2 − c3) − 2(2 − c2)c2
3

]
un

i−1,j,k

+ 1
8c2

[
(2 − c1)(1 + c2)(2 − c3) − 2c2

1(2 − c3) − 2(2 − c1)c2
3

]
un

i,j−1,k

+ 1
8c3

[
(2 − c1)(2 − c2)(1 + c3) − 2(2 − c1)c2

2 − 2c2
1(2 − c2)

]
un

i,j,k−1

+ 1
8c1c2

[
(2 − c3)(2 + c1 + c2) − 2c2

3

]
un

i−1,j−1,k

+ 1
8c1c3

[
(2 − c2)(2 + c1 + c3) − 2c2

2

]
un

i−1,j,k−1

+ 1
8c2c3

[
(2 − c1)(2 + c2 + c3) − 2c2

1

]
un

i,j−1,k−1

+ 1
8c1c2c3(3 + c1 + c2 + c3)un

i−1,j−1,k−1

− 1
8c1(1 − c1)(2 − c2)(2 − c3)un

i+1,j,k − 1
8c1(1 − c1)c2(2 − c3)un

i+1,j−1,k

− 1
8c1(1 − c1)(2 − c2)c3u

n
i+1,j,k−1 − 1

8c1(1 − c1)c2c3u
n
i+1,j−1,k−1

− 1
8 (2 − c1)c2(1 − c2)(2 − c3)un

i,j+1,k − 1
8c1c2(1 − c2)(2 − c3)un

i−1,j+1,k

− 1
8 (2 − c1)c2(1 − c2)c3u

n
i,j+1,k−1 − 1

8c1c2(1 − c2)c3u
n
i−1,j+1,k−1

− 1
8 (2 − c1)(2 − c2)c3(1 − c3)un

i,j,k+1 − 1
8 (2 − c1)c2c3(1 − c3)un

i,j−1,k+1

− 1
8c1(2 − c2)c3(1 − c3)un

i−1,j,k+1 − 1
8c1c2c3(1 − c3)un

i−1,j−1,k+1 .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16.88)
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Exercise 16.22. Apply the accuracy theorem (16.7) to show that scheme
(16.88) is second–order accurate in space and time.

Solution 16.23. Left to the reader.

Application of the numerical tests for stability according to the method
of Sect. 16.4.2 suggests that the three–dimensional scheme (16.88) is stable
under the condition

max{c1, c2, c3} ≤ 2
3

, (16.89)

which is also the condition (16.85) for monotonicity for the first–order three
dimensional scheme (16.84). The three–dimensional Godunov finite volume
scheme (16.56) has stability restriction

max{c1, c2, c3} ≤ 1
3

, (16.90)

which is half that of the waf second–order finite volume scheme (16.88).

16.6.3 Schemes for Two–Dimensional Nonlinear Systems

The construction of multi–dimensional waf–type schemes for non–linear
systems is based on re–interpreting the flux formulae derived for the linear
advection equation in multidimensions.

An Average Flux Second–Order Scheme

First we re–write the intercell flux (16.77) as

fi+ 1
2 ,j =

1
2
(1 + c1)f(ugod

i,j ) +
1
2
(1 − c1)f(ugod

i+1,j) , (16.91)

where
ugod

i,j = un
i,j +

1
2 Δt

Δy

[
ggod

i,j− 1
2
− ggod

i,j+ 1
2

]
,

ugod
i+1,j = un

i+1,j +
1
2 Δt

Δy

[
ggod

i+1,j− 1
2
− ggod

i+1,j+ 1
2

]
⎫
⎬
⎭ (16.92)

and ggod

i,j+ 1
2

= a2u
n
i,j is the Godunov first–order upwind flux, a2 > 0.

Formulae (16.91) and (16.92) are now re–interpreted in terms of two well
known one–dimensional operators that are valid for non–linear systems. For-
mulae (16.91) is the Weighted Average Flux scheme that results from solv-
ing the one–dimensional Riemann problem for the linear advection equation
ut + a1ux = 0, at the intercell position i + 1

2 , with modified initial data
(ugod

i,j , ugod
i+1,j). See Sect. 13.3 of Chap. 13 for details on the one dimensional

waf flux for the linear advection equation. The modified data results from
applying the Godunov first–order upwind method to the one dimensional ad-
vection equation ut + a2uy = 0 for a time 1

2Δt.
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We now construct intercell fluxes Fi+ 1
2 ,j and Gi,j+ 1

2
for the finite vol-

ume scheme (16.46) to solve the two–dimensional nonlinear system (16.45)
following the waf approach. This is done by imitating (16.91)–(16.92). The
intercell fluxes result from applying two one–dimensional operators in succes-
sion, namely

Fi+ 1
2 ,j = Lwaf

x, 1
2 Δt

(
Lgod

y, 1
2 Δt

(Un
i,j),L

god

y, 1
2 Δt

(Un
i+1,j)

)
(16.93)

and
Gi,j+ 1

2
= Lwaf

y, 1
2 Δt

(
Lgod

x, 1
2 Δt

(Un
i,j),L

god

x, 1
2 Δt

(Un
i,j+1)

)
. (16.94)

Here the operator Lwaf
s,dt (ZL,ZR) applies to a pair of states (ZL,ZR) and is

defined as

Lwaf
s,dt (ZL,ZR) =

1
Δs

∫ 1
2 Δs

− 1
2 Δs

E
(
ZLR

( s

dt

))
ds . (16.95)

This is an integral average of the flux component E in the s–direction normal
to the interface between the states ZL and ZR and gives a waf–type flux. ZLR

denotes the solution of the Riemann problem with data (ZL,ZR). In practice
one approximates the waf flux by a summation, namely

FLR =
1
2
[F(ZL) + F(ZR)] − 1

2

N∑
k=1

sign(c(k)
LR)φ(k)

LRΔF(k)
LR , (16.96)

where c
(k)
LR is the Courant number for wave k in the solution of the Riemann

problem, ΔF(k)
LR is the flux jump across wave k and φ

(k)
LR = φ

(k)
LR(r(k)

LR) is a
one–dimensional limiter function for wave k. For details on the waf flux see
Sect. 14.3 of Chap. 14 and Sect. 16.3.3 of this chapter.

The second operator in (16.93) and (16.94) is the Godunov one dimensional
operator

Lgod
s,dt(Z

n) = Zn +
dt

Δs

[
Kgod

l− 1
2
− Kgod

l+ 1
2

]
, (16.97)

as applied to a state Zn over a time dt in the direction s and Kgod

l+ 1
2

is the
one–dimensional Godunov first–order upwind flux.

Fig. 16.9 depicts the evaluation of the intercell flux Fi+ 1
2 ,j in (16.93), for

which one performs the following two steps:

(I) Modification of Data: The initial data on the left and right side of
the interface is modified by applying the Godunov first–order upwind
scheme in the y–direction (cross direction) for a time 1

2Δt to it. One
obtains the two states Lgod

y, 1
2 Δt

(Un
i,j) and Lgod

y, 1
2 Δt

(Un
i+1,j).

(II) The Riemann Problem: Solve the Riemann problem in the x–
direction with the modified data (Lgod

y, 1
2 Δt

(Un
i,j), Lgod

y, 1
2 Δt

(Un
i+1,j)) and

compute the waf flux in the usual way; see (16.96). See also (16.39).
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god

L

LL
god
y, 
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Fig. 16.9. Intercell flux Fi+ 1
2 ,j is obtained by applying the waf operator Lwaf

x, 1
2 Δt

in

the x–direction to modified data in cells (i, j) and (i+1, j). Modified data is obtained
by applying the Godunov operator Lgod

y, 1
2 Δt

in the y–direction to initial states Un
i,j ,

Un
i+1,j

The evaluation of the intercell flux Gi,j+ 1
2

in (16.94) is entirely analogous.
One first modifies the initial data by applying the Godunov operator in the
x–direction for a time 1

2Δt to it and then solves the Riemann problem in the
y–direction to compute a waf flux in the y–direction.

An Average State Scheme

Another extension to non–linear systems is based on the definition of a
Weighted Average State (was) operator

Lwas
s,dt (ZL,ZR) =

1
Δs

∫ 1
2 Δs

− 1
2 Δs

ZLR

( s

dt

)
ds (16.98)

This is identical to the Weighted Average State version of waf in one dimen-
sion, see Sect. 14.3.2 of Chap. 14. The flux Fi+ 1

2 ,j is now given by

Fi+ 1
2 ,j = F

(
Lgod

y, 1
2 Δt

(
Lwas

x, 1
2 Δt

(
Un

i,j ,Ui+1,j

)))
(16.99)

and the flux Gi,j+ 1
2

is given by

Gi,j+ 1
2

= G
(
Lgod

x, 1
2 Δt

(
Lwas

y, 1
2 Δt

(
Un

i,j ,Ui,j+1

)))
. (16.100)

First–Order Scheme and the tvd Condition

Recall that the waf one–dimensional flux with the one dimensional tvd

condition includes the Godunov first–order upwind scheme by simply set-
ting the one–dimensional limiter function to an appropriate value, namely
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φ
(k)
LR = sign(c(k)

LR) × |c(k)
LR|. Therefore, by utilising the waf operator in its

first–order mode in (16.91) and applying the scheme to the two–dimensional
linear advection equation (16.69) one obtains the first–order waf finite volume
scheme, which is equivalent to the ctu scheme of Colella for the linear ad-
vection equation. As seen earlier this first–order scheme is monotone and has
linear stability limit 1. We therefore obtain an extension of the ctu scheme
to two–dimensional nonlinear systems of hyperbolic conservation laws by sim-
ply applying the waf operator in its first–order mode (Godunov’s first order
upwind scheme) in (16.93)–(16.94), or (16.99)–(16.100).

The second–order scheme results from the second–order waf operator in
(16.93)–(16.94) or (16.99)–(16.100). In order to control the expected spurious
oscillations we simply apply the waf flux together with its tvd constraint.
Note that this tvd constraint is applied only in a one–dimensional sense.
The resulting scheme is not tvd in a two–dimensional sense. As a matter of
fact spurious oscillations are still present, even for the model two–dimensional
equation. In applications to two and three–dimensional nonlinear systems we
find that spurious oscillations are small. Billett and Toro [65] have produced
some preliminary results on a Total Variation Bounded (tvb) version of the
multidimensional waf schemes.

16.6.4 Schemes for Three–Dimensional Nonlinear Systems

Following the same approach as for two–dimensional non–linear systems,
we now construct waf finite volume schemes of the form (16.54) for solv-
ing three– dimensional non–linear systems of hyperbolic conservation laws
(16.53). We re–interpret the schemes (16.84) and (16.88) derived for the three–
dimensional linear advection equation (16.79).

A second–order Weighted Average Flux Scheme has intercell flux in the
x–direction given by

Fi+ 1
2 ,j,k = Lwaf

x, 1
2 Δt

(Ugod
i,j,k,Ugod

i+1,j,k) ,

Ugod
i,j,k = Lgod

y, 1
2 Δt

(Lgod

z, 1
2 Δt

(Un
i,j,k)) ,

Ugod
i+1,j,k = Lgod

y, 1
2 Δt

(Lgod

z, 1
2 Δt

(Un
i+1,j,k)) ,

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(16.101)

numerical flux in the y–direction given by

Gi,j+ 1
2 ,k = Lwaf

y, 1
2 Δt

(Ugod
i,j,k,Ugod

i,j+1,k) ,

Ugod
i,j,k = Lgod

z, 1
2 Δt

(Lgod

x, 1
2 Δt

(Un
i,j,k)) ,

Ugod
i,j+1,j = Lgod

z, 1
2 Δt

(Lgod

x, 1
2 Δt

(Un
i,j+1,k))

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(16.102)
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and numerical flux in the z–direction given by

Hi,j,k+ 1
2

= Lwaf

z, 1
2 Δt

(Ugod
i,j,k,Ugod

i,j,k+1) ,

Ugod
i,j,k = Lgod

x, 1
2 Δt

(Lgod

y, 1
2 Δt

(Un
i,j,k)) ,

Ugod
i,j,k+1 = Lgod

x, 1
2 Δt

(Lgod

y, 1
2 Δt

(Un
i,j,k+1)) .

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(16.103)

Exercise 16.24. Show that the intercell fluxes (16.101) reproduces the
intercell flux (16.87) for the linear advection equation (16.79) with a1 > 0,
a2 > 0, a3 > 0.

Solution 16.25. Left to the reader.

Remark 16.26. A first–order scheme for three dimensional nonlinear sys-
tems is obtained by replacing the waf flux by the Godunov first order upwind
flux in (16.101)–(16.103).

Exercise 16.27. Extend the Weighted Average State scheme with fluxes
(16.99)–(16.100) to construct a finite volume scheme for three–dimensional
non–linear systems. Verify that the corresponding fluxes reproduce (16.87)
for the linear advection equation (16.79) with a1 > 0, a2 > 0, a3 > 0.

Solution 16.28. Left to the reader.

16.7 Non–Cartesian Geometries

16.7.1 Introduction

A well defined fluid dynamic problem will include (a) a set of partial dif-
ferential equations (PDEs) or a set of Integral Equations (b) the domain in
which the governing equations are to be solved and (c) initial and bound-
ary conditions. The numerical solution of this mathematical problem requires
the discretisation of the domain via the generation of a grid or mesh and
the discretisation of the equations on the mesh. The grid generation process
discretises the continuous domain into a finite number of mesh points (finite
difference interpretation) or into a finite number of volumes (finite volume
interpretation). So far we have assumed that all domains are Cartesian, that
is their boundaries are perfectly aligned with the Cartesian coordinate direc-
tions x, y, z. Fig. 16.10 shows two examples of Cartesian domains in two space
dimensions. In practice, most domains are not Cartesian; Fig. 16.11 shows two
simple examples of non–Cartesian domains in two dimensions. Having spec-
ified the domain and its boundaries, the process of determining the interior
points or finite volumes is known as grid generation, or mesh generation. The
generation of grids for Cartesian domains is exceedingly simple, particularly
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for a rectangular domain such as that of Fig. 16.10 (a). For non–Cartesian
domains such as those of Fig. 16.11, both the generation of a grid and the
discretisation of the PDEs is much more involved. The topic of grid generation
is a large area of study in its own right and is not pursued here. We assume
that a mesh is available. Introductory material on grid generation is found
in the textbook by Hoffmann [253]. Comprehensive treatments of the subject
are found in the textbook edited by Thompson [487], the book by Thompson,
Warsi and Mastin [486] and in the VKI Lectures by Weatherhill [577]; see also
[485]. The purpose of this section is to introduce the reader to approaches

y

x

y

Domain
Domain

(a) (b)
x

Fig. 16.10. Examples of two–dimensional Cartesian domains in x–y space

A

B

y

x

y

A

DomainDomain

(a) (b)

C

B

x

Fig. 16.11. Examples of two–dimensional non–Cartesian domains in x–y space (a)
straight segment AB is not aligned with any of the Cartesian coordinates directions
(b) arc ABC is not aligned with any of the Cartesian coordinates directions

for dealing with non–Cartesian domains. In particular, we give details of the
finite volume approach, whereby one discretises the PDEs directly in physical
space.

16.7.2 General Domains and Coordinate Transformation

The simplest approach for dealing with non–Cartesian domains such as
those of Fig. 16.11 is to insist on using a Cartesian representation of the
boundaries of the domain. In this case those portions of the boundary which
are not aligned with any of the coordinate directions will end up with a stair-
case like representation. This simple procedure allows once more the use of
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Cartesian meshes but the errors introduced at the boundaries are too large
and therefore this approach is not recommended. An elegant method that re-
tains the Cartesian mesh in the interior of the domain and treats in a special
manner those computing cells that are cut by the true boundary is the so–
called Cartesian cut cell method. Details on this approach are found in [114],
[598], [47], [400], [589] and [590].

The most well–known approach for dealing with general domains is based
on transforming the domain in physical space (t, x, y, z) to a domain in compu-
tational space (τ, ξ, η, ζ). The coordinate transformation maps the, irregular,
domain in physical space to a perfectly regular computational domain, which
is then discretised by a perfectly regular mesh as done for Cartesian domains.
One defines the transformation via

τ = t , ξ = ξ(t, x, y, z) , η = η(t, x, y, z) , ζ = ζ(t, x, y, z) . (16.104)

By use of the chain rule, partial derivatives of any quantity φ = φ(t, x, y, z)
read

φt = φτ + φξξt + φηηt + φζζt ,
φx = φξξx + φηηx + φζζx ,
φy = φξξy + φηηy + φζζy ,
φz = φξξz + φηηz + φζζz ,

⎫
⎪⎪⎬
⎪⎪⎭

(16.105)

so that PDEs defined in physical space in terms of the (t, x, y, z) coordinates
are transformed in computational space in terms of the generalised coordinates
(τ, ξ, η, ζ).

Example 16.29. Suppose we want to solve the linear advection equation

ut + a1ux + a2uy = 0 , (16.106)

where a1 and a2 are constants, in a non–Cartesian domain. Use of relations
(16.105) reduces (16.106) in physical space to

uτ + â1uξ + â2uη = 0 (16.107)

in computational space. Note that this PDE has variable coefficients

â1 = ξt + a1ξx + a2ξy , â2 = ηt + a1ηx + a2ηy (16.108)

and is more complicated than the original PDE (16.106), which has constant
coefficients. The variable coefficients â1 and â2 include the transformation
derivatives ξx, ξy, ηx and ηy. These partial derivatives are called metrics and
may be computed analytically from (16.104), or numerically, as we shall ex-
plain.

Next we transform the three–dimensional time dependent Euler equations,
or any three–dimensional non–linear system of conservation laws

Ut + F(U)x + G(U)y + H(U)z = 0 . (16.109)
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By using relations (16.105) one obtains the transformed system in generalised
coordinates

Ûτ + F̂ξ + Ĝη + Ĥζ = 0 , (16.110)

where
Û = 1

J U ,

F̂ = 1
J [ξtU + ξxF + ξyG + ξzH] ,

Ĝ = 1
J [ηtU + ηxF + ηyG + ηzH] ,

Ĥ = 1
J [ζtU + ζxF + ζyG + ζzH] .

⎫
⎪⎪⎬
⎪⎪⎭

(16.111)

with J to be specified.

Remark 16.30. Equations (16.110) are written in conservation form, just
as were the original equations (16.109). For details see [253], [7] and [11].

Computation of Metrics

One can relate differentials in the (t, x, y, z) system to differentials in the
(τ, ξ, η, ζ) system so that the metrics can be found in terms of derivative of
(t, x, y, z) with respect to (τ, ξ, η, ζ) in computational space, namely

A = B−1 , (16.112)

where

A =

⎡
⎢⎢⎣

1 0 0 0
ξt ξx ξy ξz

ηt ηx ηy ηz

ζt ζx ζy ζz

⎤
⎥⎥⎦ ; B =

⎡
⎢⎢⎣

1 0 0 0
xτ xξ xη xζ

yτ yξ yη yζ

zτ zξ zη zζ

⎤
⎥⎥⎦ . (16.113)

See [253] for details. The computation of derivatives in computational space
is easily carried out numerically, as this is discretised by perfectly regular
meshes. In solving for the components of A via (16.112) one requires the
computation of the inverse matrix of B, which involves the expression

J =
1

det(B)
, (16.114)

where det(B) is the determinant of B and J is called the Jacobian of the
transformation. Note that this is different from the definition of the Jacobian
matrix associated with systems of hyperbolic conservation laws introduced in
Chap. 2. Here the Jacobian is a scalar quantity given by

J =
1

xξ(yηzζ − yζzη) − xη(yξzζ − yζzξ) + xζ(yξzη − yηzξ)
. (16.115)

In the next section we study the finite volume approach, whereby the equations
are directly discretised in physical space.
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16.7.3 The Finite Volume Method for Non–Cartesian Domains

The Finite Volume Method is another approach for dealing with general
non–Cartesian domains. In this approach the governing conservation laws, ex-
pressed in integral form, are discretised directly in physical space and one still
works with reference to a Cartesian frame. Background reading on the finite
volume method is found in [251], [570]. Here we present a brief description
of the method for two and three dimensional problems. First recall that the
integral form of the three–dimensional conservation laws (16.109) is

d
dt

∫ ∫ ∫

V

U dV +
∫ ∫

A

H · ndA = 0 , (16.116)

where V is a control volume, A is the boundary of V , H = (F,G,H) is the
tensor of fluxes, n is the outward unit vector normal to the surface A, dA is an
area element and H · n dA is the flux component normal to the boundary A.
See Sect. 1.5 of Chap. 1 for details on the derivation of the integral form of the
equations. The conservation laws (16.116) state that the time–rate of change
of U inside the volume V depends only on the total flux through the surface
A, the boundary of the control volume V . In the finite volume approach, the
integral form of the conservation laws is enforced on each control volume that
results from discretising the domain in physical space into a finite number of
finite volumes or computing cells. The conservation equations are thus satisfied
at the discrete level, which is a distinguishing property of the Finite Volume
Method.

The Two–Dimensional Case

Consider some two–dimensional domain in x–y space and assume this has
been discretised into a finite number of computing cells by some grid gen-
eration technique. Part of a simple structured mesh is shown in Fig. 16.12,
where all computing cells may be identified by the indices i and j, just as in
Cartesian meshes assumed previously. Consider now any computing cell from
the discretised domain and regard it as the control volume V in the integral
form of the equations (16.116). For generality assume that the boundary A
of V is the union of N straight segments AsAs+1, where AN+1 ≡ A1. Fig.
16.13 shows the special case of a quadrilateral finite volume, N = 4. We have
assumed that a grid has been generated and that the (xs, ys) coordinates of
the vertices As are known. The total flux through the boundaries in (16.116)
may now be written as

∫ ∫

A

H · n dA =
N∑

s=1

∫ As+1

As

H · ns dA , (16.117)

where s denotes the intercell boundary AsAs+1. We consistently adhere to
the convention of transversing the boundary so that the interior of the volume



16.7 Non–Cartesian Geometries 579

y

x

i, jI

i

j

Computational

cell 

Fig. 16.12. Possible grid configuration for two–dimensional domain in x–y space
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Fig. 16.13. Example of quadrilateral finite volume V in two–dimensional domain
in x–y space
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Fig. 16.14. General intercell boundary s of finite volume V in two–dimensional
domain in x–y space.
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always lies on the left hand side of the boundary. Let us now consider any
intercell boundary s as shown in Fig. 16.14, where L (left) denotes the interior
side of the control volume V and R (right) denotes a state exterior to V
and adjacent to side s. The first problem is to determine the direction of the
outward unit vector ns normal to side s; this is needed to evaluate the integral
terms in (16.117). It is convenient to choose the x–direction as the reference
direction and to define the angle θs as the angle formed by the x–direction
and the normal vector ns; see Fig. 16.14. The components of ns can be found
in terms of the angle θs and it is easy to see that

ns = (cosθs, sinθs) . (16.118)

Then, the total flux in (16.117) is

N∑
s=1

∫ As+1

As

H · ns dA =
N∑

s=1

∫ As+1

As

[cosθsF(U) + sinθsG(U)] dA . (16.119)

By interpreting the first integral term in equations (16.116) as the time–rate
of change of the average of U inside volume V we may write

d
dt

∫ ∫ ∫

V

U dV = |V | d
dt

U , (16.120)

where |V | denotes the volume of V , the area of V in the two–dimensional
case. Then, by substituting (16.119) and (16.120) into (16.116) we obtain

d
dt

U = − 1
|V |

N∑
s=1

∫ As+1

As

[cosθsF(U) + sinθsG(U)] dA . (16.121)

This finite volume formula leads to numerical schemes, once approximations
to the intercell fluxes for each side s have been made and a time discretisation
scheme has been chosen. In devising intercell flux approximations one requires
to be more specific as to the locations of the discrete values of U. Various flux
approximations are discussed in Chap. 8 of [251]. Here we assume that the
discrete values of the variable U are cell averages within the volumes and
assign them to the centres of the cells. This is known as the cell centred finite
volume method.

One way of constructing intercell flux approximations arises from exploit-
ing the rotational invariance of the governing equations. For the Euler equa-
tions see Sect. 3.2.1 of Chap. 3. For the two–dimensional case we have

cosθsF(U) + sinθsG(U) = T−1
s F(TsU) , (16.122)

where Ts ≡ T(θs) is the rotation matrix and T−1
s is its inverse, namely

T(θ) =

⎡
⎢⎢⎣

1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

⎤
⎥⎥⎦ , T−1 =

⎡
⎢⎢⎣

1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

⎤
⎥⎥⎦ . (16.123)



16.7 Non–Cartesian Geometries 581

We note that Û ≡ TsU is the vector of rotated conserved variables obtained
by applying the rotation matrix Ts to the original vector of conserved vari-
ables U and is aligned with the new rotated Cartesian frame (x̂, ŷ) shown
in Fig. 16.14. Here the coordinate x̂ is the normal direction (normal to the
intercell boundary) and ŷ is the tangential direction (parallel to the intercell
boundary). Then equations (16.121) become

d
dt

U = − 1
|V |

N∑
s=1

∫ As+1

As

T−1
s F(TsU) dA . (16.124)

So far, apart from interpretation (16.120), no numerical approximations
have been made. In order to define numerical fluxes across the intercell bound-
aries s we use the equations in the rotated frame (x̂, ŷ). They become an
augmented one–dimensional system

Ût + F̂x̂ = 0 , (16.125)

where F̂ = F(Û). This augmented one–dimensional system is identical to the
split multidimensional systems in Cartesian coordinates considered in Chap.
3, for which numerical fluxes were constructed in Chaps. 6 to 12 and 14.

Each term in the summation (16.124) is now approximated as
∫ As+1

As

T−1
s F(TsU) dA ≈ LsT−1

s F̂s , (16.126)

where Ls is the length of segment AsAs+1 and F̂s is the intercell flux corre-
sponding to the augmented one–dimensional system (16.125). Assuming nu-
merical fluxes F̂s have been constructed we then have the semidiscrete con-
servative scheme

d
dt

U = − 1
|V |

N∑
s=1

LsT−1
s F̂s , (16.127)

where the time discretisation is still open to choice. See Sec. 13.4.7 of Chap.
13.

In a computational setup as depicted in Fig. 16.12 the volume V is a
general computing cell labelled Ii,j . Let us now replace the time derivative by
a forward in time approximation; we then obtain the fully discrete scheme

Un+1
i,j = Un

i,j −
Δt

|Ii,j |

N∑
s=1

LsT−1
s F̂s , (16.128)

where |Ii,j | is the area of cell Ii,j .

Exercise 16.31. Show that if Ii,j , ∀i, j, is a Cartesian cell of area Δx×Δy
as shown in Fig. 16.15, then the finite volume formula (16.128) reproduces the
finite volume formula
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Un+1
i,j = Un

i,j +
Δt

Δx
[Fi− 1

2 ,j − Fi+ 1
2 ,j ] +

Δt

Δy
[Gi,j− 1

2
− Gi,j+ 1

2
] (16.129)

studied in Sect. 16.4.

3 = (-1, 0)

x

y

A

n n

n

1

4

= (1, 0)

= (0, -1)

A

Δ

x

y

n 2 = (0, 1)

Δ

A

A

1

2

4

3

4

1

2

3

Fig. 16.15. Cartesian cell Ii,j in two–dimensional domain in x–y space.

Solution 16.32. The outward unit normals for sides 1 to 4 are n1 = (1, 0),
n2 = (0, 1), n3 = (−1, 0), and n4 = (0,−1). The corresponding angles are
θ1 = 0, θ2 = 1

2π, θ3 = π, θ4 = 3
2π. The fluxes may be computed from

(16.126), or more directly from (16.117); they are
∫ A2

A1
(F,G) · n1 dA = Δy × F12 ,

∫ A3

A2
(F,G) · n2 dA = Δx × G23 ,

∫ A4

A3
(F,G) · n3 dA = −Δy × F34 ,

∫ A1

A4
(F,G) · n4 dA = −Δx × G41 .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16.130)

By defining F12 ≡ Fi+ 1
2 ,j , F34 ≡ Fi− 1

2 ,j , G23 ≡ Fi,j+ 1
2
, G41 ≡ Gi,j− 1

2
, we

obtain the the desired result.

A possible way of constructing intercell numerical fluxes for (16.128) is
following the Godunov approach, studied in Chap. 6 as used in conjunction
with the exact Riemann solver, and in Chaps. 8 to 12 using approximate
Riemann solvers. To obtain a Godunov first–order upwind flux we solve the
Riemann problem for (16.125) with initial data

Û(x̂, 0) =
{

ÛL = Ts(UL) if x̂ < 0 ,

ÛR = Ts(UR) if x̂ > 0 .
. (16.131)
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Here UL is the state in the interior of the finite volume V and UR is the
state outside V separated from UL by the intercell boundary AsAs+1. See
Fig. 16.14.

Computation of Lengths, Normals and Areas

Here we give formulae for the lengths Ls, the components of the out-
ward unit normals ns and the areas of co–planar quadrilateral finite volumes.
These quantities are needed in the conservative formula (16.128). Consider
the quadrilateral V of Fig. 16.13 and assume the coordinates (xs, ys) of the
points As are known. We first define

Δxs ≡ xs+1 − xs , Δys ≡ ys+1 − ys . (16.132)

Then, the length Ls of side s is given by

Δs =
√

Δx2
s + Δy2

s . (16.133)

The components cosθs and sinθs of the outward unit normal ns are

cosθs =
Δys

Δs
, sinθs = −Δxs

Δs
. (16.134)

Finally, the area of the co–planar quadrilateral V is given by

|V | =
1
2
|(x3 − x1) × (y4 − y2) − (y3 − y1) × (x4 − x2)| . (16.135)

Examples of Finite Volume Schemes

Consider sufficiently smooth structured grids formed by quadrilateral vol-
umes as shown in Fig. 16.12. Then formula (16.128) contains four flux contri-
butions. The most natural way of updating the solution is by applying (16.128)
with all flux contributions included in a single step. We term this the unsplit
finite volume method and is entirely consistent with the unsplit finite volume
schemes for Cartesian meshes studied in Sect. 16.4. One may also reinter-
pret (16.128) as a split finite volume scheme, whereby for instance, flux terms
associated with the i index are included in a predictor step and flux terms
associated with the j index are included in the corrector step. The practical
implementation of the split finite volume schemes is entirely analogous to the
split schemes studied in Sects. 16.2 and 16.3.

First–order methods of the Godunov type are easily constructed. The in-
tercell numerical flux depends only on the two rotated states (ÛL, ÛR), the
length Ls and the normal ns. The following is a possible algorithm

(I) For each intercell boundary s rotate the data (UL,UR) to obtain ÛL =
TsUR, ÛR = TsUR.
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(II) Solve the local Riemann problem with rotated data (ÛL, ÛR) to obtain
the intercell flux F̂s. Here one uses the exact Riemann solver, see Chaps.
6, or approximate Riemann solvers, see Chaps. 8 to 12.

(III) Rotate F̂s back by multiplying it by T−1
s to obtain the intercell flux

T−1
s F̂s for side s.

(IV) Compute lengths Ls, normals ns and areas |Ii,j | to complete the intercell
flux evaluation.

(V) Update the solution according to a split or unsplit scheme.

Recall that for Cartesian meshes an unsplit Godunov method has linearised
stability limit 1

2 , whereas a split version has limit 1. The WAF–type first order
unsplit finite volume scheme of Sect. 16.6.1 also has stability limit 1; this
scheme can easily be implemented in non–Cartesian quadrilaterals.

The second–order TVD schemes presented in Chaps. 14, see also Sect.
16.2 and 16.3 of this chapter, can also be implemented for non–Cartesian
quadrilateral meshes following the methodology for the Godunov first–order
upwind method outlined above. Details on WAF–type methods are found in
[456], [457] and [64].

The Three–Dimensional Case

Three–dimensional finite volume schemes are easily constructed. Here one
requires the evaluation of the area of of non–coplanar intercell boundaries and
as well as volumes. For details see [251]. The rotational invariance property of
the three–dimensional Euler equations, proved in Sect. 3.2.2 of Chap. 3, can
also be exploited to derive finite volume formulae analogous to (16.128), with
corresponding Godunov–type numerical fluxes, see [64] for example.
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Multidimensional Test Problems

This chapter is concerned with tests for assessing numerical solutions to
multidimensional problems. The assessment of the numerical methods to be
used in practical computations, prior to their actual application, is of consid-
erable importance and cannot be emphasised enough. There are four classes
of test problems that can be used, namely (A) tests with exact solution, (B)
tests with reliable numerical solution to equivalent one–dimensional equations
obtained under the assumption of symmetry for instance, (C) tests for which
other numerical solutions are available and (D) tests for which experimental
results are available. In the first three categories of test problems one solves
the same or equivalent governing partial differential equations and thus one
seeks complete agreement in the comparisons. Care is required in class (D)
when experimental results are used. The governing PDEs might themselves
not be an accurate description of the physical problem being solved. Typical
questions to be asked are: will viscosity and heat conduction be important in
the problem, will the equation of state be a correct description of the thermo-
dynamics, will turbulence be important, etc. If one can isolate these effects,
or account for their influence, then comparison between numerical and experi-
mental results is useful in assessing the performance of the numerical methods.
If the numerical solution is reliable, then one would expect the comparison
with experimental results to be a way of verifying the validity of the governing
equations as a suitable model of the physics. A useful reference here is the
report by Albone [3].

Exact solutions for one–dimensional problems can be used to check two
and three dimensional programs. For the two–dimensional case one can, for
instance, use the exact Riemann solver of Chap. 4 with the initial data states
separated by a straight line at an angle to the mesh; this includes the trivial
cases of one–dimensional flow along coordinates directions. The same can
be done for three–dimensional programs. In this chapter we consider test
problems in categories (B), (C) and (D) above.

E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 585
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17.1 Explosions and Implosions

Here we consider test problems for the two and three dimensional Euler
equations for ideal gases with γ = 1.4. The geometry and initial data for the
problems are such that cylindrical and spherical symmetry can be enforced.
The multidimensional Euler equations may then be simplified to the one–
dimensional inhomogeneous system

Ut + F(U)r = S(U) , (17.1)

where

U =

⎡
⎣

ρ
ρu
E

⎤
⎦ , F =

⎡
⎣

ρu
ρu2 + p
u(E + p)

⎤
⎦ , S = −α

r

⎡
⎣

ρu
ρu2

u(E + p)

⎤
⎦ . (17.2)

See Sect. 1.6.2 of Chap. 1 for details. Here r is the radial direction, u is the
radial velocity and α is a parameter. For α = 0 we reproduce plain one–
dimensional flow. For α = 1 we have cylindrical symmetry and equations
(17.1)–(17.2) are equivalent to the two–dimensional Euler equations. For α = 2
we have spherical symmetry and (17.1)–(17.2) are equivalent to the three–
dimensional Euler equations. The one–dimensional equations (17.1)–(17.2)
with a geometric source term may be solved with a reliable one–dimensional
method on a very fine mesh to provide very accurate numerical solutions to
compare with the numerical solution of the full two and three dimensional
Euler equations. These test problems belong to category (B) above.

2

1

21

Fig. 17.1. Initial conditions for cylindrical explosion. Dark circular zone has high
pressure and high density
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17.1.1 Explosion Test in Two–Space Dimensions

The two–dimensional Euler equations, see Chap. 3, are solved on the
square domain 2.0 × 2.0 in the x–y plane. The initial conditions consist of
the region inside of a circle of radius R = 0.4 centred at (1, 1) and the region
outside the circle, see Fig. 17.1. The flow variables take constant values in
each of these regions and are joined by a circular discontinuity at time t = 0.
The two constant states for the two–dimensional Euler equations are chosen
to be

ρins = 1.0 , ρout = 0.125 ,
uins = 0.0 , uout = 0.0 ,
vins = 0.0 , vout = 0.0 ,
pins = 1.0 , pout = 0.1 .

⎫
⎪⎪⎬
⎪⎪⎭

(17.3)

Subscripts ins and out denote values inside and outside the circle respectively.
This test problem is like a two–dimensional extension of the shock–tube prob-
lem used for assessing one–dimensional solutions in previous chapters.

We solve the full two–dimensional Euler equations by the waf method
presented in Chap. 14 in conjunction with space splitting, see Sect. 16.2 of
Chap. 16; the Riemann solver used is HLLC presented in Chap. 10. The limiter
function used is vanleer, see 13.7 and 13.8 of Chap.13. The CFL coefficient
used is Ccfl = 0.9 and the mesh is of 101×101 computing cells. We remark that
in initialising the implosion/explosion problems, we modify the initial data
on quadrilateral cells cutting the initial discontinuity, by assigning modified
area–weighted values to the appropriate cells at the initial time t = 0. This
procedure avoids the formation of small amplitude waves created at early
times by the staircase configuration of the data; such waves are not spurious,
they result from the data as given and the numerical method does its best to
resolve them.

Fig. 17.2 shows the density distribution as a function of x and y at the
output time t = 0.25. The solution exhibits a circular shock wave travelling
away from the centre, a circular contact surface travelling in the same direc-
tion and a circular rarefaction travelling towards the origin (1, 1). Fig. 17.3
shows the corresponding pressure distribution at the same time. As expected,
the pressure is continuous across the contact surface. We remark that as time
evolves, a complex wave pattern emerges. Some salient features of the solu-
tion are these. The circular shock wave travels outwards, becoming weaker as
time evolves. The contact surface follows the shock becoming weaker also; at
some point in time the contact comes to rest and then travels inwards. The
rarefaction travelling towards the centre reflects, as a rarefaction, and over
expands the flow so as to create an inward travelling shock wave; this circular
shock wave implodes into the origin, reflects and travels outwards colliding
with the contact surface. And so on.

The one dimensional inhomogeneous equations (17.1), (17.2) for the equiv-
alent problem are solved numerically on a domain [0, 1] on the radial line r,
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Fig. 17.2. Cylindrical explosion. Density distribution at time t = 0.25. Solution
exhibits circular shock, circular contact and circular rarefaction

Fig. 17.3. Cylindrical explosion. Pressure distribution at time t = 0.25. Solution
exhibits circular shock and circular rarefaction. Compare with Fig. 17.2
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with equivalent shock–tube like data. The numerical method used is the Ran-
dom Choice Method (RCM) described in Chap. 7, together with the splitting
techniques of Chap. 15 to account for the geometric source term. We used
M = 1000 computing cells and a CFL coefficient Ccfl = 0.4. Recall that
the RCM resolves discontinuities as true discontinuities, the only errors being
those of the position of the waves. Under these circumstances we may regard
the RCM solution as the exact solution.
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Fig. 17.4. Comparison between the two–dimensional WAF solution (symbol) and
the one–dimensional radial RCM solution (line) at time=0.25

Fig. 17.4 shows a comparison between the one–dimensional radial solution
(line) and the two–dimensional solution (symbols) along the radial line that
is coincident with the x–axis. Comparisons along other radial directions give
virtually identical results. This is confirmed by the very symmetric character
of the numerical solution shown in Figs. 17.2 and 17.3. The shock wave is
resolved with two mesh points and the contact surface is resolved with two to
three mesh points. It is worth remarking that, at least for this test problem,
the resolution of discontinuities that travel in all directions is essentially the
same as that achieved in one–dimensional problems; see results of Chap. 14.

The initial data of the type (17.3) may be reversed so as to create an
implosion problem, with shock focussing taking place as part of the solution.
This can also be used to test programs and methods.
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17.1.2 Explosion Test in Three Space Dimensions

The three–dimensional Euler equations, see Chap. 3, are solved on a cube
2.0 × 2.0 × 2.0 in x–y–z space. The initial conditions consist of the region
inside of a sphere with radius R = 0.4 centred at (1, 1, 1) and a region outside
the sphere. The flow variables take constant values in each of these regions
and are joined by a spherical discontinuity at time t = 0. The data values
are the same as those for the two–dimensional case in (17.3), with the w
velocity component initialised as wins = wout = 0. This test problem is like a
three–dimensional extension of the shock–tube problem.

Fig. 17.5. Spherical explosion. Density distribution on plane z = 0 at time t = 0.25.
Solution exhibits a spherical shock, a spherical contact and a spherical rarefaction

Fig. 17.5 shows the density distribution as a function of x and y on the
plane z = 0 at the output time t = 0.25. The solution exhibits a spherical
shock wave, a spherical contact surface travelling in the same direction and
a spherical rarefaction travelling towards the origin (1, 1, 1). Fig. 17.6 shows
the corresponding pressure distribution; the pressure is continuous across the
contact surface.

The one–dimensional equations (17.1)–(17.2) for the equivalent problem
are solved on a domain [0, 1] on the radial line r with equivalent shock–tube
like data by the Random Choice Method, with M = 1000 computing cells and
a CFL coefficient of Ccfl = 0.4.
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Fig. 17.6. Spherical explosion. Pressure distribution on plane z = 0 at time t = 0.25.
Solution exhibits a spherical shock and a spherical rarefaction. Compare with Fig.
17.5

Fig. 17.7 shows a comparison between the one–dimensional radial solu-
tion (line) and the three–dimensional solution (symbols) along the radial line
that is coincident with the x–axis. Agreement is good and, as for the two–
dimensional equations, the resolution of discontinuities in three space dimen-
sions is as good as in one–dimensional problems.

17.2 Shock Wave Reflection from a Wedge

The subject of shock waves is large and embodies a substantial interna-
tional community of scientists. The International Symposium on Shock Waves
is a series of bi–annual meetings devoted exclusively to shock waves. A good
source of information are the proceedings of these meetings. See for example
Bershader and Hanson [52]; Grönig [228]; Takayama [478]; Brun and Du-
mitrescu [83]; and Jagadeesh, Arunan and Reddy [266].

Shock wave phenomena of considerable physical interest are those arising
from the reflection of a shock wave from a wedge placed at an angle to the
incident shock wave direction; see the sketch of Fig. 17.8. At the initial time
a shock wave of shock Mach number MS , perfectly perpendicular to the x–
direction is placed at a position xS . The shock travels in the x–direction
and encounters a wedge that makes an angle φ with the shock propagation
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Fig. 17.7. Spherical explosion. Comparison between the three–dimensional WAF
solution (symbol) and the one–dimensional radial RCM solution (line) at time=0.25

direction. The shock wave reflection pattern that emerges may fall into one
of four possible categories. These are called: (a) regular reflection, (b) single
Mach reflection, (c) complex Mach reflection and (d) double Mach reflection.
The occurrence of a particular type of reflection depends on the shock Mach
number MS and the wedge angle φ. A comprehensive study of these wave
patterns is found in the book by Ben–Dor [42]. Informative references, amongst
many others, are those of Heilig [246], Heilig and Reichenbach [246], Dewey
[158] and Takayama [477].
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x

Fig. 17.8. Sketch of initial conditions for shock wave reflection from a wedge.
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Two very useful reference are the UTIAS report by Glaz, Colella, Glass
and Deschambault [210] and the paper by the same authors [211]. Many ex-
perimental and numerical results for this type of problems are presented and
discussed in these works.

Here we consider the case of Mach number MS = 1.7 and φ = 25 degrees
for which Fig. 17.9 shows experimental and computational results. The top
frame shows the experimental result (Courtesy of Professor K. Takayama,
Shock Wave Research Center, Sendai, Japan) and the bottom frame shows
the computed result for density. The computational results were obtained
on a rectangular domain of 25.0 × 16.5 on the x–y plane, with the apex of
the wedge placed at x = 4.69 and the initial shock placed at x = 4.0. The
conditions ahead of the shock are ambient conditions, with ρa = 1.225 kg/m3,
pa = 1.01325 × 105 Pa, ua = 0, va = 0. Given conditions ahead of the shock
and the shock Mach number MS , the state behind the shock is obtained
from the Rankine–Hugoniot conditions, see Sect. 3.1.3 of Chap. 3. Start up
errors appear in the numerical solution, which may affect the fine details of
the solution. A common practice [211], [250] is to run the problem until the
numerical shock has been established and then reset the initial conditions
connecting the states ahead and behind the shock, not through the Rankine–
Hugoniot conditions, but through the numerical shock. For this purpose one
may simply use a one–dimensional code to find the numerical shock profile
and give this as the initial conditions for the problem, or one may run the
two–dimensional code and propagate the shock for some distance and then
reset the state behind the shock. In the computations shown, we use the latter
option and allow the shock to travel a distance of 90 % of that between its
initial position and that of the apex of the wedge.

The numerical method used here is the WAF method with dimensional
splitting, see Sect. 16.2 and 16.3 of Chap. 16. The Riemann solver used is
HLLC of Sect. 10.4 of Chap. 10. The limiter function used is the vanleer

limiter; see Sects. 13.7 and 13.8 of Chap. 13, see also Chap. 14. The CFL
coefficient is Ccfl = 0.9 and the maximum wave speed is estimated as in
Sect. 16.3.2 of Chap. 16. The bottom frame of Fig. 17.9 shows the numerical
solution obtained with a regular curvilinear mesh of 800 × 528.

Fig. 17.10 shows the numerical results obtained with a scheme that com-
bines the CHIMERA approach [20], [462], [43], [105], [106], an Adaptive Mesh
Refinement (AMR) approach [45], [48], [46], [399], [118], [400] and a Cartesian
mesh approach. The base grid used is 50×33 with two further levels of refine-
ment, each with a refinement factor of four. The top frame of Fig. 17.10 shows
the structure of the mesh at the output time. Details of the CHIMERA–AMR–
Cartesian approach used are found in Boden [66] and Boden and Toro [67].
The bottom frame of Fig. 17.10 shows the corresponding computed density,
compare with bottom frame of Fig. 17.9.

The wave pattern of the solution corresponds to single Mach reflection.
There are three shocks meeting at the triple point, namely, part of the incident
shock, the reflected shock and the Mach stem, which joins the triple point
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Fig. 17.9. Shock reflection problem for MS = 1.7 and wedge angle of φ = 25 degrees.
Top frame: experimental result (Courtesy of Professor K. Takayama). Bottom frame:
density contours from fine regular mesh solution obtained with WAF method and
HLLC Riemann solver.
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Fig. 17.10. Shock reflection problem for MS = 1.7 and wedge angle of φ = 25
degrees. Top frame: AMR–CHIMERA grid structure at output time. Bottom frame:
density contours from AMR–CHIMERA solution obtained with WAF method with
HLLC Riemann solver (Courtesy of Dr. E. P. Boden).
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with the wedge surface. From the triple point there emerges a slip surface
that joins the wedge surface at a sharp angle. The qualitative agreement
between the experimental result and the computations is excellent. The reader
is warned however, that for high shock Mach numbers, when both real gas
and dissipative effects are important, the agreement deteriorates, unless of
course the Euler equations are replaced with the Navier–Stokes equations and
the ideal gas equation of state is replaced with a suitable real–gas equation of
state. See the paper by Glaz et. al. [210], [211] on these issues.

Generally, the overall wave structure of the solution of this problem can be
computed well with almost any modern shock–capturing method. A delicate
feature is the slip surface, across which discontinuities in density and velocity
occur. The particular Riemann solver used in Godunov–type methods can,
however, have a profound influence on the solution. For instance, the HLL
Riemann solver of Chap. 10, the structure of which does not account for
contact and shear waves, will smear the slip surface to unacceptable levels.
Other Riemann solvers may be sensitive to extreme conditions. Godunov–
type upwind methods with complete Riemann solvers will generally be more
accurate than other methods, such as incomplete Riemann solvers, centred
methods and flux vector splitting methods.
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FORCE Fluxes in Multiple Space Dimensions

This chapter contains a multidimensional extension of the centred FORCE
numerical flux introduced in chapter 7. The extension applies to structured
and unstructured meshes in two and three spatial dimensions. The resulting
one–step schemes in conservative form are shown to be monotone and linearly
stable for a generous range of Courant numbers. Sample numerical results are
shown for the basic first–order FORCE schemes as well as for higher–order
extensions in space and time using the ADER approach.

18.1 Introduction

The pioneering work of Lax and Wendroff [302], and more recently that of
Hou and LeFloch [259], have established, theoretically, that numerical meth-
ods for systems of non–linear hyperbolic conservation laws must be conser-
vative. Then, a key task is the prescription of monotone intercell numeri-
cal fluxes. These will then constitute the building block for a wide range of
high–order numerical methods constructed in the frameworks of finite volume
and discontinuous Galerkin finite element methods, in either fully discrete or
semi–discrete form, on structured or unstructured meshes. The construction
of numerical fluxes has been a central research issue for over five decades, of
which two very prominent and representative examples are the Lax–Friedrichs
flux, see chapter 5, and the Godunov flux, see chapter 6. These two methods
contain key ideas that remain the pillars of current research and are represen-
tative of two distinct approaches for prescribing numerical fluxes, respectively
termed centred (or symmetric) and upwind (or Riemann–problem based, or
characteristic–based). Upwind schemes explicitly use wave propagation infor-
mation contained in the differential equations for the construction of the nu-
merical flux, which is usually accomplished by solving a local one–dimensional
Riemann problem, in the direction normal to a cell interface. See Chapter 4
for details of the exact solution of the classical Riemann problem for the Eu-
ler equations. Approximate Riemann solvers are discussed in Chapters 7 to
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12. Centred schemes, on the other hand, do not explicitly use wave propa-
gation information contained in the corresponding Riemann problem. That
is, centred schemes do not solve the Riemann problem, in the conventional
manner. However it is fair to point out that centred schemes are not indepen-
dent of the Riemann problem; they use both the differential equations and
the initial conditions of the relevant Riemann problem. Examples of classical
centred schemes are introduced in Chapter 5. In general, it is accepted that
Godunov–type, upwind methods are potentially more accurate than centred–
type methods; but the latter are simpler and more general than the former.
The potentially enhanced accuracy of upwind methods is mainly realized for
intermediate waves, especially if they move slowly relative to the mesh. In
particular, contact and shear waves are more accurately resolved by upwind
methods than by centred methods. However at this point it is necessary to
state that the potentially superior accuracy of upwind methods depends cru-
cially on the particular Riemann solver used. In addition to being linear or
non–linear, a Riemann solver may also be classified as complete or incomplete.
A complete Riemann solver is that whose wave model includes all character-
istic fields present in the exact Riemann problem. Otherwise we speak of
incomplete Riemann solvers. The simplest incomplete Riemann solver for a
system is the Rusanov scheme, a one–wave scheme, see Chapter 10. Another
example is the HLL Riemann solver, a two–wave scheme, see Chapter 10; this
solver is incomplete for any system of more than two characteristic fields. Ob-
viously, the exact Riemann solver is complete. The approximate HLLC solver,
Chapter 10, is complete for the Euler equations in one, two and three space
dimensions. The Roe Riemann solver and the Osher–Solomon Riemann solver
are complete, for the systems they have been constructed. Regarding resolu-
tion of intermediate waves, flux vector splitting solvers, Chapter 8, perform
like incomplete Riemann solvers; results are similar to those of the incomplete
HLL solver. Incomplete Riemann solvers tend to smear intermediate waves
very heavily; these waves are not contained in their approximate wave mod-
els. The overall performance of incomplete Riemann solvers and flux vector
splitting methods is comparable, at least for the larger range of Courant num-
bers, to that of centred–type methods, which tend to be much simpler. This
means that unless one has a complete Riemann solver available, it is more
convenient to use a centred–type method, provided such method can be used
for general meshes in conservative form and can be extended to high order of
accuracy in space and time.

The FORCE scheme is a centred–type approach first introduced for one–
dimensional hyperbolic problems in [513] and [528]. FORCE is related to the
centred schemes of Nessyahu and Tadmor [362] and to the works of Armin-
jon and collaborators [16]. Both the Nessyahu–Tadmor and the FORCE ap-
proaches have the common feature of applying an integral averaging operator
on staggered control volumes. The Nessyahu–Tadmor scheme consists of a
two–step procedure applied on staggered grids; the scheme does not have a
conservative form and is subject to a CFL restriction of 1/2, in one space
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dimension. The FORCE scheme is a one–step procedure in conservative form
on a non–staggered grid, with a corresponding numerical flux, the FORCE
flux; it is subject to a CFL restriction of unity, in one space dimension. The
Nessyahu–Tadmor schemes have been applied to multidimensional problems
on regular Cartesian grids by Jiang and Tadmor [271] and to unstructured
triangular and tetrahedral meshes by Arminjon and collaborators, see for ex-
ample [16]. Available theoretical results for the Nessyahu–Tadmor schemes
include proofs of convergence. Haasdonk et al. [231] proved convergence of
the first–order version of the Nessyahu–Tadmor scheme for non–linear scalar
conservation laws on unstructured triangular meshes in two space dimensions.
For the FORCE scheme convergence was proved by Chen and Toro [103] for
the case of two non–linear systems of conservation laws in one space dimension,
namely the isentropic equation of gas dynamics and the non–linear shallow
water equations with a source term due to bed elevation. There is a signifi-
cant body of literature on the related theme generally referred to as central
schemes. The reader is encouraged to consult the following works and refer-
ences therein [57], [315], [316], [155], [293], [286], [17], [16], [18], to name but
a few.

There is also an interesting analogy between the FORCE scheme [513]
and the composite schemes of Liska and Wendroff [329]. In the composite
schemes the solution is advanced in time by alternating between the Lax–
Friedrichs scheme, used by La steps, and the Lax–Wendroff scheme, used by
Lb steps, with empirical choices for the numbers La, Lb, trying to reconcile
accuracy with monotonicity. In the FORCE scheme the composite aspect of the
scheme is found at the level of the flux, which is precisely the arithmetic mean,
weight of 1/2, of the Lax–Friedrichs and the Lax–Wendroff fluxes. The weight
1/2 is significant, as it is precisely the value that gives a monotone scheme
with the maximum region of monotonicity, without resorting to explicit wave
propagation information.

The material of this chapter is based on recent work reported in [536]
and is a multidimensional extension of the, centred, FORCE numerical flux
introduced in Chapter 7 for the case of one space dimension. The extension
applies to structured and unstructured meshes in two and three space di-
mensions. The resulting one–step schemes in conservative form are shown to
be monotone and linearly stable for a generous range of Courant numbers.
The schemes can be extended to arbitrary order of accuracy in both space
and time following the ADER approach in the frameworks of finite volume
and discontinuous Galerkin finite elements methods, as will be introduced in
Chapter 20.

The rest of this chapter is structured as follows. In section 2 we review
the FORCE flux for the one–dimensional case. In Section 3 we construct
multidimensional versions of FORCE for regular Cartesian meshes in two and
three space dimensions. In Section 4 we analyze the monotonicity and linear
stability of the multidimensional FORCE schemes on Cartesian meshes. In
Section 5 we extend the FORCE approach and construct numerical fluxes on
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general meshes, in two and three space dimensions. In Section 6 we show some
numerical results. Conclusions are drawn in section 7.

18.2 Review of FORCE in One Space Dimension

Here we first review the FORCE flux in one space dimension. To this end
we consider m × m one–dimensional hyperbolic systems in conservation–law
form

∂tQ + ∂xF(Q) = 0 , (18.1)

where Q is a vector of m components, the conserved variables, and F(Q) is
the corresponding vector of fluxes. The finite volume method to solve (18.1)
reads

Qn+1
i = Qn

i − Δt

Δx
[Fi+ 1

2
− Fi− 1

2
] , (18.2)

where Fi+ 1
2

is the numerical flux, Δx is the length of the control volume and
Δt is the time step.

18.2.1 FORCE and Related Fluxes

We first review the reference first–order method, Godunov’s upwind method
[216], which defines the intercell numerical flux Fi+ 1

2
in terms of the solution,

if available, of the corresponding Riemann problem

∂tQ + ∂xF(Q) = 0 , x ∈ (−∞,∞) , t > 0 ,

Q(x, 0) =

⎧
⎨
⎩

Qn
i if x < 0 ,

Qn
i+1 if x > 0 .

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(18.3)

See Chapts. 4 and 6. The so–called Riemann fan in the x–t plane consists of
m+1 constant states separated by m wave families, each one associated with
a real eigenvalue λ(k). The similarity solution of (18.3) depends on the ratio
x/t and is denoted by Qi+ 1

2
(x/t). The Godunov intercell numerical flux is

found by first evaluating Qi+ 1
2
(x/t) at x/t = 0, that is along the t–axis, and

then evaluating the physical flux vector F(Q) in (18.3) at Qi+ 1
2
(0), namely

FGod
i+ 1

2
= F(Qi+ 1

2
(0)) . (18.4)

The exact solution of (18.3) for complicated systems, if possible, will generally
involve the iterative solution of a non–linear system and thus in practice,
whenever available, one uses approximate Riemann solvers. See Chapts. 7 to
12.
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Non–upwind (or centred, or symmetric) schemes do not explicitly utilize
wave propagation information and are thus simpler and more generally appli-
cable. Commonly, the numerical fluxes can be computed explicitly as simple
algebraic functions of the initial condition in (18.3), namely

Fi+ 1
2

= H(Qn
i ,Qn

i+1) , (18.5)

where H(VL,VR) is a two–point flux function, required to satisfy the consis-
tency condition H(V,V) = F(V). A classical example of a simple numerical
flux that leads to a monotone scheme (18.2) is the Lax–Friedrichs flux

Flf

i+ 1
2

=
1
2
[F(Qn

i ) + F(Qn
i+1)] −

1
2

Δx

Δt

(
Qn

i+1 − Qn
i

)
. (18.6)

One may interpret simple fluxes, such as the Lax–Friedrichs flux, as resulting
from a low–level approximation to the solution of the Riemann problem (18.3).
The Lax–Friedrichs flux, when inserted into (18.2), leads to a scheme that is
linearly stable up to Courant number unity for the model hyperbolic equation.
In addition, the scheme is monotone for the scalar version of (18.1).

Another classical, and slightly more elaborate, flux is the two–step Lax–
Wendroff flux

Flw
i+ 1

2
= F(Qlw

i+ 1
2
) , Qlw

i+ 1
2

=
1
2
(
Qn

i + Qn
i+1

)
− 1

2
Δt

Δx
[F(Qn

i+1) − F(Qn
i )] ,

(18.7)
which leads to a scheme that is linearly stable up to Courant number unity
for the model hyperbolic equation, non–monotone and second–order accurate
in space and time.

A simple flux that leads to a monotone scheme is the FORCE flux, in-
troduced in Chapt. 7. This flux was first derived [513] from a deterministic
interpretation of the staggered–grid version of Glimm’s method [212] and re-
sults in a non–staggered one–step conservative scheme of the form (18.2) with
intercell numerical flux

Fforce
i+ 1

2
=

1
4

[
F(Qn

i ) + 2F(Qlw
i+ 1

2
) + F(Qn

i+1) −
Δx

Δt

(
Qn

i+1 − Qn
i

)]
.

This can be rewritten as

Fforce
i+ 1

2
=

1
2
(Flw

i+ 1
2

+ Flf

i+ 1
2
) , (18.8)

the arithmetic average of the Lax–Friedrichs flux (18.6) and the two–step
Lax–Wendroff flux (18.7).

For further details on the FORCE flux see [513], [528] and Chapt. 7 of
this book, sections 7.4.2 and 7.4.3. See also [103], where convergence is proved
for the case of two non–linear hyperbolic systems, namely the equations of
isentropic gas dynamics and the shallow water equations with a bottom slope
source term.
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18.2.2 Monotonicity and Numerical Viscosity

Here we analyze monotonicity and numerical viscosity of the FORCE
scheme for the model hyperbolic equation

∂tq + λ∂xq = 0 , λ: constant , (18.9)

with physical flux function f(q) = λq. We also discuss a possible generaliza-
tion of FORCE, called GFORCE [496], [524]. The corresponding conservative
scheme for (18.9) reads

qn+1
i = qn

i − Δt

Δx
[fi+ 1

2
− fi− 1

2
] , (18.10)

for which the Lax–Friedrichs and Lax–Wendroff, respectively, are

f lf

i+ 1
2

=
(1 + c)

2c
(λqn

i ) − (1 − c)
2c

(λqn
i+1) (18.11)

and
f lw

i+ 1
2

=
1
2
(1 + c)(λqn

i ) +
1
2
(1 − c)(λqn

i+1) . (18.12)

Here c is the CFL or Courant number c = λΔt
Δx . Then the FORCE flux is

easily verified to be

fforce

i+ 1
2

=
(1 + c)2

4c
(λqn

i ) − (1 − c)2

4c
(λqn

i+1) , (18.13)

the arithmetic mean of the Lax–Friedrichs and Lax–Wendroff fluxes.
Now consider FORCE–type fluxes (18.8), see [496] and [524], as convex

averages of the Lax–Friedrichs and the two–step Lax–Wendroff fluxes, as fol-
lows

f
(ω)

i+ 1
2

= ωf lw
i+ 1

2
+ (1 − ω)f lf

i+ 1
2

, 0 ≤ ω ≤ 1 , (18.14)

which written in full becomes

f
(ω)

i+ 1
2

=
1
2
(1 + c)

[
(1 − c)ω + 1

c

]
(λqn

i ) +
1
2
(1 − c)

[
(1 − c)ω − 1

c

]
(λqn

i+1) .

(18.15)
When inserted in (18.10), this flux yields a three–point scheme whose coeffi-
cient of numerical viscosity is

α =
1
2

[
(1 − c2)(1 − ω)

c

]
λΔx , (18.16)

which varies linearly with ω; it is a maximum for the Lax–Friedrichs flux
(ω = 0) and a minimum (zero) for the Lax–Wendroff flux (ω = 1).

It is instructive to analyze the weighted FORCE–type schemes in the c−ω
plane of Fig. 18.1. Particular values of the weight ω in (18.14) reproduce well–
known numerical fluxes. For example, the bottom horizontal line with constant
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0 1
2

1
0

1
2

1

ω

c

Lax-Wendroff scheme

Force scheme

Lax-Friedrichs scheme

Godunov scheme

Non Monotone Schemes

Monotone Schemes

Fig. 18.1. Weighted FORCE-type fluxes defined as convex averages of the Lax–
Friedrichs and Lax–Wendroff fluxes in the c − ω plane. Here c is Courant number
and ω is a weight, whose constant values 0, 1

2
and 1 reproduce the Lax–Friedrichs,

FORCE and Lax–Wendroff fluxes; ω = 1/(1 + |c|) reproduces the Godunov upwind
method.

weight ω = 0 gives the Lax–Friedrichs flux (18.11). The top horizontal line
with constant weight ω = 1 gives the Lax–Wendroff flux (18.12). For the
constant weight ω = 1

2 we reproduce the FORCE flux (18.13).
We could also consider weights ω(c) that depend on wave propagation

information, such as the Courant number c. In particular, by comparing the
coefficients of the flux (18.15) with those of the Godunov upwind flux, see
Chapter 5, we obtain the Courant number dependent weight given by

ωg(c) =
1

1 + |c| , (18.17)

for which the average flux (18.14) reproduces identically Godunov’s upwind
flux.

The Godunov curve ωg(c) divides the unit square of Fig. 18.1 into two sub–
regions. The region associated with weights lying above ωg(c) contains non–
monotone schemes and the region below ωg(c) contains monotone schemes.
The range of constant weights ω (no dependence on c), with 0 ≤ ω ≤ 1

2 ,
defines a sub–class of monotone schemes, with the FORCE flux (18.13) cor-
responding to the limiting case ω = 1

2 , which is the scheme with the smallest
numerical viscosity within the class, and thus the optimal scheme, for which no
dependence on c is required, that is no explicit upwind information is needed.

In order to improve upon the centred FORCE flux, that is, reduce its
numerical viscosity further, we need to consider entering the region 1

2 < ω ≤ 1,
within which all schemes (18.14) with constant weight ω are non–monotone;
monotonicity is lost for the larger values of the CFL number c. Another way
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to put it is by saying that for 1
2 < ω ≤ 1 the scheme will remain monotone

for increasingly smaller CFL numbers.
Let us consider the following subset of the square [0, 1]× [0, 1] in the c−ω

plane of Fig. 18.1

Tg =
{

(c, w) : 0 ≤ c ≤ 1 and
1
2

< ω ≤ ωg(c) =
1

1 + |c|

}
. (18.18)

We call GFORCE (for Generalized FORCE, or Godunov FORCE) the weighted
scheme (18.14) with weight ω as given by (18.17). For the linear advection
equation (18.9) GFORCE is identical to the Godunov upwind scheme. For
scalar non–linear equations and for non–linear systems, GFORCE is a gen-
eralization of Godunov; such generalizations rely on the choice of a Courant
number to be inserted in (18.17), and thus GFORCE requires a limited amount
of upwind information. See [496] and [524] for details.

We return to the linear scalar case. The set of points Tg forms a kind of
triangular sub region, with a curved hypotenuse. It is revealing to interpret the
square [0, 1]×[0, 1] of area unity in the c−ω plane as representing the difference
in total numerical viscosity between the Lax–Friedrichs scheme (maximum)
and the Lax–Wendroff flux (minimum, zero). The FORCE scheme reduces
the viscosity of the Lax–Friedrichs flux by 50% and is the optimal scheme in
the class of methods (18.14) that makes no explicit use of wave propagation
information. The upper boundary of Tg, given by (18.17), gives precisely the
Godunov upwind scheme, the monotone scheme with the smallest coefficient
of numerical viscosity given by

αgod =
1
2
(1 − |c|)λΔx . (18.19)

The Godunov scheme reduces the numerical viscosity by a further 19%
(ln 2 − 1/2), relative to the FORCE scheme; this is the maximum possible
reduction within the class of monotone methods; the Godunov scheme is the
optimal scheme within the class of monotone methods. This 19% reduction in
numerical viscosity is due to the use of upwinding.

The GFORCE flux (18.14), (18.17) as applied to non–linear problems at-
tempts to reduce the numerical viscosity by an amount that approaches the
magic 19% of the Godunov scheme. For the linear scalar case this is fully
achieved, as GFORCE becomes identical to the Godunov upwind scheme.
For the non–linear scalar case the approach is also very satisfactory. Unfortu-
nately, for non–linear systems the success is only partial. Further reductions
in numerical viscosity, without solving the Riemann problem in the conven-
tional manner, are possible by using the MUSTA (Multi–Stage) approach
[496], [495], [524], [521].

As previously discussed, FORCE is the optimal centred flux in the class of
schemes defined by (18.14), the one that has the smallest numerical viscosity
without explicitly using upwind information. However, the crucial limitation
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of the FORCE flux is linear stability in two and three space dimensions, as
shown in [528]. This limitation also afflicts the Lax–Friedrichs and the Lax–
Wendroff fluxes as stated here. One possible remedy for the FORCE scheme
is to use it in the framework of dimensional splitting schemes. However, this
would rule out unstructured meshes as well as accuracy greater that two,
even on structured meshes. In the next section we introduce a generalization
of the FORCE approach to two and three space dimensions. We start with
the Cartesian mesh case.

18.3 FORCE Schemes on Cartesian Meshes

We consider general systems of m non–linear hyperbolic equations written
in differential conservation–law form

∂tQ + ∂xF(Q) + ∂yG(Q) + ∂zH(Q) = 0 , (18.20)

where Q is the vector of conserved variables, F(Q), G(Q) and H(Q) are
respectively the flux vectors in the x, y and z coordinate directions.

18.3.1 The Two–Dimensional Case

We first consider the two–dimensional case, H(Q) = 0, and conservative
schemes on Cartesian meshes, of the form

Qn+1
i,j = Qn

i,j −
Δt

Δx
[Fi+ 1

2 ,j − Fi− 1
2 ,j ] −

Δt

Δy
[Gi,j+ 1

2
− Gi,j− 1

2
] . (18.21)

The task at hand is to construct numerical fluxes for each of the four cell in-
terfaces: Fi+ 1

2 ,j , Gi,j+ 1
2
, Fi− 1

2 ,j and Gi,j− 1
2
. Fig. 18.2 illustrates the situation.

Meshes and notation. The construction of FORCE schemes requires two
meshes: the primary mesh, where the numerical scheme provides cell averages,
and a staggered mesh, used to define numerical fluxes for the conservative form
of the scheme.

The primary mesh is the mesh chosen for the discretization of the do-
main of interest. Having chosen the primary mesh, there are various possible
choices for the staggered mesh. One option is to use vertex–based staggered
meshes, as suggested by Jiang and Tadmor [271]. An alternative option is to
use edge–based staggered meshes, as suggested in [536], which is the approach
we consider here.

Fig. 18.3 depicts the situation for the two–dimensional case introduced in
Fig. 18.2. The (i, j) numbering is typical of Cartesian meshes and structured
non–Cartesian meshes. The chosen Cartesian mesh determines the computing
cells denoted by Ci,j . There are four edges (or faces or inter–cell boundaries)
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Fi+1/2,jFi−1/2,j

Gi,j+1/2

Gi,j−1/2

Qn
i,j

i

j

Δx

Δy

Fig. 18.2. Cartesian cell Ci,j in two–dimensional domain in x–y space. Qn
i,j is cell

average in cell Ci,j at time tn.

of Ci,j . For each edge k we adopt the conventional anticlock orientation so
that the cell Ci,j lies on the left of edge k and the immediate neighbour of
Ci,j across edge k lies on the right. To form an element of the staggered
mesh, that corresponds to edge k, one joins the barycentre of Ci,j and that
of its neighbour across edge k, with the vertices of edge k. This results in
a quadrilateral straddling face k, as depicted in Fig. 18.3. The four control
volumes and the corresponding edges of cell Ci,j are defined as follows

Si+ 1
2 ,j = S−

i+ 1
2 ,j

∪ S+
i+ 1

2 ,j
, S0

i+ 1
2 ,j

= S−
i+ 1

2 ,j
∩ S+

i+ 1
2 ,j

,

Si,j+ 1
2

= S−
i,j+ 1

2
∪ S+

i,j+ 1
2

, S0
i,j+ 1

2
= S−

i,j+ 1
2
∩ S+

i,j+ 1
2

,

Si− 1
2 ,j = S−

i− 1
2 ,j

∪ S+
i− 1

2 ,j
, S0

i− 1
2 ,j

= S−
i− 1

2 ,j
∩ S+

i− 1
2 ,j

,

Si,j− 1
2

= S−
i,j− 1

2
∪ S+

i,j− 1
2

, S0
i,j− 1

2
= S−

i,j− 1
2
∩ S+

i,j− 1
2

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(18.22)

The portion of each volume of the staggered mesh that lies inside Ci,j (on the
left) is labelled with superscript ”minus”, and that outside (on the right) is
labelled with superscript ”plus”. See Fig. 18.3.

Stages in the construction of the schemes. The construction of the
FORCE schemes is achieved in three stages:
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Δy

Qn
i,j Qn

i+1,jQn
i−1,j
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i,j+1
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S+
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2

S−
i,j+ 1

2

Fig. 18.3. Primary mesh of Cartesian cells Ci,j and edge–based staggered mesh in
two–dimensional domain in x–y space.

• I: Averages on staggered mesh. In the first stage we assume initial condition
Qn

i,j for the conservation laws at time tn in cells Ci,j . One then evolves the
solution for a time 1

2Δt in each control volume in (18.22) of the staggered
mesh associated with an edge of Ci,j . The evolution is carried out by
applying the integral form of the conservations laws (18.20). See Chapter
16 for background on the integral form of the conservation laws and related
concepts.
For a generic control volume Sk, assumed to be a polygon of nk edges, the
integral form of the conservation laws (18.20) applied for a time δt reads

Q1
k = Q0

k − δt

|Sk|

nk∑
l=1

∫ vl+1

vl

[cosθlF(Q) + sinθlG(Q)]ds . (18.23)

Here Q0
k is the initial condition at time t = 0, Q1

k is the integral average
at time t = δt, θl is the angle between the x–axis and the normal vector
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to face l joining vertices vl and vl+1, with vnk+1 ≡ v1, |Sk| is the area
of control volume Sk and nk = (cos θl, sin θl) is the outward unit normal
vector to edge l of Sk. Application of (18.23) to each of the secondary
volumes in (18.22) yields

Qn+ 1
2

i+ 1
2 ,j

= 1
2 (Qn

i,j + Qn
i+1,j) − Δt

Δx [F(Qn
i+1,j) − F(Qn

i,j)] ,

Qn+ 1
2

i,j+ 1
2

= 1
2 (Qn

i,j + Qn
i,j+1) − Δt

Δy [G(Qn
i,j+1) − G(Qn

i,j)] ,

Qn+ 1
2

i− 1
2 ,j

= 1
2 (Qn

i−1,j + Qn
i,j) − Δt

Δx [F(Qn
i,j) − F(Qn

i−1,j)] ,

Qn+ 1
2

i,j− 1
2

= 1
2 (Qn

i,j−1 + Qn
i,j) − Δt

Δy [G(Qn
i,j) − G(Qn

i,j−1)] .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(18.24)

Note that the initial condition in cell Ci,j and all its immediate four neigh-
bours determine initial conditions for each of the control volumes in (18.22)
of the staggered mesh associated with the boundaries of Ci,j . For exam-
ple, the initial condition at time t = tn on S−

i+ 1
2 ,j

is Qn
i,j and on S+

i+ 1
2 ,j

is
Qn

i+1,j , explaining the arithmetic means in (18.24).

• II: Averages on primary mesh. In the second stage of the construction of
the schemes, we assume initial conditions (18.24) at time t = 1

2Δt and
evolve the solution by another time 1

2Δt within each cell Ci,j , by applying
again the integral form of the conservation laws (18.23), obtaining

Qn+1
i,j = 1

4 [Qn+ 1
2

i+ 1
2 ,j

+ Qn+ 1
2

i,j+ 1
2

+ Qn+ 1
2

i− 1
2 ,j

+ Qn+ 1
2

i,j− 1
2
]

− 1
2

Δt
Δx [F(Qn+ 1

2
i+ 1

2 ,j
) − F(Qn+ 1

2
i− 1

2 ,j
)]

− 1
2

Δt
Δy [G(Qn+ 1

2
i,j+ 1

2
) − G(Qn+ 1

2
i,j− 1

2
)] .

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(18.25)

• III: Conservative form and the FORCE flux. In the final stage of the con-
struction of the scheme we perform algebraic manipulations on (18.25) so
as to reproduce the conservative formula (18.21). The resulting FORCE
numerical flux is

Fi+ 1
2 ,j =

1
2
[F(Qn+ 1

2
i+ 1

2 ,j
)+

1
2
(
F(Qn

i,j) + F(Qn
i+1,j)

)
− 1

4
Δx

Δt
(Qn

i+1,j −Qn
i,j)] ,

(18.26)
with analogous formulae for the other fluxes. As in the one–dimensional
case, it is possible to rewrite the intercell flux (18.26) as the arithmetic
average of two fluxes, namely



18.3 FORCE Schemes on Cartesian Meshes 609

Fi+ 1
2 ,j =

1
2
(Flw2

i+ 1
2 ,j + Flf2

i+ 1
2 ,j

) . (18.27)

Here
Flw2

i+ 1
2 ,j = F(Qlw2

i+ 1
2 ,j) , (18.28)

with

Qlw2
i+ 1

2 ,j =
1
2
(Qn

i,j + Qn
i+1,j) −

1
2

(
2Δt

Δx

)
[F(Qn

i+1,j) − F(Qn
i,j)] . (18.29)

The second flux term in (18.27) is

Flf2

i+ 1
2 ,j

=
1
2
[F(Qn

i,j) + F(Qn
i+1,j)] −

1
2

(
Δx

2Δt

)
(Qn

i+1,j − Qn
i,j) . (18.30)

Flux (18.27) may be regarded as a generalization of the Lax–Wendroff flux,
or a generalization of the Godunov centred scheme, or a generalization of
the WAF method. See the discussion of Section 13.5.2 on a motivating
example including a parameter α.
Flux (18.30) is a generalization of the Lax–Friedrichs flux. The factor α = 2
multiplying the time step Δt in (18.29) and (18.30) denotes the number
of spatial dimensions. Compare (18.30) and (18.28) with the genuine one–
dimensional case (18.6) and (18.7). The only difference is the factor α = 2.

Summary of the FORCE scheme: The implementation of the numerical
scheme to solve (18.20) in two space dimensions, H(Q) = 0, on Cartesian
meshes is exceedingly simple. It consists of the conservative scheme (18.21)
with numerical fluxes given by (18.27), with analogous definitions for the other
faces. The extension to two–dimensional non–Cartesian but structured meshes
is straightforward. The details are omitted.

18.3.2 The Three–Dimensional Case

We consider the conservative numerical scheme to solve (18.20) on Carte-
sian meshes, of the form

Qn+1
i,j,k = Qn

i,j,k − Δt
Δx [Fi+ 1

2 ,j,k − Fi− 1
2 ,j,k]

− Δt
Δy [Gi,j+ 1

2 ,k − Gi,j− 1
2 ,k] − Δt

Δz [Hi,j,k+ 1
2
− Hi,j,k− 1

2
] ,

⎫
⎬
⎭ (18.31)

with the obvious notation for the numerical fluxes and the mesh parameters.
The FORCE flux for α = 3 (three space dimensions), has the form

Fforceα

i+ 1
2 ,j,k

=
1
2
(Flwα

i+ 1
2 ,j,k + Flfα

i+ 1
2 ,j,k

) , (18.32)

with
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Flwα
i+ 1

2 ,j,k = F(Qlwα
i+ 1

2 ,j,k) (18.33)

and

Qlwα
i+ 1

2 ,j,k =
1
2
(Qn

i,j,k + Qn
i+1,j,k) − 1

2
αΔt

Δx
[F(Qn

i+1,j,k) − F(Qn
i,j,k)] . (18.34)

The Lax–Friedrichs type flux is

Flfα

i+ 1
2 ,j,k

=
1
2
[F(Qn

i,j,k) + F(Qn
i+1,j,k)] − 1

2
Δx

αΔt
(Qn

i+1,j,k − Qn
i,j,k) . (18.35)

This concludes the derivation of FORCE fluxes for the case of Cartesian
meshes in two and three space dimensions. Before proceeding to the construc-
tion of multidimensional FORCE fluxes for general meshes in Section 5, we
study some properties of the multidimensional schemes on Cartesian meshes.

18.4 Properties of the FORCE Schemes

Here we study some basic properties of the derived multidimensional
FORCE schemes for Cartesian meshes. But first, however, we re–interpret
the multidimensional FORCE fluxes in a one–dimensional setting by keeping
the number of space dimensions α as a parameter in the one–dimensional
flux. This results in a broad family of one–dimensional schemes with some
intriguing properties. The results of some numerical experiments are also
shown. Then we analyze monotonicity and linear stability of the two and
three–dimensional schemes.

18.4.1 One–Dimensional Interpretation

Consider the one–dimensional, homogeneous hyperbolic system (18.1) and
the conservative scheme (18.2). The one–dimensional version of the two and
three–dimensional FORCE flux has the form

Fforceα

i+ 1
2

=
1
2

(
Flwα

i+ 1
2

+ Flfα

i+ 1
2

)
, (18.36)

where Flwα
i+ 1

2
and Flfα

i+ 1
2

are respectively the Lax–Wendroff and Lax–Friedrichs
type fluxes. That is

Flwα
i+ 1

2
= F(Qlwα

i+ 1
2
) , Qlwα

i+ 1
2

=
1
2
(Qn

i + Qn
i+1) −

1
2

αΔt

Δx
(Qn

i+1 − Qn
i ) (18.37)

and
Flfα

i+ 1
2

=
1
2
[F(Qn

i ) + F(Qn
i+1)] −

1
2

Δx

αΔt
(Qn

i+1 − Qn
i ) . (18.38)

The values α = 1, 2, 3 reproduce the one, two and three–dimensional cases.
For the one–dimensional case, α = 1, Flwα

i+ 1
2

and Flfα

i+ 1
2

are identically to the
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classical Lax–Wendroff and Lax–Friedrichs fluxes, and Fforceα

i+ 1
2

is just the one–

dimensional FORCE flux (18.8). For the two–dimensional case, α = 2, Flwα
i+ 1

2
is

a known flux, namely, the Godunov centred scheme [217]; see exercise 13.5.3 in
Chapter 13. Analysis of this scheme as applied to the model equation (18.9)
says that the scheme is linearly stable in the range 0 ≤ |c| ≤ 1

2

√
2, where

c is the Courant number. The scheme is monotone in the restricted range
1
2 ≤ |c| ≤ 1

2

√
2 of linear stability, being non–monotone elsewhere, which makes

it useless in practice. The flux Flfα

i+ 1
2
, with α = 2, appears to be new and

is analogous to the Lax–Friedrichs flux but has smaller numerical viscosity.
The resulting scheme is monotone in its full range of linear stability, namely
0 ≤ |c| ≤ 1

2 and is potentially a useful scheme for practical applications. For
α > 2 all fluxes Flwα

i+ 1
2

and Flfα

i+ 1
2

are, to our knowledge, new. However, we
note that the motivating example discussed in Section 13.5.2 is related to the
Lax–Wendroff type schemes just considered.

For the model equation (18.9) the FORCE flux is

fforceα

i+ 1
2

=
1
2

(
1 +

1 + α2c2

2αc

)
(λqn

i ) +
1
2

(
1 − 1 + α2c2

2αc

)
(λqn

i+1) (18.39)

and the resulting three–point numerical scheme is

qn+1
i =

1
2
c(1 +

1 + α2c2

2αc
)qn

i−1 + (1 − 1 + α2c2

2α
)qn

i − 1
2
c(1 − 1 + α2c2

2αc
)qn

i+1 .

(18.40)
It is easy to verify that the FORCEα scheme is monotone and linearly stable
under the CFL–type restriction

c ≤
√

2α − 1
α

. (18.41)

The monotonicity and linear stability limit is a decreasing function of the
dimension parameter α.

In the next section we show some numerical results for one–dimensional
problems obtained from the multidimensional FORCE schemes (18.36) re-
garding the dimension α as a parameter in the scheme.

18.4.2 Some Numerical Experiments

Here we show some numerical results from applying the numerical flux
Fforceα

i+ 1
2

given by (18.36) into the conservative scheme (18.2). We select two
test problems for the one–dimensional Euler equations for ideal gases with
γ = 1.4.

Stationary Contact. This test is the shock tube problem introduced as Test
6 in Chapter 10, whose exact solution is a stationary contact discontinuity.
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This problem is the most demanding kind of tests for centred–type meth-
ods, for incomplete Riemann solvers and for conventional flux vector splitting
schemes. The computational domain is the interval [0, 1]; the initial condi-
tions consist of two constant states separated by a discontinuity in density at
x = 1/2; ρ(x, 0) = ρL = 1.4 for x < 1/2, ρ(x, 0) = ρR = 1 for x > 1/2. The
other quantities are constant throughout, the particle velocity is u(x, 0) = 0
and the pressure is p(x, 0) = 1. Transmissive boundary conditions are im-
posed. Computations are carried out till time tout = 5 units, which is much
larger than that in Chapter 10. Boundary conditions are transmissive and the
mesh has 100 cells. The Courant number used is 90% of the monotonicity
and linear stability limit given by (18.41), with the exception of the van Leer
scheme, for which we used a Courant number of 0.6.

Fig. 18.4 shows the numerical results as compared to the exact solution.
The top frame shows the results of four FORCE fluxes (18.36), with the di-
mension parameter set to α = 1, 2, 3, 15. It is seen that numerical viscosity is
reduced visibly by increasing the dimension parameter α. For simple curiosity
we include the result for α = 15. In the bottom frame of Fig. 18.4 we compare
the above FORCEα schemes with well–established methods. One surprising
result is that two well–known upwind schemes, namely the Rusanov and the
HLL schemes, have more numerical viscosity for this test than any of the
centred FORCEα schemes. It is also interesting to see that the Flux Vector
Splitting scheme of van Leer, although better than the FORCE scheme with
α = 1, is more diffusive than the FORCE schemes with α = 2 and α = 3.
These results suggest that incomplete Riemann solvers and Flux Vector Split-
ting methods are comparable or even less accurate than the centred FORCEα
schemes of this Chapter for resolving slowly–moving intermediate waves, at
least for the larger range of Courant numbers. Only complete Riemann solvers
can perform better here.

Woodward and Collela Test. In this test [584] the computational domain
is the interval [0, 1], the initial condition in pressure consists of three constant
states separated by two discontinuities, namely p(x, 0) = pL = 1000 for x <
1/10, p(x, 0) = pM = 0.01 for 1/10 < x < 9/10 and p(x, 0) = pR = 100
for x > 9/10. Particle velocity and density are constant, with u(x, 0) = 0
and ρ(x, 0) = 1. Reflective boundary conditions are imposed. The problem is
solved on a mesh of 3000 cells, with a Courant number as for the previous
test and results are displayed at the output time t = tout = 0.038 units. This
problem does not have exact solution. We use the first–order Godunov upwind
method with the exact Riemann solver as the reference scheme and note that
this is the most accurate scheme that is monotone for the scalar case. The
test problem is very severe and is suitable for testing robustness of numerical
schemes.

Fig. 18.5 shows the results for the FORCEα schemes compared with
the reference solution of the Godunov method. As expected, the FORCEα
schemes are more diffusive than the reference first–order scheme. As the di-
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mension parameter α increases the solution tends to that of the reference
scheme.

In the next section we analyze some properties of the multidimensional
FORCEα schemes.

18.4.3 Analysis in Multiple Space Dimensions

We study monotonicity and linear stability of the two and three–dimensional
FORCE schemes in terms of the linear advection equation with constant co-
efficients

∂tq + ∂xf(q) + ∂yg(q) + ∂zh(q) = 0 , (18.42)

with fluxes f (q) = λ1q, g (q) = λ2q and h (q) = λ3q; the velocity components
λ1, λ2 and λ3 in the x, y and z coordinate directions are assumed constant.
The conservative numerical scheme for (18.42) is written as

qn+1
i,j,k = qn

i,j,k − Δt
Δx

(
fi+ 1

2 ,j,k − fi− 1
2 ,j,k

)

− Δt
Δy

(
gi,j+ 1

2 ,k − gi,j− 1
2 ,k

)

− Δt
Δz

(
hi,j,k+ 1

2
− hi,j,k− 1

2

)

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(18.43)

with FORCE numerical fluxes

fi+ 1
2 ,j,k = 1

2λ1

(
qn
i,j,k + qn

i+1,j,k

)
− 1

2λ1(
α2c2

x+1
2αcx

)
(
qn
i+1,j,k − qn

i,j,k

)
,

gi,j+ 1
2 ,k = 1

2λ2

(
qn
i,j,k + qn

i,j+1,k

)
− 1

2λ2(
α2c2

y+1

2αcy
)
(
qn
i,j+1,k − qn

i,j,k

)
,

hi,j,k+ 1
2

= 1
2λ3

(
qn
i,j,k + qn

i,j,k+1

)
− 1

2λ3(
α2c2

z+1
2αcz

)
(
qn
i,j,k+1 − qn

i,j,k

)
.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(18.44)

Here cx = λ1Δt
Δx , cy = λ2Δt

Δy and cz = λ3Δt
Δz are the directional Courant

numbers, in the x, y and z coordinate directions, respectively. Substitution of
the numerical fluxes (18.44) into the conservative formula (18.43) yields the
scheme

qn+1
i,j,k =

1∑
l=−1

1∑
m=−1

1∑
r=−1

βl,m,rq
n
i+l,j+m,k+r , (18.45)

with coefficients
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Fig. 18.4. Stationary contact test. Comparison of numerical schemes with the exact
solution. Top frame: results from the FORCEα schemes. Bottom frame: results from
FORCEα schemes and from the two incomplete Riemann solvers Rusanov and HLL,
and from the van Leer Flux Vector Splitting scheme.
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Fig. 18.5. Woodward and Colella test. Comparison of numerical results from the
FORCEα schemes with those from the first–order Godunov scheme with the exact
Riemann solver.
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(
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(18.46)

The monotonicity region of the scheme is found by requiring that the coeffi-
cients (18.46) be non–negative, which gives the following conditions

c2
x + c2

y ≤ 1/2 in two space dimensions ,

c2
x + c2

y + c2
z ≤ 1/3 in three space dimensions .

⎫
⎬
⎭ (18.47)
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Fig. 18.6. Two-dimensional case. Linear stability and monotonicity region in the
cx–cy plane.
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Fig. 18.7. Three–dimensional case. Linear stability and monotonicity region shown
through a cut in the cx–cy plane.
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Using the empirical method to study linear stability described in Section 16.4.2
of Chapter 16, see also [528] and [536], it is found that the linear stability
region is also given by conditions (18.47) above. This is illustrated in Fig.
18.7. The top frame shows the two–dimensional case on the cx–cy plane; the
bottom frame illustrates the three–dimensional case, showing a cut through
the cx–cy plane.

In the next section we construct FORCE schemes for general meshes in
multiple space dimensions.

18.5 FORCE Schemes on General Meshes

Consider first the case of an unstructured mesh of triangular elements in
two space dimensions. Fig. 18.8 depicts a general triangle Ci and its three
neighbours having a common edge with Ci, denoted by Ci,1, Ci,2 and Ci,3.
Recall that the construction of FORCE schemes requires the primary mesh,
to compute cell averages via the conservative formula, and a staggered mesh,
to define the numerical fluxes.

Ci

Ci,1

Ci,2

Ci,3

Fig. 18.8. Typical unstructured mesh of triangular elements in two space dimen-
sions, called here the primary mesh. Cell Ci has three neighbours, Ci,1, Ci,2 and
Ci,3.
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Fig. 18.9. Primary mesh of triangular elements Ci and edge–based staggered mesh
of elements Si,j = S−

i,j ∪ S+
i,j , j = 1, 2, 3, and cell edges S0

i,j = S−
i,j ∩ S+

i,j , j = 1, 2, 3.

Fig. 18.9 shows the primary mesh represented by a cell Ci, its three
neighbours Ci,1, Ci,2, Ci,3, and the edge–based staggered mesh of elements
Si,j , j = 1, 2, 3 shown in broken lines. The intercell boundaries of cell Ci are
denoted by S0

i,j , j = 1, 2, 3.
For each intercell boundary S0

i,j , visited in anticlockwise manner, there is
an associated element of the staggered mesh

Si,j = S−
i,j ∪ S+

i,j , j = 1, 2, 3 , (18.48)

where S−
i,j is the portion inside Ci (left of edge j) and S−

i,j is the portion
outside Ci (right of edge j). See (18.22) and Fig. 18.3 for the two–dimensional
Cartesian case. The intercell boundaries S0

i,j are defined as

S0
i,j = Ci ∩ Ci,j , j = 1, 2, 3 . (18.49)

The elements of the staggered mesh are constructed as follows. For each
edge S0

i,j , j = 1, 2, 3, we identify the barycentres of Ci (left) and of its right
neighbour Ci,j . Then, a control volume is created around edge S0

i,j by join-
ing the two barycentres to the vertices of edge S0

i,j . The procedure can be
generalized to other types of meshes in two and three space dimensions.

In α space dimensions we assume a conforming tessellation CΩ of the com-
putational domain Ω ⊂ Rα by elements Ci, with

CΩ = ∪iCi . (18.50)
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Each volume Ci has ni plane faces S0
i,j so that the outer boundary of Ci is

∂Ci = ∪j=ni

j=1 S0
i,j . (18.51)

Each plane face S0
i,j of cell Ci has a secondary volume as given by (18.48).

The total volume of cell Ci is

|Ci| =
ni∑

j=1

|S−
i,j | . (18.52)

Recall that for each (primary) control volume Ci one can define a cell aver-
age Qn+1

i at a time t = tn+1 by applying the integral form of the conservation
laws, namely

Qn+1
i = Qn

i − δt

|Ci|

ni∑
j=1

∫

S0
i,j

F̄(Q) · nj dA , (18.53)

where Qn
i a cell average at time t = tn, δt = tn+1 − tn is the evolution time,

nj is the unit outward normal vector to face S0
i,j and

F̄(Q) ≡ [F(Q),G(Q),H(Q)] .

As seen for the Cartesian case in Section 3, there are three stages in the
construction of the FORCE schemes, as detailed below.

• I: Averages on staggered mesh. We assume the cell averages Qn
i in each

cell Ci as initial conditions at time t = tn and then apply the integral
form of the conservation laws to each, edge–based, secondary volume Si,j

to obtain

Qn+ 1
2

i,j =
Qn

i |S−
i,j | + Qn

j |S+
i,j |

|S−
i,j | + |S−

i,j |
− 1

2
Δt|S0

i,j |
|S−

i,j | + |S+
i,j |

(
F̄(Qn

j ) − F̄(Qn
i )
)
· nj .

(18.54)

• II: Averages on primary mesh. Assuming initial conditions Qn+ 1
2

i,j in each
boundary–based secondary control volume we again apply the integral
form of the conservation laws on the primary volume Ci, for another time
1
2Δt, to obtain

Qn+1
i =

1
|Ci|

ni∑
j=1

(
Qn+ 1

2
i,j S−

i,j −
1
2
Δt|S0

i,j |F̄(Qn+ 1
2

i,j ) · nj

)
. (18.55)

Relations (18.54)–(18.55) are effectively a first–order accurate, explicit
two–step method for solving (18.20) on a staggered mesh.
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• III: Conservative form and the FORCE flux. The FORCE scheme can now
be written as a one–step scheme in conservative form on a non–staggered
mesh, with a corresponding numerical flux. After some algebraic manip-
ulations of (18.55), involving Gauss’ theorem and normalizing the face–
normal vectors, we can recast the scheme (18.54)–(18.55) into the sought
conservative form

Qn+1
i = Qn

i − Δt

|Ci|

ni∑
j=1

|S0
i,j |F̄forceα

i,j · nj , (18.56)

where the resulting FORCE flux is defined as

F̄forceα
i,j =

1
2

(
F̄lwα

i,j (Qn
i ,Qn

j ) + F̄lfα
i,j (Qn

i ,Qn
j )
)

. (18.57)

The FORCE flux on general meshes in multiple space dimensions is again
the arithmetic average of two fluxes: a two–point flux of the Lax–Wendroff
type and a two–point flux of the Lax–Friedrichs type. These two component
fluxes appear to be new and are natural generalizations of the one–dimensional
Lax–Wendroff and Lax–Friedrichs fluxes to general meshes in multiple space
dimensions. The Lax–Wendroff type flux is given by the physical flux (tensor)
F̄ evaluated at the intermediate state (18.54) obtained from the first averaging
procedure, namely

F̄lwα
i,j

(
Qn

i ,Qn
j

)
= F̄(Qn+ 1

2
i,j ) , (18.58)

with

Qn+ 1
2

i,j =
Qn

i |S
(−)
i,j | + Qn

j |S
(+)
i,j |

|S(−)
i,j | + |S(+)

i,j |
− 1

2
Δt|S(0)

i,j |
|S(−)

i,j | + |S(+)
i,j |

(
F̄(Qn

j ) − F̄(Qn
i )
)
· nj .

(18.59)
The Lax–Friedrichs type flux for general meshes in multiple space dimensions
is defined as follows

F̄lfα
i,j

(
Qn

i ,Qn
j

)
=

|S(+)
i,j |F̄(Qn

i ) + |S(−)
i,j |F̄(Qn

j )

|S(−)
i,j | + |S(+)

i,j |

− 2

Δt|S(0)
i,j |

|S(−)
i,j ||S(+)

i,j |
|S(−)

i,j | + |S(+)
i,j |

(
Qn

j − Qn
i

)
· nj .

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(18.60)

Summary of the FORCE scheme: The implementation of the FORCE
scheme to solve (18.20) in three space dimensions on unstructured meshes
is straightforward. The scheme consists of the one–step explicit conservative
formula (18.56) with numerical fluxes given by (18.57). Further details on the
FORCE method just described are found in [536].
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In the next section we illustrate the performance of the method, as applied
to multidimensional test problems for the Euler equations on unstructured
meshes.

18.6 Sample Numerical Results

Here we apply the FORCE methods to the Mach reflection test problem
described in Chapter 17. The problem consists of a single shock wave of shock
Mach number 1.7, travelling along a two–dimensional channel and impinging
on a wedge at an angle of φ = 25 degrees to the direction of the shock
propagation. Fig. 17.9 of Chapter 17 shows reference solutions, including an
experimental result for comparison. Here we solve the two–dimensional Euler
equations for an ideal gas with γ = 1.4. We use unstructured triangular meshes
and show results for the basic first–order FORCE scheme and for high–order
extensions using the ADER approach in the framework of finite volumes with
WENO non–linear reconstructions.

Fig. 18.10 shows the unstructured triangular meshes used along the nu-
merical results for density. The mesh of the top frame has size 1/20 and that
of the bottom frame has size 1/50. The numerical solutions are obtained with
the ADER third–order extension of FORCE.

Fig. 18.11 shows the numerical results for density for a finer mesh of size
1/100. The top frame shows the numerical solution obtained with the first–
order FORCE flux and the bottom frame shows the numerical solution are
obtained with the third–order extension of the FORCE flux using ADER.

18.7 Concluding Remarks

In this chapter we have presented a generalization of the one–dimensional
FORCE flux of Chapter 7 to multiple space dimensions, for solving hyper-
bolic equations in conservation–law form on general meshes. The schemes are
linearly stable and monotone for a sufficiently generous range of Courant num-
bers. The FORCE schemes are first–order accurate and constitute a building
block for constructing high–order schemes in the framework of existing meth-
ods, such as finite volume methods and discontinuous Galerkin finite element
methods. Implementations can follow semi–discrete approaches or fully dis-
crete approaches. In particular, in [536], the FORCE methods just described
were extended to high–order of accuracy in space and time for two and three
dimensional problems in the framework of ADER finite volume and DG meth-
ods; implementations on unstructured meshes of schemes of up to sixth order
of accuracy in space and time were reported. The main feature of the proposed
scheme is simplicity; it does not require explicit knowledge of the eigenstruc-
ture of the system to solve, nor the availability of a classical Riemann solver.
This is attractive for very complex hyperbolic systems, for which a Riemann
solver may not be available, or if available it might not be suitable.
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Fig. 18.10. Shock reflection problem for shock Mach number 1.7 and wedge angle
φ = 25 degrees. Results from third–order ADER extension of FORCE. Top frame:
density contours and unstructured mesh of size 1/20. Bottom frame: density contours
and unstructured mesh of size 1/50 (Courtesy of Dr. M. Dumbser).
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Fig. 18.11. Shock reflection problem for shock Mach number 1.7 and wedge angle
φ = 25 degrees. Solution for density on mesh of size 1/100. Top frame: solution
from first–order FORCE scheme. Bottom frame: solution from third–order ADER
extension of FORCE (Courtesy of Dr. M. Dumbser).
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The Generalized Riemann Problem

In this chapter we study a technique for solving the generalized Riemann
problem for systems of non–linear hyperbolic partial differential equations
with source terms. The generalized Riemann problem studied here is a twofold
generalization of the classical Riemann problem studied in previous chapters,
namely: (i) the two vector fields that define the initial conditions are arbitrary
but smooth away from the interface and (ii) the governing hyperbolic equa-
tions include source terms. We note that in the literature this Cauchy problem
has also been termed Derivative Riemann Problem and High–Order Riemann
Problem. In this book we shall adopt the terminology Generalized Riemann
Problem and will be denoted by GRPK . Here K is an arbitrary non–negative
integer and stands for the order of the approximation. The solution of GRPK

can be used to construct one–step, fully discrete finite volume and discontin-
uous Galerkin finite element methods of (K +1)–th order of accuracy in both
space and time. An introduction to such generalized methods is given in the
subsequent chapter.

19.1 Introduction

We consider a general non–linear system of hyperbolic balance laws in a
given domain Ω, along with general initial condition Q0(x)

PDEs: ∂tQ + ∂xF(Q) = S(Q) , x ∈ Ω , t > 0 ,

IC: Q(x, 0) = Q0(x) .

⎫
⎬
⎭ (19.1)

Q is the vector of conserved variables, F(Q) is the vector of fluxes and S(Q) is
the vector of sources, which does not contain differential terms of the unknown
Q. One class of numerical methods to solve (19.1) approximately is the finite
volume method, which may be constructed by considering a control volume
V = [xi− 1

2
, xi+ 1

2
] × [tn, tn+1] in the computational domain Ω × [0, T ], where
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T is an output time. Here xi− 1
2

and xi+ 1
2

are the left and right intercell
boundaries of the computational cell Ii = [xi− 1

2
, xi+ 1

2
], with cell centre given

by xi = 1
2 (xi− 1

2
+xi+ 1

2
) and cell length given by Δx = xi+ 1

2
−xi− 1

2
; tn and tn+1

are two successive times, with Δt = tn+1− tn being the time step. Integration
of the governing equations in (19.1) in space and time in the control volume
V yields the exact relation

Qn+1
i = Qn

i − Δt

Δx
(Fi+ 1

2
− Fi− 1

2
) + ΔtSi , (19.2)

where
Qn

i =
1

Δx

∫ x
i+ 1

2

x
i− 1

2

Q(x, tn)dx (19.3)

is the spatial integral average of Q(x, t) at time t = tn, also called cell av-
erage; an analogous definition applies to Qn+1

i . Obviously the cell average is
a constant but the integrand Q(x, tn) may admit a high–order distribution
within the cell Ii, a polynomial distribution, for example. Computationally,
such distribution is furnished by a reconstruction procedure using the set of
cell averages {Qn

i }. For background on reconstruction procedures see, for ex-
ample, [242], [270] and [25]; see also [175] and [176] for recent developments.
The remaining terms in (19.2) are the integrals

Fi+ 1
2

=
1

Δt

∫ tn+1

tn

F(Q(xi+ 1
2
, t))dt ,

Si =
1

ΔtΔx

∫ tn+1

tn

∫ x
i+ 1

2

x
i− 1

2

S(Q(x, t))dxdt .

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(19.4)

Fi+ 1
2

is the temporal integral average of F(Q(x, t)) right at the interface
x = xi+ 1

2
and Si is the space–time integral average of the source S(Q(x, t))

within the control volume V .
A numerical method is obtained when in formula (19.2) one supplies suit-

able approximations for Fi+ 1
2

and Si. These approximations are called, re-
spectively, the numerical flux and the numerical source, and are constructed
by first finding an approximation QLR(τ) ≈ Q(xi+ 1

2
, t) at the interface, as

a function of time, and an approximation Qi(x, t) ≈ Q(x, t) within the con-
trol volume, as a function of both space and time. Then, suitable numerical
integration schemes are required to evaluate the integrals in (19.4) to finally
obtain the numerical flux and the numerical source. Formula (19.2) can then
be used numerically to evolve approximations to cell averages.

Most of the discussion regarding the construction of numerical methods
centres on the definition of the numerical flux, which brings in the initial–value
problem, or Cauchy problem, called the Riemann problem. The classical Rie-
mann problem for a system of conservation laws is the Cauchy problem with
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piece–wise constant data, that is the Cauchy problem with initial condition
consisting of two constant states separated by a discontinuity. In chapter 4
we studied a method to solve this problem exactly, as applied to the Euler
equations; in chapters 7 to 12 we presented techniques to solve the problem
approximately. Godunov’s first–order accurate method [216] is based on the
exact or approximate solutions of this classical Riemann problem, see chap-
ter 6. For most well–known hyperbolic systems one can compute the exact
solution of this classical Riemann problem throughout the half plane t > 0,
−∞ < x < ∞, if desired, although for the purpose of computing an inter-
cell flux for the Godunov method knowing the solution at the interface is
sufficient.

In this chapter we study a generalization of the classical, piece–wise con-
stant data, Riemann problem. The generalization considered here is twofold:
(i) the two vector fields that define the initial conditions are arbitrary but
smooth away from the interface and (ii) the governing hyperbolic equations
include source terms. This generalized Riemann problem will be denoted by
GRPK , with K a non-negative integer representing the order of the approxi-
mation of the solution. Finding the full solution of this problem in the half–
plane is probably an impossible task, in general. However for the purpose of
constructing fully–discrete, one–step Godunov schemes of very high order of
accuracy one only requires the solution of GRPK right at the interface, as a
function of time. Most available works on this subject refer to homogeneous
systems and the simplest case is that obtained by replacing the piece–wise
constant initial condition of the classical Riemann problem by a piece–wise
linear initial condition. This particular Cauchy problem, which corresponds
to GRP 1 in the present notation, has also been termed the generalized Rie-
mann problem or simply GRP, by some authors. Finding the solution of this
problem in the half–plane is a difficult, or impossible task. However, for the
Euler equations for ideal gases a complete solution was reported by Menshov
[350]. Godunov–type numerical schemes of second order of accuracy can be
constructed by solving approximately the GRP 1 only at the interface. It seems
as if the first researcher to construct one of such methods was Kolgan [287];
see also [289] and [288]. The well–known works of van Leer then followed, see
for instance [554] and [555]; see also the recent article by van Leer [564] re-
ferring to the pioneering work of Kolgan. Subsequent results on second–order
methods are also reported in [37], [76], [350], [133] and [499], to name but a
few. Some of these methods are studied in chapters 14 and 16. Ben–Artzi and
Facovitz [37] solved the GRP 1 approximately in a manner that is different
to previous works. They also used the approximate solution to construct a
second–order method. See also the related works [38], [36], [41], [40] and the
recent textbook on the method of Ben–Artzi and Falcovitz [39].

The more general, still homogeneous, Cauchy problem with initial con-
ditions consisting of two arbitrary but smooth vector fields separated by a
discontinuity at the origin, has also been studied. Early results on the subject
are found for example in [483], [236], [304], [76] and [305]. The high–order fully
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discrete method first proposed by Harten and collaborators [242] also makes
use of the solution of the generalized Riemann problem, although at first sight
this might not be apparent. In the recent paper [91], a re–interpretation of
the method of Harten et al. [242] is made in terms of the solution of the
generalized Riemann problem at the interface and comparison is made with
other recent solvers. The full generalized Riemann problem, including source
terms, denoted here by GRPK , was studied by Toro and Titarev [543], see
also [523]. They used the solution of GRPK to construct ADER methods;
these are finite volume methods of the Godunov type, of arbitrary order of
accuracy in space and time; see also [492]. A variant of the solution method
of Harten and collaborators [242] for the full, inhomogeneous GRPK problem
has recently been reported in [173]; this solution method for GRPK is able
to deal with stiff source terms, while retaining high accuracy.

In this chapter we first study in complete detail the method proposed
in [543] and [523] to solve the generalized Riemann problem GRPK at the
interface. The technique is a generalization of the method presented in sec-
tion 13.4.4 of chapter 13 for the case K = 1, see [516] and [517]. The sought
time–dependent solution at the interface is first expressed as a power series
expansion of order K, as suggested, for example in [236], [304] and [305]. The
leading term of the expansion is the solution of a classical, usually non–linear,
Riemann problem, for which the techniques studied in chapters 6 and 9 ap-
ply. To evaluate the higher–order terms we utilize the Cauchy–Kowalewski
procedure to express temporal derivatives in terms of functions of spatial
derivatives. Then, in order to define the spatial derivatives at the interface
we first construct new evolution equations for these and then solve additional
classical Riemann problems whose solutions define all spatial derivatives at
the interface. The coefficients of the expansion are then found by computing
the functions of spatial derivatives and the complete series is then assembled
to produce the final solution. In this manner this method of solution of the
generalized Riemann problem of order K boils down to solving 1 classical
non–linear Riemann problem for the leading term and K classical linear Rie-
mann problems for spatial derivatives; see section 13.4.4 of chapter 13 for an
introduction to the second–order case, K = 1. For smooth initial conditions
the method becomes an application of the Cauchy–Kowalewski method. This
case will rarely appear at cell interfaces but it will certainly be present in the
interior of each finite volume or element and will be of use when evaluating
the numerical source to high order of accuracy. With the solution available
at the interface as a function of time, the straightforward generalization of
Godunov’s method allows the construction of fully–discrete one–step schemes
of arbitrary order of accuracy in space and time; an introduction to these
methods is given in the following chapter.

The rest of this chapter is organized as follows. In section 19.2 we define the
mathematical problem. In section 3 we give some mathematical preliminaries
related to the Cauchy–Kowalewski theorem. In section 19.4 we study in detail
the solution technique of [543] and [523] for the generalized Riemann problem
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GRPK for a general hyperbolic system of balance laws. In section 19.5 we
illustrate the details of the technique by solving in full detail the GRPK for
scalar equations with source terms. In section 6 we briefly discuss alternative
methods of solution. Concluding remarks are found in section 19.7.

19.2 Statement of the Problem

We study the generalized Riemann problem GRPK for hyperbolic systems
of balance laws, defined as the initial–value problem

PDEs: ∂tQ + ∂xF(Q) = S(Q) , x ∈ (−∞,∞) , t > 0 ,

ICs: Q(x, 0) =

⎧
⎨
⎩

QL(x) if x < 0 ,

QR(x) if x > 0 .

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(19.5)

The initial conditions (ICs) QL(x), QR(x) are two vectors, the components of
which are assumed to be smooth functions of x, with K continuous non–trivial
spatial derivatives away from zero. That is, if the non–negative integers KL

and KR are such that

dk

dxk
QL(x) ≡ 0 ∀ k > KL , ∀x < 0 ,

dk

dxk
QR(x) ≡ 0 ∀ k > KR , ∀x > 0 ,

then we call generalized Riemann Problem of order K, denoted by GRPK , the
Cauchy problem (19.5) with K = max{KL,KR}. For example, GRP 0 means
that all first and higher–order spatial derivatives of the initial condition for
the generalized Riemann problem away from the origin vanish identically; this
case corresponds to the classical piece–wise constant data Riemann problem.
Similarly, GRP 1 means that all second and higher–order spatial derivatives
of the initial condition for the generalized Riemann problem away from the
origin vanish identically; this case corresponds to the piece–wise linear data
Riemann problem, the problem studied, for example, in [37] and [39].

Fig. 19.1 illustrates the classical Riemann problem GRP 0; the top frame
shows the piece–wise constant initial condition for a single component q of
the vector Q(x, 0), while the bottom frame shows the corresponding wave
structure of the solution in the x–t plane, as for a 3× 3 system. The solution
of this classical problem is a similarity solution that depends on the ratio x/t
and characteristics are straight lines. The complete solution in the half–plane
t > 0, −∞ < x < ∞ contains a set of constant wedge–like regions that are
separated by discontinuities or smooth transitions.

Fig. 19.2 illustrates the generalized Riemann problem GRPK , for K > 0;
the top frame shows the piece–wise smooth initial condition for a single compo-
nent q of the vector Q(x, 0), while the bottom frame shows the corresponding
wave structure of the solution in the x–t plane. Now the solution no longer
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x = 0 x

q(x, 0)
qL

qR

0 x

t

Fig. 19.1. The classical Riemann problem for a typical 3 × 3 hyperbolic system.
Top frame shows piece–wise constant initial condition for a single component q of
the vector Q(x, 0). Bottom frame shows the corresponding wave structure of the
solution in the x–t plane. Characteristics are straight lines.

contains regions of constant values and characteristics are curved lines. It is
assumed however, that for a sufficiently short time, the solution of GRPK

(Fig. 19.2) has fundamentally the same structure as the solution of GRP 0

(Fig. 19.1); the solution of GRPK may be regarded as a perturbation of the
solution of GRP 0.

The aim of this chapter is to study a semi–analytical method to find the
solution of GRPK , given by (19.5), at the origin x = 0 and for t > 0, as a
function of time. In order to solve numerically a system of hyperbolic balance
laws using a high–order Godunov finite volume method of the form (19.2) one
needs to compute (i) a numerical flux at each interface and (ii) a numerical
source within each volume or element. To compute a numerical flux it is
sufficient to find the solution QLR(τ) of the GRPK at the interface x = 0, as a
function of time τ alone and then calculate an approximation to the temporal
integral in (19.4). QLR(τ) will provide sufficient information to compute a
numerical flux to construct a numerical scheme of (K+1)–th order of accuracy
in both space and time. To compute a numerical source we need a high–order
representation in space and time Qi(x, t) of the solution Q(x, t) within the
space–time volume to compute an approximation to the volume integral in
(19.4) to the desired order of accuracy. This can be obtained in exactly the
same manner as for the solution of the generalized Riemann problem, with the
appropriate simplifications, resulting in the Cauchy–Kowalewski method, as
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x = 0 x

q(x, 0)

qL(x)

qR(x)

0 x

t

Fig. 19.2. The generalized Riemann problem GRP K for a typical 3× 3 hyperbolic
system. Top frame shows piece–wise smooth initial condition for a single component
q of the vector Q(x, 0). Bottom frame shows the corresponding wave structure of
the solution in the x–t plane. Characteristics are curved lines.

pointed out earlier. We note that the classical case of piece–wise constant data
reproduces the classical first–order upwind method of Godunov [216]. Before
proceeding any further we provide some mathematical background, relevant
to solving (19.5).

19.3 The Cauchy–Kowalewski Theorem

Here we provide some mathematical background centred on the classi-
cal Cauchy–Kowalewski theorem for the initial–value problem for differential
equations. This theorem asserts the existence and uniqueness of an analytic
solution of the problem provided that all functions involved are analytic. The
solution is constructed as a power series expansion about the origin making
use of the so–called Cauchy–Kowalewski procedure, whereby the governing
equations and initial conditions are used repeatedly to determine the coeffi-
cients of the expansion. For detailed background on the Cauchy–Kowalewski
theorem see for example [596], [186] and [383].
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19.3.1 Series Expansions and Analytic Functions

Assume f(x) to be a C∞ function of a single variable x ∈ I, where I is
an open sub–interval of the set of real numbers R1. Consider a point x0 in I,
then the Taylor series expansion of f(x) about x0 is

∞∑
k=0

[
f (k)(x0)

] (x − x0)k

k!
. (19.6)

If the above Taylor series expansion converges to f(x) ∀x in a neighbourhood
of x0 then f(x) is said to be analytic at x0. If f(x) is analytic ∀x ∈ I, then
f(x) said to be analytic in I. We remark that for an arbitrary C∞ function
the Taylor series (19.6) may not converge, or if it does, it may not converge
to f(x). Thus, analytic functions are very special C∞ functions. A familiar
example of an analytic function is

f(x) = ex =
∞∑

k=0

1
k!

xk .

Simple examples of analytic functions are polynomial functions. As a matter of
fact, when it comes to numerical applications of the solution of the generalized
Riemann problem, we shall, in the main, be concerned with initial conditions
in (19.5) consisting of polynomials.

For a function f of n variables x1, x2, . . . , xn the Taylor series expansion
about a point x(0) = (x(0)

1 , x
(0)
2 , . . . , x

(0)
n ) is

∑
(α1,...,αn)

∂
(α1)
x1 . . . ∂

(αn)
xn f(x(0)

1 , . . . , x
(0)
n )

α1! . . . αn!
(x1−x

(0)
1 )α1 . . . (xn−x(0)

n )αn , (19.7)

where the summation is taken over all n–tuples (α1, α2, . . . , αn) of non–
negative integers αi. For the αj–th order partial derivative of f with respect
to xi we use the notation

∂(αj)
xi

f(x1, . . . , xn) =
∂αj f(x1, . . . , xn)

∂xi
αj

. (19.8)

As an example we consider a function f(x1, x2) of two variables. To second–
order, we have the following expression for the Taylor series expansion

f(x1, x2) = f(x(0)
1 , x

(0)
2 )

+∂x1f(x(0)
1 , x

(0)
2 )(x1 − x

(0)
1 )

+∂x2f(x(0)
1 , x

(0)
2 )(x2 − x

(0)
2 )

+ 1
2∂

(2)
x1 f(x(0)

1 , x
(0)
2 )(x1 − x

(0)
1 )2

+∂
(1)
x1 ∂

(1)
x2 f(x(0)

1 , x
(0)
2 )(x1 − x

(0)
1 )(x2 − x

(0)
2 )

+ 1
2∂

(2)
x2 f(x(0)

1 , x
(0)
2 )(x2 − x

(0)
2 )2 .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(19.9)

In the next section we study a method to solve differential equations that
is based on Taylor series expansions.
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19.3.2 Illustration of the Cauchy–Kowalewski Theorem

Here we state the Cauchy–Kowalewski theorem for the special case of a
first order partial differential equation

PDE: ∂tq = G(x, t, q, ∂xq) , (19.10)

with initial condition
IC: q(x, 0) = q0(x) . (19.11)

The function G(v1, v2, v3, v4) in (19.10) is a function of four variables defined
on a subset of R4. The initial condition (19.11) is assumed to be defined on
an interval I of the real line containing the origin x = 0.

The Cauchy–Kowalewski theorem states that the solution q(x, t) of the
initial–value problem (19.10)–(19.11) for (x, t) in a neighbourhood of (0, 0) is
given by

q(x, t) =
∑

(α1,α2)

∂
(α1)
x ∂

(α2)
t q(0, 0)

α1!α2!
xα1tα2 , (19.12)

if q0(x) is analytic in a neighbourhood of the origin and G is analytic in a
neighbourhood of (0, 0, q0(0), q(1)

0 (0)), where q
(1)
0 (x) ≡ d

dxq0(x). In addition,
the theorem asserts that the solution is analytic and unique. See [596], [186]
and [383].

As part of the proof of existence, the solution is constructed by comput-
ing all the coefficients of the expansion, for which one needs all the partial
derivatives

∂(α1)
x ∂

(α2)
t q(x, t) (19.13)

evaluated at the origin. In computing these partial derivatives one makes re-
peated use of both the governing PDE (19.10) and the initial condition (19.11)
in what is known as the Cauchy–Kowalewski procedure, which is illustrated
below via an example. In a numerical context, Cauchy–Kowalewski procedure
is also known as the Lax–Wendroff procedure.

19.3.3 The Cauchy–Kowalewski Method

We first illustrate the application of the Cauchy–Kowalewski method to
solve a simple initial–value problem and then briefly outline the application of
the method to compute a high–order space–time distribution of the solution
within a control volume to compute the numerical source in (19.2).

An Example

Consider the Cauchy problem
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PDE: ∂tq + ∂xf(q) = 0 , x ∈ (−∞,∞) , t > 0 ,

IC: q(x, 0) = q0(x) ,

⎫
⎬
⎭ (19.14)

where f(q) is the flux function and G(x, t, q, ∂xq) = −∂xf(q) in (19.10). As an
example, we compute the Cauchy–Kowalewski solution of the form (19.12) in
a neighbourhood of the origin (0, 0) to second order of accuracy, for which we
need to evaluate each term of the following expression

q(x, t) = q(0, 0)
+∂tq(0, 0)t + ∂xq(0, 0)x
+ 1

2∂
(2)
x q(0, 0)x2 + ∂

(1)
t ∂

(1)
x q(0, 0)xt + 1

2∂
(2)
t q(0, 0)t2 .

⎫
⎬
⎭ (19.15)

The leading term is simply

q(0, 0) = q0(0) . (19.16)

The higher order terms will be computed in terms of functions of q0(0) and
its spatial derivatives. We first introduce the notation

q(k)(0, 0) ≡ ∂(k)
x q(0, 0) =

dk

dxk
q0(0) (19.17)

and

f (k)(q) =
dk

dqk
f(q) . (19.18)

From the PDE, after using the chain rule, we have

∂
(1)
t q(x, t) = −∂(1)

x f(q) = −f (1)(q)∂(1)
x q . (19.19)

We note that f (1)(q) is the characteristic speed. For systems, this is the Ja-
cobian matrix. The mixed derivative in (19.15) is obtained by differentiating
(19.19) with respect to x

∂x∂tq = −∂x

[
f (1)(q)∂(1)

x q
]

,

which becomes

∂t∂xq = −
[
f (1)(q)∂(2)

x q + f (2)(q)(∂(1)
x q)2

]
. (19.20)

The second–order time derivative in (19.15) is obtained by differentiating
(19.19) with respect to t, which after using (19.19) and (19.20) becomes

∂
(2)
t q = f (1)(q)f (2)(q)∂(1)

x q +
[
f (1)(q)

]2
(∂(1)

x q)2 + f(q)f (1)(q)∂(2)
x q . (19.21)

Remark: each term in (19.15) can be expressed in terms of the initial value
q0(0) and space derivatives (19.17) of the initial condition (19.16). See (19.19)–
(19.21).
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19.4 A Method of Solution

We return to the Cauchy problem (19.5), the generalized Riemann problem
GRPK , in which the two initial states QL(x) and QR(x) are assumed to be
smooth vector fields away from x = 0. For example, the components of the
initial states may be polynomials of order at most K, defined respectively for
x < 0 and for x > 0, with discontinuities at x = 0. See Fig. 19.3. Away from
x = 0 we can use the Cauchy–Kowalewski method to construct a solution
Q(x, t) to (19.5), assuming, perhaps incorrectly, that the all the requirements
of the Cauchy–Kowalewski theorem are met.

Here we study a method to compute the solution of GRPK given by (19.5),
at x = 0, the interface, as a function of time. The method is based on the
works [543] and [523] and is a generalization of the technique presented in
section 13.4.4 of chapter 13 for the case K = 1, see [516] and [517]. Fig. 19.3.
illustrates the initial conditions of GRPK and the information available at
t = 0 at the interface x = 0, for a single component q(x, t) of the vector
Q(x, t). The initial conditions QL(x), QR(x) are smooth away from x = 0,
with one–sided function values and their spatial derivatives well defined and
easily computed. At the interface x = 0 however, all functions and their spatial
derivatives are discontinuous, with left and right limits defining K + 1 jumps
Δ(k)q = q

(k)
R − q

(k)
L , k = 0, 1, . . . ,K, for each component q of the vector Q. In

the solution method the pairs (q(k)
L , q

(k)
R ) will be the initial conditions for new

(classical) Riemann problems, as we shall explain below.

x = 0 x

qL(x)

qR(x)

q(x, 0)
q
(0)
L (0)

q
(1)
L (0)

q
(2)
L (0)

...

q
(K)
L (0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q
(0)
R (0)

q
(1)
R (0)

q
(2)
R (0)

...

q
(K)
R (0)

Fig. 19.3. Illustration of the initial conditions for the generalized Riemann problem
GRP K for a single component q(x, t) of the vector of unknowns Q(x, t). The data
qL(x) and qR(x) are smooth functions away from x = 0 and have one–sided spatial
derivatives at x = 0.
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We seek a solution QLR(τ) of (19.5) at x = 0 as the time power series
expansion

QLR(τ) = Q(0, 0+) +
K∑

k=1

[
∂

(k)
t Q(0, 0+)

] τk

k!
, (19.22)

where the leading term of the expansion is

Q(0, 0+) = lim
t→0+

Q(0, t) .

The higher–order terms contain coefficients which determined by the temporal
partial derivatives ∂

(k)
t Q(0, 0+). In what follows we describe a method to

compute each of the terms of the series expansion.

19.4.1 The Leading Term

The leading term Q(0, 0+) in the expansion (19.22) accounts for the first-
instant interaction of the initial data via the governing PDEs in (19.5), which
is realized solely by the boundary extrapolated values QL(0) and QR(0) of
the ICs in (19.5). These two constant values constitute the initial data for a
classical Riemann problem GRP 0, which is completely defined once appropri-
ate evolution equations are specified. Trivially, the sought evolution equations
are precisely those of the original hyperbolic system (19.5). Therefore, the
leading term Q(0, 0+) is found from the similarity solution of the following
homogeneous GRP 0

PDEs: ∂tQ + ∂xF(Q) = 0 ,

ICs: Q(x, 0) =

⎧
⎨
⎩

QL(0) ≡ limx→0− QL(x) if x < 0 ,

QR(0) ≡ limx→0+ QR(x) if x > 0 .

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(19.23)

We note that the source term S(Q) in (19.5) is neglected here. However, the
influence of the source terms is accounted for by the higher order terms in
(19.22). Denoting the similarity solution of the GRP 0 (19.23) by D(0)(x/t),
the sought leading term is given by evaluating this solution along the t–axis,
that is along x/t = 0, namely

Q(0, 0+) = D(0)(0) . (19.24)

The value D(0)(0) is termed here the Godunov state and for the classical
Riemann problem GRP 0 corresponds to the numerical flux of the first–order
upwind scheme of Godunov [216]. In what follows we shall extend the use
of this terminology to mean the solution of classical Riemann problems for
spatial derivatives evaluated at x/t = 0.

In practice, a classical Riemann solver is needed to obtain the leading
term. See chapters 6 and 9. The determination of the higher–order terms in
the expansion (19.22) is discussed next.
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19.4.2 Higher–Order Terms

The coefficients of the higher order terms require the determination of the
time derivatives. These in turn require the following steps: (i) expressing time
derivatives in terms of spatial derivatives, (ii) construction of evolution equa-
tions for spatial derivatives and (iii) solution of classical Riemann problems
for spatial derivatives. Below we treat each of these steps in detail.

Temporal and Spatial Derivatives

To compute the higher–order terms in (19.22) we need to obtain the partial
derivatives

∂
(k)
t Q(0, 0+) , k = 1, 2, . . . ,K . (19.25)

If all time partial derivatives ∂
(k)
t Q(x, t) were available on both sides of the

initial discontinuity at x = 0, then one could implement a fairly direct ap-
proach to the evaluation of the higher order terms. The method presented in
this section relies on the availability of all spatial derivatives away from the
interface, since the initial data are given by two smooth functions of space,
with all their one–sided spatial partial derivatives available. See Fig. 19.3.

We apply the Cauchy–Kowalewski procedure to express all time derivatives
as functions of space derivatives, namely

∂
(k)
t Q(x, t) = P(k)(∂(0)

x Q, ∂(1)
x Q, . . . , ∂(k)

x Q) . (19.26)

We remark that the source term in (19.5) is also included in the functions P(k)

in (19.26). For the simplest hyperbolic equation, the linear advection equation

∂tq(x, t) + λ∂xq(x, t) = 0 ,

we have

∂
(1)
t q(x, t) = p(1)(∂(0)

x q, ∂
(1)
x q) = −λ∂1

xq(x, t) ,

∂
(2)
t q(x, t) = p(2)(∂(0)

x q, ∂
(1)
x q, ∂

(2)
x q) = λ2∂2

xq(x, t) ,

∂
(k)
t q(x, t) = p(k)(∂(0)

x q, ∂
(1)
x q, . . . , ∂

(k)
x q) = (−λ)k∂k

xq(x, t) .

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

The temporal partial derivatives at x = 0 for t > 0 will only have a
meaning if the functions P(k) can be given a meaning at x = 0 for t > 0.
This in turn depends on whether or not we can give a meaning to each of the
arguments ∂

(0)
x Q, ∂

(1)
x Q, . . . , ∂

(k)
x Q of P(k), in other words, if we can give a

meaning to all function values of Q and its spatial derivatives at x = 0 and
t > 0.

Thus the basic problem is that of computing the spatial derivatives
∂

(k)
x Q(0, 0+). At the initial time t = 0, for x < 0 and for x > 0 all spa-

tial derivatives are defined, for which we introduce the notation
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Q(k)
L (x) ≡ dk

dxk
QL(x) , Q(k)

R (x) ≡ dk

dxk
QR(x) , k = 1, 2, . . . ,K . (19.27)

At x = 0 however, we have the one–sided derivatives

Q(k)
L (0) = limx→0− Q(k)

L (x)

Q(k)
R (0) = limx→0+ Q(k)

R (x)

⎫
⎪⎬
⎪⎭

k = 1, 2, . . . , K . (19.28)

See Fig. 19.3. We thus have a set of K pairs (Q(k)
L (0),Q(k)

R (0)) of constant
vectors that could be used as the initial conditions for K classical Riemann
problems, if in addition we had a set of corresponding evolution equations for
the quantities ∂

(k)
x Q(x, t).

Evolution equations for spatial derivatives

Fortunately, suitable evolution equations can easily be constructed. It can
be verified that the quantity ∂

(k)
x Q(x, t) obeys the following system of non–

linear inhomogeneous evolution equations

∂t(∂(k)
x Q(x, t)) + A(Q)∂x(∂(k)

x Q(x, t)) = H(k) , (19.29)

where the coefficient matrix A(Q) is precisely the Jacobian matrix of system
in (19.5). Equations (19.29) are obtained by manipulation of the PDEs in
(19.5), with the right–hand side

H(k) = H(k)(∂(0)
x Q, ∂(1)

x Q, . . . , ∂(k)
x Q) (19.30)

being a function of Q and all its spatial derivatives up to order k, including
the source terms.

Remark: We note that for linear homogeneous systems with constant coeffi-
cient matrix Ã the right-hand side H(k) in equations (19.29) vanishes identi-
cally and obviously A(Q) = Ã. In other words, the spatial derivatives of all
orders obey the original systems of PDEs identically.

To illustrate the situation we consider two examples. The simplest equa-
tion is the linear advection equation, for which it can easily be verified that
the k–order spatial derivative ∂

(k)
x q(x, t) obeys the same differential equation,

namely
∂t(∂(k)

x q(x, t)) + λ∂x(∂(k)
x q(x, t)) = 0 .

For non–linear equations the above is not true. For example, for the Burgers
equation, written in non–conservative form,

∂tq + q∂xq = 0 ,
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the first order spatial derivative ∂
(1)
x q obeys the modified (inhomogeneous)

Burgers–type equation

∂t(∂(1)
x q) + q∂x(∂(1)

x q) = −(∂(1)
x q)2 .

We return to the evolution equations (19.29). Clearly, in order to devise
a practical method of solution we need to simplify these systems, hopefully,
without destroying the high accuracy of the numerical schemes of the type
(19.29) we are aiming to construct. Two simplifications are made. First we
neglect the source terms H(k) and then we linearize the resulting homogeneous
equations. Neglecting the effect of the source terms is justified, as we only need
∂

(k)
x Q(x, 0+) at the first–instant interaction of left and right states, leading

to homogeneous non–linear systems for spatial derivatives. Then we perform
a linearization of the homogeneous systems about the leading term Q(0, 0+)
of the power series expansion (19.22), that is, the coefficient matrix A(Q) in
(19.29) is taken as the constant matrix

A(0)
LR = A(Q(0, 0+)) . (19.31)

The leading term will generally be the solution of the non–linear Riemann
problem (19.23), found by a non–linear Riemann solver, exact or approxi-
mate, and the proposed linearization based on the solution of this non–linear
problem appears to be adequate to our purpose.

Classical Riemann problems for spatial derivatives

In order to find the spatial derivatives ∂
(k)
x Q(0, 0+) in (19.26) we solve the

following homogeneous, linearized, classical Riemann problems, for each k

PDEs: ∂t(∂
(k)
x Q(x, t)) + A(0)

LR∂x(∂(k)
x Q(x, t)) = 0 ,

ICs: ∂
(k)
x Q(x, 0) =

⎧
⎪⎨
⎪⎩

Q(k)
L (0) if x < 0 ,

Q(k)
R (0) if x > 0 .

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(19.32)

As already stated the (constant) Jacobian matrix A(0)
LR is the same coefficient

matrix for all ∂
(k)
x Q(x, t) and is evaluated only once, using the leading term

(19.24) of the expansion (19.22).
We denote the similarity solution of (19.32) by D(k)(x/t). See section 2.3.3

of chapter 2 for methods to solve Riemann problems for linear systems with
constant coefficients, analytically. The relevant value at the interface is ob-
tained by evaluating D(k)(x/t) at x/t = 0, namely

∂(k)
x Q(0, 0+) = D(k)(0) . (19.33)
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We call this value the Godunov state, in analogy with the interface state
(19.24), the leading term.

With the solution of QLR(τ) of the generalized Riemann problem GRPK

available at the interface, a numerical flux for scheme (19.2) to solve (19.1) is
obtained by evaluating the time integral in (19.4) to the appropriate accuracy.
In the presence of source terms in (19.1) the numerical source is computed as
detailed below.

19.4.3 Source Terms

In order to obtain an approximation to the volume integral of the source
term in (19.4) and thus obtain the numerical source of scheme (19.2), we
propose to use the Cauchy–Kowalewski method described above. Given that
within each cell Ii = [xi− 1

2
, xi+ 1

2
] one assumes a smooth representation of

the data using a reconstruction procedure, all spatial derivatives at the initial
time are defined and readily computed. One possible procedure to define the
function Q(x, t) in (19.4) is to select a set of integration points {xj} within
the cell and for each j construct a time power series expansion analogous
to (19.15), then substitute all time derivatives by functions of space deriva-
tives, evaluate the space derivatives on the initial data and thus obtain a
time–dependent function for each point j. Numerical evaluation of the vol-
ume integral in (19.4) to the appropriate order then follows. Alternatively,
one can construct a space–time power series expansion, as in (19.15), then
replace all time and mixed derivatives by space derivatives alone, evaluate
these on the initial data, and in this manner determine the full series. Numer-
ical evaluation of the volume integral in (19.4) to the appropriate order then
follows, giving the numerical source of the scheme (19.2).

In the next section we summarize the complete solution procedure to ob-
tain QLR(τ) for evaluating the numerical flux.

19.4.4 Summary: Numerical Flux and Numerical Source

The complete procedure for solving the generalized Riemann problem
(19.5) and constructing a high–order numerical scheme is described in the
following steps:

Step (I): The leading term. To compute the leading term in (19.22) one
solves exactly or approximately the classical, homogeneous Rie-
mann problem

PDEs: ∂tQ + ∂xF(Q) = 0 ,

ICs: Q(x, 0) =

⎧
⎨
⎩

QL(0) if x < 0 ,

QR(0) if x > 0 ,

⎫
⎪⎪⎬
⎪⎪⎭

(19.34)
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to obtain the similarity solution D(0)(x/t). The leading term is
then given by the Godunov state

Q(0, 0+) = D(0)(0) . (19.35)

Step (II): Higher order terms. There are three sub–steps here.
1. Time derivatives in terms of spatial derivatives: Use

the Cauchy–Kowalewski procedure to express time derivatives
in (19.22) in terms of functions of spatial derivatives

∂
(k)
t Q(x, t) = P(k)(∂(0)

x Q, ∂(1)
x Q, . . . , ∂(k)

x Q) . (19.36)

2. Evolution equations for derivatives: Construct evolution
equations for spatial derivatives

∂t(∂(k)
x Q(x, t)) + A(Q)∂x(∂(k)

x Q(x, t)) = H(k) . (19.37)

3. Riemann problems for spatial derivatives: Simplify
(19.37) by neglecting source terms H(k) and linearizing the
evolution equations. Then pose classical, homogeneous lin-
earized Riemann problems for spatial derivatives

PDEs: ∂t(∂
(k)
x Q(x, t)) + A(0)

LR∂x(∂(k)
x Q(x, t)) = 0 ,

ICs: ∂
(k)
x Q(x, 0) =

⎧
⎪⎨
⎪⎩

Q(k)
L (0) if x < 0 ,

Q(k)
R (0) if x > 0 .

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(19.38)
Solve these Riemann problems to obtain similarity solutions
D(k)(x/t) and set

∂(k)
x Q(0, 0+) = D(k)(0) . (19.39)

Step (III): The solution. Inserting ∂
(k)
x Q(0, 0+) into (19.36) one determines

the coefficients in (19.22). Then the power series expansion reads

QLR(τ) = C0 + C1τ + C2τ2 + . . . + CKτK , (19.40)

with C0 as in (19.24) and

Ck ≡ ∂
(k)
t Q(0, 0+)

k!
=

P(k)(∂(0)
x Q, ∂

(1)
x Q, . . . , ∂

(k)
x Q)

k!
, (19.41)

for k = 1, . . . ,K. The solution technique for the generalized Rie-
mann problem GRPK reduces the problem to that of solving
K + 1 classical homogeneous Riemann problems, 1 (generally
non–linear) Riemann problem to compute the leading term and
K linearized Riemann problems to determine the higher order
terms.
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Step (IV): Numerical flux. The numerical flux for scheme (19.2) to solve
the general problem (19.1) numerically is obtained by evaluating
the time integral in (19.4), with QLR(τ) as the integrand, to the
appropriate accuracy.

Step (V): Numerical source. To complete the numerical scheme (19.2) we
need to compute the numerical source. This is achieved by evalu-
ating the space–time volume integral in (19.4) to the appropriate
accuracy, as described previously in section 19.4.3.

19.4.5 Some remarks

The leading term requires the availability of a classical Riemann solver,
exact or approximate. Chapter 4 gives the exact Riemann solver for the Euler
equations and chapters 7 to 12 give a variety of approximate Riemann solvers.
Recent works [496], [521], [523], [524], [495] provide alternative ways of solving
the classical Riemann problem. These new Riemann solvers are simple and
quite general. This means that also the generalized Riemann problem can be
solved for more general hyperbolic systems [521].

The K linearized Riemann problems (19.38) for most well–known systems
associated with the higher order terms can be solved analytically and no choice
of a Riemann solver is necessary. Moreover, all of these linearized problems
have the same eigenstructure, as the coefficient matrix is the same for all
Riemann problems for derivatives.

For linear systems with constant coefficients the method of solution for
GRPK presented here is justified. For the non–linear case there appears to be
no theoretical justification available so far, although the empirical evidence
available is supportive, even for non–linear problems with source terms. See
[543] and [521] for further details.

In principle, the technique can be applied to calculate the early–time solu-
tion of advection–reaction equations with piece–wise smooth initial conditions.
One can set up a generalized Riemann problem at any desired position, taking
care that at each point x = xj of discontinuity in the initial condition one sets
a corresponding generalized Riemann problem centred at xj . The solution at
each point xj , for a small time τ , can be used to check the results of numerical
schemes.

19.5 Examples

Here we apply the technique studied in section 19.4 to solve the GRPK

for scalar advection–reaction equations

∂tq + ∂xf(q) = s(q) , (19.42)

where f(q) is the flux function and s(q) is a source term. We first deal with
the simpler linear case without source term.
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19.5.1 The Linear Advection Equation

We solve the generalized Riemann problem for the scalar linear advection
equation with constant coefficient λ and no source term:

PDE: ∂tq + λ∂xq = 0 ,

IC: q(x, 0) =

⎧
⎨
⎩

qL(x) if x < 0 ,

qR(x) if x > 0 ,

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(19.43)

in which the initial conditions qL(x) and qR(x) are two smooth functions
defined respectively for x ∈ (−∞, 0) and x ∈ (0,∞). We may assume, for
example, that qL(x) and qR(x) are polynomials of degree at most K.

According to the method studied in section 19.4, the solution of GRPK

(19.43) is given by the power series expansion

qLR(τ) = q(0, 0+) +
K∑

k=1

[
∂

(k)
t q(0, 0+)

] τk

k!
. (19.44)

We determine each term of the expansion following the steps summarized in
subsection 19.4.3.

Step (I): the leading term. The leading term q(0, 0+) is computed from
the similarity solution d(0)(x/t) of the classical Riemann problem

PDE: ∂tq + λ∂xq = 0 ,

IC: q(x, 0) =

⎧
⎨
⎩

qL(0) if x < 0 ,

qR(0) if x > 0 .

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(19.45)

Trivially, the solution in the half–plane t > 0, −∞ < x < ∞ is

d(0)(x/t) =

⎧
⎨
⎩

qL(0) if λ > x/t ,

qR(0) if λ < x/t ,
(19.46)

and the sought leading term is the Godunov state

q(0, 0+) = d(0)(0) =

⎧
⎨
⎩

qL(0) if λ > 0 ,

qR(0) if λ < 0 .
(19.47)

Step (II): higher–order terms. First we need the time derivatives ex-
pressed as functions of space derivatives. Using the Cauchy–Kowalewski pro-
cedure we obtain
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∂tq = −λ∂xq ,

∂
(2)
t q = λ2∂

(2)
x q ,

. . . . . . . . .

∂
(k)
t q = (−1)kλk∂

(k)
x q ,

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(19.48)

so that the functions p(k) in (19.26) or (19.36) have a particularly simple form,
namely p(k) = (−1)kλk∂

(k)
x q, ∀k > 0. Now we need to determine the space

derivatives ∂
(k)
x q(0, 0+).

Following step (II)–2 of subsection 19.4.3 we formulate evolution equations
for ∂

(k)
x q, which, as already seen obeys

∂t(∂(k)
x q) + λ∂x(∂(k)

x q) = 0 , ∀k > 0 . (19.49)

Note that the evolution equations for space derivatives are the same as the
original (homogeneous) PDE for the unknown q(x, t).

Following step (II)–3 of subsection 19.4.3 we solve the classical Riemann
problems for space derivatives

PDE: ∂t(∂
(k)
x q) + λ∂x(∂(k)

x q) = 0 ,

IC: ∂
(k)
x q(x, 0) =

⎧
⎪⎨
⎪⎩

q
(k)
L (0) if x < 0 ,

q
(k)
R (0) if x > 0 ,

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(19.50)

whose similarity solutions are denoted by d(k)(x/t) and are given by

d(k)(x/t) =

{
q
(k)
L (0) if λ > x/t ,

q
(k)
R (0) if λ < x/t ,

(19.51)

for k = 1, . . . , K. For each k the sought Godunov state is

∂(k)
x q(0, 0+) = d(k)(0) =

⎧
⎪⎨
⎪⎩

q
(k)
L (0) if λ > 0 ,

q
(k)
R (0) if λ < 0 .

(19.52)

Step (III): the complete solution. The coefficients of the series expansion
(19.40) are

ck ≡ ∂
(k)
t q(0, 0+))

k!
=

(−1)kλkd(k)(0)
k!

, (19.53)

for k = 1, . . . ,K, with c0 the leading term given by (19.47). The complete
solution is

qLR(τ) = c0 + c1τ + c2τ
2 + . . . + cKτK , (19.54)

which in full reads
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qLR(τ) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

qL(0) +
∑K

k=1

[
(−1)kλkq

(k)
L (0)

] τk

k!
if λ > 0 ,

qR(0) +
∑K

k=1

[
(−1)kλkq

(k)
R (0)

] τk

k!
if λ < 0 .

(19.55)

The numerical flux is now obtained by evaluating the time integral in (19.4),
with qLR(τ) as the integrand. Note that in this case the integral can be eval-
uated exactly.

Remark: It is easy to verify that the above solution is correct. The exact
solution of the initial value problem for the linear advection equation with
general initial condition q0(x) is q(x, t) = q0(x − λt). For x = 0 we have

q(0, t) = q0(−λt) =

⎧
⎨
⎩

qL(−λt) if λ > 0 ,

qR(−λt) if λ < 0 .
(19.56)

By Taylor expanding qL(−λt) about x = 0− for λ > 0 or qR(−λt) about
x = 0+ for λ < 0 we obtain the desired result.

19.5.2 Linear Advection with a Source Term

Here we solve the GRPK for the model advection–reaction equation

∂tq + λ∂xq = βq ,

q(x, 0) ≡ q0(x) =

⎧
⎨
⎩

qL(x) if x < 0 ,

qR(x) if x > 0 .

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(19.57)

The coefficient λ is a constant characteristic speed; β is also a constant, with
dimensions reciprocal of time, and is normally taken as a negative real number
in order to have a stable differential equation. The exact solution for a general
initial condition q0(x) is

q(x, t) = q0(x − λt)eβt . (19.58)

For the sake of clarity, at the cost of some repetitiveness, we solve the
problem in complete detail. Applying the method studied, the solution of
GRPK (19.57) has the form

qLR(τ) = q(0, 0+) +
K∑

k=1

[
∂

(k)
t q(0, 0+)

] τk

k!
. (19.59)

Note that the form of the solution is the same as that for the homogeneous
case. The effect of the source term enters in the computation of the coefficients
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for the terms of order greater than one. To determine each term in (19.59) we
follow the steps of section 19.4.3.

According to Step (I) the leading term of the expansion, which is the same
as for the homogeneous case, is given by (19.47). The higher–order terms are
computed according to Step (II). We first express time derivatives as functions
of spatial derivatives of q and the source term, using the Cauchy–Kowalewski
procedure. For example

∂tq = −λ∂xq + βq ,

∂
(2)
t q = λ2∂

(2)
x q − 2λβ∂

(1)
x q + β2q .

⎫
⎬
⎭ (19.60)

For the general case it can be shown that

∂
(k)
t q =

k∑
n=0

[
k!

(k − n)!n!
βn(−λ)k−n

]
∂(k−n)

x q . (19.61)

As seen in equations (19.61)–(19.62), in the present version of the technique,
the source term in the PDE enters the solution via the time derivatives ∂

(k)
t q,

for k = 1, . . . , K.
As for the homogeneous case, it is a question of computing space deriva-

tives at the interface x = 0 to determine the time derivatives (19.61). To this
end we formulate evolution equations for space derivatives. It is immediately
seen that the derivative ∂

(k)
x q obeys the same, original, advection–reaction

evolution equation in (19.57), namely

∂t(∂(k)
x q) + λ∂x(∂(k)

x q) = β∂(k)
x q , k = 1, . . . , K . (19.62)

As in (19.37), we neglect the effect of the derivative source terms in the evo-
lution of the derivatives. We thus solve homogeneous classical Riemann prob-
lems of the form (19.50) to find similarity solutions d(k)(0) given by (19.51).
Substitution of all space derivatives into (19.61) gives the time derivatives and
thus the coefficients and the solution is given by (19.59).

We note that the solution qLR(τ) of the inhomogeneous GRPK at the
interface is again reduced to the solution of a sequence of K + 1 classical,
homogeneous Riemann problems. The effect of the source term comes into
the coefficients of the higher–order terms of the expansion. At no point did
we need to solve directly inhomogeneous problems to account for the presence
of the source term.

The numerical flux is now obtained by evaluating the time integral in
(19.4), with qLR(τ) as the integrand. The numerical source is evaluated as
described in section 19.4.3.

19.5.3 Non–Linear Equation with a Source Term

We solve the GRPK
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∂tq + ∂xf(q) = s(q) ,

q(x, 0) ≡ q0(x) =

⎧
⎨
⎩

qL(x) if x < 0 ,

qR(x) if x > 0 ,

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(19.63)

in which f(q) is flux function and s(q) is a source term. The solution has again
the form

qLR(τ) = q(0, 0+) +
K∑

k=1

[
∂

(k)
t q(0, 0+)

] τk

k!
. (19.64)

We determine each term of the expansion following the steps of section 19.4.3.

Step (I): the leading term

The leading term results from the solution of the homogeneous classical
Riemann problem

PDE: ∂tq + ∂xf(q) = 0 ,

IC: q(x, 0) =

⎧
⎨
⎩

qL(0) if x < 0 ,

qR(0) if x > 0

⎫
⎪⎪⎬
⎪⎪⎭

(19.65)

denoted by d(0)(x/t), with the leading term given by

q(0, 0+) = d(0)(0) . (19.66)

Step (II): higher–order terms

We need to determine the time derivatives in (19.64), which is done in
three sub–steps. First, using the Cauchy–Kowalewski procedure, we express
time derivatives as functions of space derivatives. For example, the first–order
time derivative, from the PDE, is

∂
(1)
t q(x, t) = −f (1)(q)∂(1)

x q + s(q) . (19.67)

Then we compute the mixed derivative

∂x∂tq = ∂(1)
x

[
−f (1)(q)∂(1)

x q + s(q)
]

, (19.68)

which after some manipulations becomes

∂t∂xq(x, t) = −f (1)(q)∂(2)
x q − f (2)(∂(1)

x q)2 + s(1)(q)∂(1)
x q . (19.69)

The second–order time derivative is obtained from differentiating (19.67) with
respect to t and making appropriate substitutions, yielding
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∂
(2)
t q =

[
f (1)

]2
∂

(2)
x q + 2f (1)(q)f (2)(q)(∂(1)

x q)2

−
[
s(q)f (2)(q) + 2f (1)(q)s(1)(q)

]
∂

(1)
x q + s(q)s(1)(q) .

⎫
⎪⎬
⎪⎭

(19.70)

The higher–order time derivatives are constructed in a similar manner, ideally
using a symbolic manipulator. In general, they are functions of q(x, t) and its
spatial derivatives and have the form (19.36), namely

∂
(k)
t q(x, t) = p(k)(∂(0)

x q, ∂(1)
x q, . . . , ∂(k)

x q) . (19.71)

We now construct evolution equations for the spatial derivatives, the ar-
guments of p(k). These have the form

∂t(∂(k)
x q) + λ(q)∂x(∂(k)

x q) = h(k) , (19.72)

where
λ(q) = f (1)(q) (19.73)

is the characteristic speed. Neglecting the source term and linearizing we have
the homogeneous linear problems

∂t(∂
(k)
x q) + λ

(0)
LR∂x(∂(k)

x q) = 0 ,

∂
(k)
x q(x, 0) =

⎧
⎪⎨
⎪⎩

q
(k)
L (0) if x < 0 ,

q
(k)
R (0) if x > 0 ,

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(19.74)

where λ
(0)
LR = f (1)(q(0, 0+)) is a constant characteristic speed. The Godunov

state is

d(k)(0) =

⎧
⎪⎨
⎪⎩

q
(k)
L (0) if λ

(0)
LR > 0 ,

q
(k)
R (0) if λ

(0)
LR < 0 .

(19.75)

Substitution of these into the right–hand side of (19.71) determines all the
coefficients in (19.64) and hence the solution is complete.

The numerical flux is now obtained by evaluating the time integral in
(19.4), with qLR(τ) as the integrand. The numerical source is evaluated as
described in section 19.4.3.

19.5.4 The Burgers Equation with a Source Term

As an example we solve the generalized Riemann problem for the inviscid
Burgers equation with a non–linear source term
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∂tq + ∂x(1
2q2) = e−q ,

q(x, 0) =

⎧
⎪⎨
⎪⎩

qL(x) = 2e−2(x− 1
5 )2 if x < 0 ,

qR(x) =
1
8
e−2(x+ 1

5 )2 if x > 0 .

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(19.76)

We wish to find the solution qLR(τ) right at the interface, as a function of
time.

X

T
im

e

-1 4
0

3

Fig. 19.4. Contour plot of the numerical solution of the generalized Riemann prob-
lem for the inviscid Burgers equation with a non–linear source term. The main
feature of the solution is an accelerating shock wave that propagates to the right
(Courtesy of Dr. V. A. Titarev).

Fig. 19.4 shows a contour plot of the global solution of (19.76) in the x–
t plane. This solution was obtained numerically using a 5–th order WENO
method [493] on a fine mesh of 1000 cells in the computational domain [−5, 5].
We regard this as the reference solution and we use it to compare with results
from the semi–analytical solution procedure for the GRPK studied in section
19.4. The dominant feature of the solution is an accelerating shock wave that
emerges from the initial discontinuity in the initial condition at x = 0.

Fig. 19.5 depicts a comparison of the solution qLR(τ) given by (19.64) at
the interface x = 0 for 0 < τ < 0.15, with the reference numerical solution.
We remark here that the reference (numerical) solution is not computed pre-
cisely at the interface x = 0. The nearest numerical values are those in the
finite volumes immediately to the left and to the right of the interface. The
solution qLR(τ) is valid precisely at the interface. Thus in order to carry out
a comparison we use WENO high–order interpolation to obtain an interpo-
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Fig. 19.5. Comparison between the reference solution (numerical solution interpo-
lated to the interface position) and the GRP K solution to sixth order of accuracy
(Courtesy of Dr. V. A. Titarev).

lated numerical value at the interface. This is the value we compare with the
solution qLR(τ) of GRPK .

Fig. 19.5 shows that for relatively short times there is excellent agreement
between the reference numerical solution and the solution qLR(τ) of GRPK .
It is also seen that, as expected, for larger times the accuracy of the solution
qLR(τ) deteriorates visibly. We also note that for times very close to zero
(not shown in Fig. 19.5) the reference solution is very inaccurate due to the
smearing of the shock wave.

We can also compute an error by taking the difference between the refer-
ence numerical solution of Fig. 19.4 and the solution qLR(τ) of GRPK . Table
19.1 shows errors at the four times 0.01, 0.025, 0.05 and 0.1 for solutions
qLR(τ) of orders 1 to 6. It is seen that for small times, as expected, the so-
lution is accurate, and becomes more accurate as the number of terms in the
expansion increases. For large times the error is large. The error decreases as
the number of terms in the expansion is increased, but this reduction in the
error is less obvious for the larger times.

This example clearly illustrates the fact that the power series solution
remains valid only for small times, as one would expect.
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Order t = 0.010 t = 0.025 t = 0.050 t = 0.100
1 0.2625656E-1 0.6724719E-1 0.1374329E0 0.2735556E0
2 0.5662654E-3 0.3021457E-2 0.8981471E-2 0.1665263E-1
3 0.5807203E-4 0.880652E-3 0.6626964E-2 0.4578111E-1
4 0.9508504E-6 0.4158045E-4 0.7508961E-3 0.1324177E-1
5 0.8990528E-7 0.7949777E-5 0.2128054E-3 0.463232E-2
6 0.5743972E-8 0.139097E-5 0.8609855E-4 0.4932606E-2

Table 19.1. Solution qLR(τ) of GRPK for the Burgers equation with a
non–linear source term. Errors of solution qLR(τ) of orders K = 1, . . . , 6, at
four times.

In the next section we briefly discuss alternative ways of solving the gen-
eralized Riemann problem.

19.6 Other Solvers

In this chapter we have presented a semi–analytical method to solve the
generalized Riemann problem for hyperbolic balance laws, based on a high–
order Taylor expansion in time of the solution right at the interface. The
technique is an arbitrary–order generalization of the second–order method
proposed by Ben-Artzi and Falcovitz [37]. The material of this chapter closely
follows the works [543] and [523]. To facilitate the discussion on various solvers
we call this the Toro–Titarev GRPK solver. Once the solution at the interface,
as a function of time, is known then the numerical flux in (19.2) can be
computed by appropriate integration, leading to a fully discrete, one–step
method of arbitrary order of accuracy in both space and time.

Also the numerical method of Harten and collaborators [242] may be re–
interpreted as a solver for the generalized Riemann problem GRPK . See [91]
for details on the re–interpretation and comparisons with other solvers. Harten
and collaborators [242] first evolve in time the boundary extrapolated values
of the data QL(x) and QR(x), on the left and right of the interface; this is
accomplished by means of a Taylor series expansion followed by use of the
Cauchy–Kowaleswki procedure. Then, at any time tk one has two constant
values of the evolved data, one to the left and one to the right of the interface.
In order to find the solution right at the interface Harten and colleagues solve
a classical Riemann problem at the interface and use the corresponding simi-
larity solution to define the sought value of the solution of the generalized Rie-
mann problem. We call this solver the Harten–Osher–Engquist–Chakravarthy
solver.

A variant of the two solvers above was presented in [91], whereby the left
and right boundary extrapolated data are evolved in time producing time–
evolved temporal derivatives. These then form the initial conditions for a
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classical Riemann problem for time derivatives directly, determining in this
manner all the coefficients of the power series expansion right at the interface.
We call this solver the Castro–Toro GRPK solver. In [91], a comparison of
the three solvers is made. It is established that for homogeneous linear hyper-
bolic systems with constant coefficients, all the three solves are algebraically
equivalent. Otherwise, they are all different but are equivalent in terms of
order of accuracy. In the evaluation of the GRPK solvers of [91], the actual
time–dependent solution of GRPK was computed and compared to reference
solutions for a range of test problems, for the Euler equations. In [530] such
comparison was carried out for the Baer–Nunziato equations of two–phase
compressible flow.

Numerical implementations pose two major tasks: (i) a non–linear recon-
struction procedure (see, for example, [242], [270] and [25]), that provides
the high–order data for the generalized Riemann problem and (ii) the prac-
tical implementation of the Cauchy–Kowaleswki procedure to convert time
derivatives to space derivatives. Reconstruction procedures in multiple space
dimensions on unstructured meshes, although very complex, are by now well
established. See for example [175] and [176]. However, the Cauchy–Kowaleswki
procedure remains the main challenge for implementing these three GRPK

solvers, specially for very high order of accuracy, in multiple space dimensions,
on unstructured meshes and with source terms. We note, however, that com-
puting time is not the main drawback of the Cauchy–Kowaleswki procedure,
but sheer complexity and thus the use of symbolic manipulators is a must
in all three solvers mentioned above. For some systems, special algorithms
have been developed to implement the Cauchy–Kowaleswki procedure. See
for example [176], for the three–dimensional Euler equations. An additional
shortcoming of the solvers discussed so far is the ability to deal with stiff
source terms.

In the recent paper [173], an alternative GRPK solver has been presented,
which we call the Dumbser–Enaux–Toro GRPK solver. In very simple terms,
this solver may be seen as a numerical variant of the Harten–Osher–Engquist–
Chakravarthy solver. The initial data on the left and right of the interface is
evolved in time numerically, avoiding in this manner the use of the Cauchy–
Kowaleswki procedure. Moreover, if the numerical evolution is carried out
by an implicit method (locally implicit), then the generalized Riemann prob-
lem for hyperbolic systems with stiff source terms can be solved correctly.
Dumbser and collaborators [173] use a locally implicit space–time discontin-
uous Galerkin method for the data evolution stage. Then to determine the
solution of the generalized Riemann problem at the required position, the in-
terface, one solves a classical Riemann problem at the required time tk. The
numerical flux to high–order is then determined in the usual way by appro-
priate quadrature. As a bonus of the Dumbser–Enaux–Toro method, one can
straightforwardly evaluate the source term (stiff or non stiff) correctly; this in-
volves a space–time volume integral in which one can use directly the evolved
data for the predictor stage of the solver. Having determined the numerical
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flux and the numerical source one has then a globally explicit, fully discrete,
one–step scheme (19.2) of arbitrary order of accuracy in space and time. See
[173] and [171] for recent applications of this GRPK solver.

19.7 Concluding Remarks

We have studied in complete detail a semi–analytical method for solving
the generalized Riemann problem GRPK for systems of non–linear hyper-
bolic equations with source terms. The initial condition of GRPK consists
of two arbitrary but smooth vector fields joined by a jump discontinuity at
the origin and the governing equations contain source terms, in general. The
solution procedure studied reduces the full inhomogeneous non–linear prob-
lem to the solution of one non–linear homogeneous classical Riemann problem
and a sequence of homogeneous classical linear Riemann problems for spatial
derivatives. The solution technique has been illustrated through some sim-
ple scalar examples; further details of the method as applied to non–linear
systems are given in [543] and [523]. Alternative methods have been briefly
outlined. The main use of the generalized Riemann problem solution is in
the construction of numerical fluxes and numerical sources that produce fully
discrete, one–step numerical schemes of arbitrary order of accuracy in both
space and time, for solving hyperbolic equations with source terms. This can
be done in the frameworks of finite volume and discontinuous Galerkin finite
element methods. In the following chapter we give an introduction to such
methods in the framework of finite volumes.



20

The ADER Approach

This chapter is an introduction to the ADER family of fully–discrete, one–
step methods of arbitrary order of accuracy in space and time, for solving
hyperbolic equations with source terms. These schemes are a generalization
of the Godunov method. The numerical flux is computed as a time–integral
average of the flux function evaluated at the solution of the generalized Rie-
mann problem studied in chapter 19, and the numerical source is computed as
a high–order space-time integral of the source term in the appropriate control
volume. The ADER approach operates in the framework of finite volumes and
of discontinuous Galerkin finite elements. Here we deal with the finite volume
framework for one-dimensional model problems.

20.1 Introduction

The second–order TVD methods studied in previous chapters, have be-
come a mature numerical technology that has been adopted by users not only
in academia but also in industry, in research laboratories and in commercial
software companies. However there is sufficient evidence that such methods
are inadequate for a number of engineering and scientific problems. In partic-
ular, long–time evolution wave propagation problems require more accurate
methods. It is also reasonable to assume that in the future, scientific com-
puting and related disciplines will continue to drive errors towards machine
zero. This means that numerical methods of very high order of accuracy will
have an increasingly important role to play. However the obvious question to
be asked is this: Given an error deemed acceptable, how can one best attain
that error in terms of memory and processing time? Do we use a low–order
method on a fine mesh or a high–order method on a coarse mesh? Available
evidence [437], [436] suggests that for errors below a threshold it is distinctly
better to use a method of high order of accuracy.

However, the construction of the kind of high–order methods that are
suitable for wave propagation problems and other related fields, is subject

E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 655
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to stringent requirements. In particular, the methods must be conservative,
in view of the Lax–Wendroff theorem [302], and non–linear, in view of Go-
dunov’s theorem [216]. In addition, we speak of high–order of accuracy in
both space and time, for problems involving source terms and to be solved
in complex multidimensional geometries. We expect these methods to attain
the theoretical convergence rates for smooth solutions and, at the same time,
be able to compute discontinuous solutions without or much reduced spuri-
ous oscillations. The work of Harten and collaborators, see for example [242],
introduced a family of fully–discrete, one–step methods that contained some
of the basic desirable ingredients. The work of Shu and collaborators [447],
[444] introduced semi–discrete versions of these methods, which are today the
standard numerical methodology to use.

In this chapter we give an introduction to the ADER approach for con-
structing high–order methods. The approach was first put forward by Toro
and collaborators in [537] for linear problems on Cartesian meshes. Schemes
were formulated for one, two and three space dimensions; reported numerical
implementations for linear schemes (fixed stencils) for one and two space di-
mensions included computations of up to 10–th order of accuracy in both space
and time. The ADER schemes are one–step and fully discrete; they require a
high–order spatial reconstruction (once per time step) and the solution of the
generalized Riemann problem at the cell interface. The ADER schemes are
akin to the methods proposed by Harten, Osher, Engquist and Chakravarthy
[242]. As a matter of fact, for linear problems with constant coefficients the
ADER schemes are identical to the schemes of [242]. For non–linear problems,
however, they differ, even though they are equivalent in terms of order of accu-
racy. The ADER approach is an extension of the second–order GRP method
of Ben–Artzi and Falcoviz [37] and the building block of the method is the so-
lution of the generalized Riemann problem right at the interface. The scheme
of Harten and collaborators, on the other hand, may be seen as an extension
of the second–order MUSCL–Hancock scheme [562]; a distinctive feature of
this method being the time evolution of the boundary extrapolated values of
the reconstructed data, followed by solutions of classical Riemann problems
at the interface. See [91] for a detailed comparison of both approaches.

Further developments of the ADER methodology for linear systems are
due to Munz and collaborators [437], [436], [435]. The extension of ADER to
non–linear problems for schemes of accuracy greater than two was first re-
ported by Titarev and Toro in [492]; they used the solution of the generalized
Riemann problem reported by Toro and Titarev in [543]. See also the work of
Takakura and Toro [475] for the non–linear scalar case. Non–linear systems
in two and three space dimensions using Cartesian meshes were dealt with in
[494] and [490]; see also [544] and [524]. The case of non–Cartesian meshes was
first tackled by Käser for the scalar non–linear case; see [281], [282] and [283];
see also the work of Castro [89]. The work of Dumbser and collaborators has
taken the ADER approach a long way, by extending it to non–linear systems
with source terms on unstructured meshes, in two and three space dimensions,
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in the frameworks of finite volume and of discontinuous Galerkin finite ele-
ment methods; see for instance [178], [169], [170], [175], [176] and [177]. The
comparative study reported in[91] suggests that it is possible to widen the
ADER framework so as to include the method of Harten and collaborators
[242]. A significant step forward in this direction is the recent work of Dumbser
and collaborators who have proposed a rather general solver for the general-
ized Riemann problem; see [173] and [171]. This solver allows, amongst other
things, the proper treatment of stiff source terms, reconciling high accuracy
and stiffness.

In this chapter we give an introduction to the ADER approach in the
framework of finite volume methods. The rest of this chapter is structured as
follows: in section 20.2 we describe the ADER approach in the finite volume
framework; in section 20.3 we construct a second–order ADER method for
a scalar equation with a source term; in section 20.4 we construct ADER
schemes of arbitrary order of accuracy for the model scalar equation with a
linear source term. Sample numerical results are shown in section 20.5 and
conclusions are drawn in section 20.6.

20.2 The Finite Volume Method

The ADER methods studied in this chapter operate in both the frame-
works of finite volumes and discontinuous Galerkin finite element methods.
This introductory chapter deals exclusively with finite volume methods.

20.2.1 The Framework

Here we introduce the main features of the ADER approach as applied to
a scalar conservation law with a source term

∂tq + ∂xf(q) = s(q) . (20.1)

A finite volume scheme to solve (20.1) approximately results from integrating
equation (20.1) on a control or finite volume [xi− 1

2
, xi+ 1

2
]× [tn, tn+1] to obtain

the formula
qn+1
i = qn

i − Δt

Δx
[fi+ 1

2
− fi− 1

2
] + Δtsi , (20.2)

where qn
i is the spatial–integral average

qn
i =

1
Δx

∫ x
i+ 1

2

x
i− 1

2

q(x, tn)dx , (20.3)

fi+ 1
2

is the time–integral average

fi+ 1
2

=
1

Δt

∫ tn+1

tn

f(q(xi+ 1
2
, t))dt , (20.4)
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and si is the volume–integral average

si =
1

Δt

1
Δx

∫ tn+1

tn

∫ x
i+ 1

2

x
i− 1

2

s(q(x, t))dxdt , (20.5)

with
Δx = xi+ 1

2
− xi− 1

2
, Δt = tn+1 − tn . (20.6)

In (20.3) the integrand is assumed to be the known initial condition at time
tn within the control volume. In (20.4) q(xi+ 1

2
, t) is the solution of (20.1) at

the volume interface position x = xi+ 1
2
. In (20.5) the function q(x, t) is the

solution of (20.1) within the volume xi− 1
2
≤ x ≤ xi+ 1

2
, tn ≤ t ≤ tn+1. Under

these assumptions relation (20.2) is exact.
Numerical methods of the finite volume type can be constructed by in-

terpreting (20.2) as a numerical formula to update approximations to cell
averages qn

i within the cells Ii = [xi− 1
2
, xi+ 1

2
], with cell or volume centre

xi =
1
2
(xi− 1

2
+ xi+ 1

2
) , (20.7)

cell interfaces xi− 1
2

and xi+ 1
2
, mesh length Δx and time step Δt.

A particular finite volume method is constructed by specifying a particular
approximation to the integrals (20.3)–(20.5). The integral (20.3) is obvious
and results from taking q(x, tn) as the initial condition inside the volume,
or cell, Ii. Strictly speaking, at the initial time one should convert the given
initial conditions into cells averages via (20.3), but for subsequent times the
updating formula (20.2) takes care of this task automatically. What is crucial
in a finite volume method is the design of a strategy to produce approximations
to the integrals (20.4) and (20.5) that result in approximate expressions for
fi+ 1

2
, called the numerical flux, and for si, called the numerical source. The

numerical flux and numerical source will still be denoted respectively as fi+ 1
2

and si, so that (20.2) can be interpreted as a numerical formula.
In what follows we define the ADER approach for prescribing the numerical

flux and the numerical source in the finite volume formula (20.2).

20.2.2 The Numerical Flux

The numerical flux fi+ 1
2

results from approximating the time–integral av-
erage (20.4) of the flux function at the interface. Where convenient we intro-
duce local coordinates in which x is replaced by x−xi+ 1

2
and t is replaced by

t − tn. In the ADER approach the numerical flux is obtained by evaluating
the integral

fi+ 1
2

=
1

Δt

∫ Δt

0

f(qi+ 1
2
(τ))dτ , (20.8)
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with a suitably high order numerical integration scheme, where the function
of time qi+ 1

2
(τ) at the interface position is the solution of a generalized Rie-

mann problem. The generalized Riemann problem GRPK for a given system
with source terms has initial conditions with a piece–wise high–order spatial
representation and whose solution at the interface has a high–order temporal
representation. The GRPK for (20.1) is the Cauchy problem

PDE: ∂tq + ∂xf(q) = s(q) ,

IC : q(x, 0) =

⎧
⎨
⎩

pi(x) if x < 0 ,

pi+1(x) if x > 0 .

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(20.9)

Here pi(x) and pi+1(x) are assumed to be polynomials of degree K obtained
from a conservative and non–oscillatory reconstruction procedure. The solu-
tion of (20.9) at the fixed interface position xi+ 1

2
, or x = 0 in local coordinates,

denoted by qi+ 1
2
(τ), is a function of time and has the form

qi+ 1
2
(τ) = q(0, 0+) +

K∑
k=1

[
∂

(k)
t q(0, 0+)

] τk

k!
, (20.10)

where
q(0, 0+) = lim

t→0+
q(0, t)

and K is the order of the approximation. See chapter 19 for details on solu-
tion methods for the generalized Riemann problem GRPK . With the solution
qi+ 1

2
(τ) available one can compute the numerical flux according to (20.8). In

the absence of source terms the resulting finite volume scheme (20.2) is of
order K + 1 in both space and time.

20.2.3 The Numerical Source

In the presence of source terms the ADER approach determines the nu-
merical source si by approximating the space–time integral (20.5) within the
space–time volume [xi− 1

2
, xi+ 1

2
] × [0,Δt] to obtain the average

si =
1

Δt

1
Δx

∫ Δt

0

∫ x
i+ 1

2

x
i− 1

2

s(qi(x, t))dxdt , (20.11)

where qi(x, t) denotes an approximation to the solution of (20.1) inside the
volume [xi− 1

2
, xi+ 1

2
] × [0,Δt], with qi(x, 0) = pi(x) in cell i, at the initial

time t = 0. To obtain the required values of qi(x, t) for xi− 1
2
≤ x ≤ xi+ 1

2
,

0 < t ≤ Δt we use the Cauchy–Kowalewski procedure, introduced in chapter
19.
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A possible version of the method considers fixed integration points x̂ within
the cell i at which one constructs a Taylor series expansion in time. By means
of the Cauchy–Kowalewski procedure one converts time derivatives to space
derivatives using the PDE (20.1). The space derivatives in cell i are all readily
available from the smooth reconstructed function pi(x) and thus the solution
at each integration point x̂ is known as an explicit function of time and there-
fore the integration can be carried out to obtain the numerical source si to
the desired order of accuracy. The resulting finite volume scheme (20.2) for
the advection equation with a source term (20.1) is of order K + 1 in both
space and time

Two pending issues are the reconstruction procedure to obtain the smooth
functions pi(x) that form the initial condition of the generalized Riemann
problem (20.9) and the application of the Cauchy–Kowalewski procedure to
find qi(x, t) in (20.11). In the following subsection we give a very succinct
overview of the reconstruction problem.

20.2.4 Reconstruction

At any given time tn one has a set of cell averages {qn
i } that are approx-

imations to (20.3). This set represents a piece–wise constant distribution of
the data. Note that the spatial variation of the solution within each cell has
been lost in the averaging procedure. The task at hand is to recover the lost
information by using the cells averages qn

i to construct, or reconstruct, smooth
functions pi(x) that locally represent the spatial variation of the solution of
(20.1). The reconstruction procedure to find the function pi(x) must be con-
servative, that is, the integral average of pi(x) inside cell i is identically qn

i .
In general, the functions pi(x) have jump discontinuities at the cell interfaces
x = xi+ 1

2
. Fig. 20.1 depicts typical reconstructed functions for three consec-

utive finite volumes i − 1, i and i + 1. In this chapter we assume that the
reconstructed functions are polynomials of a specified degree.

In principle, any of the classical interpolation techniques can be employed
in the reconstruction procedure. In particular, one can construct polynomials
on a fixed stencil formed by a set of averages

qn
i−kL

, qn
i−kL+1, . . . , q

n
i−1, q

n
i , qn

i+1, . . . , q
n
i+kR

, (20.12)

where kL and kR and two non–negative integers.
A reconstruction based on a fixed stencil will be called a linear reconstruc-

tion. The resulting numerical schemes will be called linear schemes. Recall
that from Godunov’s theorem, see chapter 13, linear schemes of accuracy
greater than one are oscillatory. If avoiding spurious oscillations is an impor-
tant requirement on the numerical methods, then one must design non–linear
schemes, even when applied to linear PDEs. A necessary condition for design-
ing non–linear schemes is that the reconstruction be implemented on variable
or adaptive stencils, rather than fixed stencils. Such reconstructions will be
called non–linear reconstructions.
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q(

x
,t

n
)

xxi−1 xi xi+1

pi−1(x)

pi(x) pi+1(x)

qn
i−1 qn

i qn
i+1

Fig. 20.1. Cell averages {qn
i } define a piece–wise constant distribution {pi(x)} on

each cell i. Illustration of reconstructed polynomial functions pi−1(x), pi(x) and
pi+1(x) in cells i − 1, i and i + 1, respectively.

The simplest non–linear reconstruction is based on the Total Variation Di-
minishing, or TVD, criterion studied in chapter 13. Higher–order non–linear
ADER schemes can be constructed on the basis of other types of reconstruc-
tions, such as ENO and WENO interpolations.

The ENO (Essentially Non–Oscillatory) interpolation method [245] is suit-
able for approximating functions that contain discontinuities or exhibit large
gradients. For a given interval [a, b] and a set of samples (xi, h(xi)), for
i = 0, . . . , N , classical interpolation methods construct a global polynomial
of order N that interpolates all points, using for example, the Newton form
of the polynomial. Instead, in the ENO approach one constructs polynomials
of order less than N that have three distinguishing features:

• they are local, that is, they are defined on sub–intervals Ii = [xi− 1
2
, xi+ 1

2
]

• they are conservative, that is

1
Δx

∫ x
i+ 1

2

x
i− 1

2

pi(x)dx = qn
i , (20.13)

• they are adaptive, their coefficients depend on the behaviour of the data.

The local and adaptive nature of the interpolation method results in a
representation polynomial that is essentially non–oscillatory (ENO).

A trivial example of a set of reconstructed polynomials is given by the set
of constant polynomials

pi(x) =

⎧
⎨
⎩

qn
i if x ∈ Ii = [xi− 1

2
, xi+ 1

2
] ,

0 otherwise ,

(20.14)
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resulting in a global, piece–wise constant, polynomial pi(x), for all x in a given
interval I. This reconstruction satisfies trivially all three conditions above.

A first–degree polynomial in cell Ii = [xi− 1
2
, xi+ 1

2
] is

p
(1)
i (x) = qn

i + (x − xi)Δ
(1)
i , (20.15)

where the slope, given as

Δ
(1)
i = Δ

(1)
i (Δi− 1

2
,Δi+ 1

2
) , (20.16)

is a function of the two neighbouring gradients

Δi− 1
2

=
qn
i − qn

i−1

Δx
, Δi+ 1

2
=

qn
i+1 − qn

i

Δx
. (20.17)

A very simple choice for Δ
(1)
i is the mean value

Δ
(1)
i =

1
2
(Δi− 1

2
+ Δi+ 1

2
) . (20.18)

In the ENO approach one chooses the slope Δ
(1)
i adaptively. For this first–

degree polynomial one takes

Δ
(1)
i =

⎧
⎨
⎩

Δi− 1
2

if |Δi− 1
2
| ≤ |Δi+ 1

2
| ,

Δi+ 1
2

if |Δi− 1
2
| > |Δi+ 1

2
| .

(20.19)

Then, a global, piece–wise linear polynomial is defined as

h(x) =

⎧
⎨
⎩

pi(x) if x ∈ Ii = [xi− 1
2
, xi+ 1

2
] ,

0 otherwise .

(20.20)

This reconstruction is equivalent to have considered two candidate polynomi-
als qL(x), qR(x), with corresponding two candidate stencils

SL = {qn
i−1, q

n
i } and SR = {qn

i , qn
i+1} (20.21)

and then choosing the one with the smallest first divided difference. Higher–
order ENO polynomials for each cell Ii can be constructed in an analogous
manner.

Another choice for stencil–adaptive reconstructions is the WENO ap-
proach [331], [270] (Weigthed Essentially Non–Oscillatory), whereby the sought
polynomial pi(x) is a weighted average of all polynomials that correspond to
the candidate stencils in the ENO method. Further details of WENO are found
in [493]. A modified WENO reconstruction method applicable to unstructured
meshes in two and three space dimensions is proposed in [175], [176].
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20.3 Second–Order Scheme for a Model Equation

Concerning accuracy, ADER is a unified approach, in that the same frame-
work allows the choice of any desired order of accuracy. Here we illustrate the
application of the ADER approach to construct a scheme of the form (20.2)
of second order of accuracy. We follow the full general framework, as would be
done for constructing an ADER scheme of any order of accuracy. The specific
second–order scheme is presented in terms of the model advection equation
with a source term

∂tq + λ∂xq = βq . (20.22)

The flux function is f(q) = λq and the source function is s(q) = βq, where λ
and β ≤ 0 are known constants. We need to compute the numerical flux fi+ 1

2

and the numerical source si for the scheme (20.2).

20.3.1 Numerical Flux and Numerical Source

First we assume a reconstruction of the data in terms of first–degree poly-
nomials pi(x) of the form

pi(x) = qn
i + Δ

(1)
i (x − xi) , pi+1(x) = qn

i+1 + Δ
(1)
i+1(x − xi+1) , (20.23)

with the slopes Δ
(1)
i and Δ

(1)
i+1 chosen as in (20.19), for example. Then, to

compute the numerical flux fi+ 1
2

according to (20.8) we solve the generalized
Riemann problem GRP1

PDE: ∂tq + λ∂xq = βq ,

IC: q(x, 0) =

⎧
⎨
⎩

pi(x) if x < 0 ,

pi+1(x) if x > 0 .

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(20.24)

The solution of (20.24) takes the form

qi+ 1
2
(τ) = q(0, 0+) + τ∂tq(0, 0+) (20.25)

and is completely determined by performing the following steps:

Step (I): The leading term. To compute the leading term q(0, 0+) one
solves the classical Riemann problem

PDE: ∂tq + λ∂xq = 0 ,

IC: q(x, 0) =

⎧
⎪⎨
⎪⎩

pi(0) ≡ qn
i + 1

2ΔxΔ
(1)
i if x < 0 ,

pi+1(0) ≡ qn
i+1 − 1

2ΔxΔ
(1)
i+1 if x > 0 ,

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(20.26)
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in which the initial condition consists of the boundary extrapolated val-
ues pi(0) from the left and pi+1(0) from the right. The similarity solution
d
(0)

i+ 1
2
(x/t) of this problem is

d
(0)

i+ 1
2
(x/t) =

⎧
⎪⎨
⎪⎩

qn
i + 1

2ΔxΔ
(1)
i if x/t < λ ,

qn
i+1 − 1

2ΔxΔ
(1)
i+1 if x/t > λ ,

(20.27)

and the leading term is the Godunov state (x/t = 0)

q(0, 0+) = d
(0)

i+ 1
2
(0) =

⎧
⎪⎨
⎪⎩

qn
i + 1

2ΔxΔ
(1)
i if λ > 0 ,

qn
i+1 − 1

2ΔxΔ
(1)
i+1 if λ < 0 .

(20.28)

Step (II): The higher order term. To compute the second term in (20.25)
we do the following:

1. Time derivative in terms of the spatial derivative. The Cauchy–Kowalewski
procedure uses the PDE (20.22) to express the time derivative in terms
of the space derivative and the source term,

∂tq(x, t) = −λ∂xq + βq , (20.29)

with the function q(x, t) evaluated at the leading term, so that the expan-
sion (20.25) reads

qi+ 1
2
(τ) = q(0, 0+) + [−λ∂xq(0, 0+) + βq(0, 0+)]τ . (20.30)

2. Evolution equation for the space derivative. To determine the space deriva-
tive on the right–hand side of (20.30) we first construct an evolution equa-
tion for ∂xq(x, t); it is easily seen that in fact ∂xq(x, t) obeys the original
evolution advection–reaction equation (20.22), namely

∂t(∂xq(x, t)) + λ∂x(∂xq(x, t)) = β∂xq(x, t) . (20.31)

3. Riemann problem for the spatial derivative. We simplify (20.31) by ne-
glecting the source term for the gradient. Then we pose the classical ho-
mogeneous Riemann problem for the spatial derivative:

PDE: ∂t(∂xq(x, t)) + λ∂x(∂xq(x, t)) = 0 ,

IC: ∂xq(x, 0) =

⎧
⎪⎨
⎪⎩

Δ
(1)
i if x < 0 ,

Δ
(1)
i+1 if x > 0 .

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(20.32)

We solve this Riemann problem to obtain the similarity solution
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d
(1)

i+ 1
2
(x/t) =

⎧
⎪⎨
⎪⎩

Δ
(1)
i if x/t < λ ,

Δ
(1)
i+1 if x/t > λ

(20.33)

and set

∂xq(0, 0+) = d
(1)

i+ 1
2
(0) =

⎧
⎪⎨
⎪⎩

Δ
(1)
i if λ > 0 ,

Δ
(1)
i+1 if λ < 0 .

(20.34)

Step (III): Solution of GRPK . The final expression for the sought solution
(20.25), (20.30) is

qi+ 1
2
(τ) =

⎧
⎪⎪⎨
⎪⎪⎩

qn
i + 1

2ΔxΔ
(1)
i + τ

[
−λΔ

(1)
i + β(qn

i + 1
2ΔxΔ

(1)
i )

]
, λ > 0 ,

qn
i+1 − 1

2ΔxΔ
(1)
i+1) + τ

[
−λΔ

(1)
i+1 + β(qn

i+1 − 1
2ΔxΔ

(1)
i+1)

]
, λ < 0 .

(20.35)

Step (IV): Numerical flux. Finally, the numerical flux in (20.2) is obtained
according to (20.8), as

fi+ 1
2

=

⎧
⎪⎪⎨
⎪⎪⎩

λ
(
qn
i + 1

2 (1 − c)ΔxΔ
(1)
i + 1

2r(qn
i + 1

2ΔxΔ
(1)
i )

)
if λ > 0 ,

λ
(
qn
i+1 − 1

2 (1 + c)ΔxΔ
(1)
i+1) + 1

2r(qn
i+1 − 1

2ΔxΔ
(1)
i+1)

)
if λ < 0 ,

(20.36)
where c = λΔt/Δx is the Courant number and r = Δtβ is a dimensionless
reaction number.

Remark: the numerical flux (20.36) includes a contribution due to the source
term. In other words, the flux knows of the source term, as one would expect.
But note that there is still another contribution to the scheme resulting from
the numerical source, still to be specified.

Step (V): Numerical source. To compute the numerical source si in the
finite volume scheme (20.2) we need to select the function qi(x, t) in the inte-
grand of the volume integral (20.11) and an integration scheme. For a second
order method we may apply the mid–point integration rule in space and time,
so that one only requires qi(xi,

1
2Δt). At time t = 0, within the cell i we have

the reconstructed polynomial pi(x) given by (20.15)–(20.16). Taylor expand-
ing the solution in time at the point xi and applying the Cauchy–Kowalewski
procedure we obtain

qi(xi, τ) = qi(xi, 0+) + τ∂tq(xi, 0+)

= qi(xi, 0+) + τ(−λ∂xqi(xi, 0+) + βqi(xi, 0+)) .

⎫
⎬
⎭ (20.37)
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In the case considered we have

qi(xi, 0+) = qn
i = pi(xi) , ∂xqi(xi, 0+) = Δ

(1)
i )

so that the numerical source from (20.11) is

si = β

(
qn
i +

1
2
Δt(−λΔ

(1)
i + αqn

i )
)

. (20.38)

20.3.2 The Scheme

The finite volume scheme (20.2) to solve the model advection–reaction
equation (20.22) to second–order of accuracy is now completely determined,
the numerical flux is given by (20.36) and the numerical source is given by
(20.38). In full, for the case of λ > 0 the scheme reads

qn+1
i = qn

i −c
[
(qn

i − qn
i−1) + 1

2 (1 − c)(Δ(1)
i − Δ

(1)
i−1)

]

−cr
[

1
2 (qn

i − qn
i−1) + 1

2Δx(Δ(1)
i − Δ

(1)
i−1)

]

+r
[
(1 + 1

2r)qn
i − 1

2cΔxΔ
(1)
i

]
.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(20.39)

Remark: Note that if the slopes are all set to zero and we also set to zero the
contribution of the source to the numerical flux, then we produce a first–order
numerical scheme for (20.22) that consists of the first–order upwind method
of Godunov for the advection part, along with an upwind discretization of the
source term, namely

qn+1
i = qn

i − c(qn
i − qn

i−1) − r

[
1
2
cqn

i−1 + (1 − 1
2
c)qn

i

]
. (20.40)

This corresponds to one of the upwind schemes analyzed in [412] and [51] for
solving advection equations with source terms.

Remark: By choosing the slopes Δ
(1)
i appropriately, we can reproduce some

well–known schemes, when β = 0. For example, for the case λ > 0 in (20.22),
the three classical second–order schemes of Warming–Beam, Lax–Wendroff
and Fromm are identically reproduced by (20.39) by choosing the slope as
follows

Δ
(1)
i =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Δi− 1
2

Warming–Beam ,

Δi+ 1
2

Lax–Wendroff ,

1
2

(
Δi− 1

2
+ Δi+ 1

2

)
Fromm .

(20.41)

Remark: the second–order ADER scheme with ENO reconstruction (20.15)–
(20.19) is effectively a blend of the Warming–Beam and the Lax–Wendroff
schemes.
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20.4 Schemes of Arbitrary Accuracy

The procedure to construct ADER schemes of arbitrary accuracy is exactly
the same as for the scheme of second–order of accuracy discussed in full detail
in the preceding section. We thus describe the general case very succinctly.

20.4.1 The Numerical Flux

To compute the numerical flux fi+ 1
2

we solve the generalized Riemann
problem GRPK

PDE: ∂tq + λ∂xq = βq ,

IC: q(x, 0) =

⎧
⎨
⎩

pi(x) if x < 0 ,

pi+1(x) if x > 0 ,

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(20.42)

in which the reconstruction polynomials pi(x) and pi+1(x) are of arbitrary
degree K. As discussed in chapter 19, the solution of (20.42) takes the form

qi+ 1
2
(τ) = q(0, 0+) +

K∑
k=1

[
∂

(k)
t q(0, 0+)

] τk

k!
. (20.43)

The leading term q(0, 0+) is determined in exactly the same manner as for
the second order scheme, the only difference being that the reconstructed
polynomials pi(x) and pi+1(x) have obviously a difference form.

To compute the higher order terms one requires the determination of each
time derivative ∂

(k)
t q(0, 0+) as a function of space derivatives. As seen in

chapter 19, application of the Cauchy–Kowalewski procedure to (20.22) yields

∂
(k)
t q(x, t) =

k∑
n=0

[
k!

(k − n)!n!
βn(−λ)k−n

]
∂(k−n)

x q(x, t) . (20.44)

When the source term vanishes one has the simpler expression

∂
(k)
t q = (−1)kλk∂(k)

x q . (20.45)

Solutions of classical Riemann problems for the spatial derivatives, as in
(20.32)–(20.34), will give the spatial derivatives ∂

(l)
x q(0, 0+) in (20.44), of any

order l. Then, all temporal derivatives ∂
(k)
t q(0, 0+), as from (20.44), will be

determined and thus the final solution (20.43) will be known.
Finally, according to (20.8) the numerical flux is obtained as

fi+ 1
2

=
1

Δt

∫ Δt

0

λ

[
q(0, 0+) +

K∑
k=1

(
∂

(k)
t q(0, 0+)

) τk

k!

]
dτ . (20.46)
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In this simple case one can perform exact integration to obtain

fi+ 1
2

= λ

[
q(0, 0+) +

K∑
k=1

(
∂

(k)
t q(0, 0+)

) (Δt)k

(k + 1)!

]
. (20.47)

For the homogeneous case, s(q) = 0, the explicit form of the numerical flux
reads

fi+1/2 =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λ

[
pi(0) +

K∑
k=1

(
(−1)kλk∂(k)

x pi(0)
) (Δt)k

(k + 1)!

]
if λ > 0 ,

λ

[
pi+1(0) +

K∑
k=1

(
(−1)kλk∂(k)

x pi+1(0)
) (Δt)k

(k + 1)!

]
if λ < 0 .

(20.48)

20.4.2 The Numerical Source

To compute the numerical source si in the finite volume scheme (20.2)
we need to select the function qi(x, t) in the integrand of the volume integral
(20.11) and an integration scheme. At time t = 0, within the cell i we have
the reconstructed polynomial pi(x). To perform the integration we select a
number of interior points in cell i, denoted by x

(l)
i , l = 1, . . . , L. At each point

x
(l)
i we write a time power series expansion

q(x(l)
i , τ) = q(x(l)

i , 0+) +
K∑

k=1

[
∂

(k)
t q(x(l)

i , 0+)
] τk

k!
. (20.49)

The leading term is obtained from point values of the reconstructed polyno-
mial, i.e. q(x(l)

i , 0+) = pi(x
(l)
i ). To compute the higher order terms we apply

the Cauchy–Kowalewski procedure to express time derivatives as functions of
space derivatives

∂
(k)
t q(x(l)

i , 0) =
k∑

n=0

[
k!

(k − n)!n!
βn(−λ)k−n

]
∂(k−n)

x q(x(l)
i , 0+) , (20.50)

in which all spatial derivatives ∂
(k−n)
x q(x(l)

i , 0+) in the interior of cell i are
evaluated using the reconstruction polynomial pi(x). The complete space–time
volume integral in (20.11) is then evaluated, to the appropriate accuracy, to
obtain the numerical source si for scheme (20.2).

20.4.3 Summary

We have constructed a numerical method for solving the model scalar hy-
perbolic equation with a source term (20.22). One first applies a non–linear
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reconstruction operator, TVD, ENO or WENO, to produce reconstruction
polynomials pi(x) of arbitrary degree K. The scheme to solve (20.22) is the
finite volume one–step scheme (20.2), which requires the determination of the
numerical flux fi+ 1

2
and the numerical source si. To construct the numerical

flux one solves generalized Riemann problems (20.42), whose solutions are
given by (20.43). Time integration as in (20.8) will give the numerical flux for
(20.2). Then the computation of the numerical source si involves evaluation
of the volume integral (20.11), which in turn requires the determination of
the integrand; for this, one uses the Cauchy–Kowalewski method at a pre-
scribed number of interior points x

(l)
i , as in (20.49)–(20.50), with the spatial

derivatives computed from the available reconstructed polynomial pi(x).
The resulting numerical method is fully discrete, one–step, of arbitrary or-

der of accuracy K + 1 in space and time, requiring non–linear reconstruction
only once per time step.

Remark: stiff source terms. The ADER methods studied so far work well for
hyperbolic systems with non–stiff source terms. A new variant of the ADER
approach has recently been put forward in [173] to solve hyperbolic equations
with stiff source terms. The new scheme reconciles stiffness with high–order
of accuracy in space and time. See also [171].

In the following section we show some selected numerical results to illus-
trate the performance of the high–order methods described in this chapter.

20.5 Sample Numerical Results

Here we present some sample ADER numerical results for the linear ad-
vection equation in one space dimension and for the linearized Euler equations
in two space dimensions on unstructured meshes.

20.5.1 Long–Time Advection of Smooth Profiles

We consider the advection of smooth profiles by solving equation (20.22),
with β = 0 and λ = 1, in a domain [0, 10π] and a smooth initial profile given
by

q(x, 0) ≡ q0(x) = sin(πx) , (20.51)

with periodic boundary conditions. The exact solution is q(x, t) = q0(x− λt).
A very challenging problem is the advection of the solution for very long

times. Conventional TVD methods are known to have great difficulties in
resolving this type of advection problems, particularly for very long evolution
times.

Fig. 20.2 shows the results from the TVD scheme WAF with the MINBEE
limiter function, for two different meshes, at the output time t = 1000π.
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Fig. 20.2. Linear advection. Results from TVD scheme with MINBEE limiter
(symbols) at time t = 1000π using meshes of 50 and 100 cells, with Ccfl = 0.95.
Exact solution shown by full line (Courtesy of Dr. V. A. Titarev).

These results clearly illustrate the limitations of TVD methods for solving
long–time evolution problems. The use of diffusive limiters, such as MINBEE
(or MINMOD) tend to clip extrema very severely, reducing peak values very
rapidly as time evolves.

Using compressive limiter functions in TVD methods tends to reduce the
overall error but at the cost of squaring smooth features. Fig. 20.3 shows
the results of the WAF TVD method with the SUPERBEE limiter, for two
meshes, at the output time t = 1000π. Compare results with those of Fig.
20.2.
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Methods of uniform high order of accuracy, such as the ADER methods
introduced in this chapter, give better results for long–time evolution prob-
lems, particularly when having to resolve rapid but smooth variations of the
solution. The true solution to a physical problem may be smooth but highly
oscillatory. The numerical methods must be capable of resolving these physi-
cally meaningful oscillations, which should not be artificially suppressed. Fig.
20.4 shows results from the fifth order ADER method, for two meshes, at the
output time t = 1000π. Compare with results for Fig. 20.2 and Fig. 20.3. The
ADER results are clearly superior to those of TVD methods.
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Fig. 20.3. Linear advection. Results from TVD scheme with SUPERBEE limiter
(symbols) at time t = 1000π using meshes of 50 and 100 cells, with Ccfl = 0.95.
Exact solution shown by full line (Courtesy of Dr. V. A. Titarev).
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Fig. 20.4. Advection of smooth profile. Results from 5–th order ADER scheme
(symbols) at time t = 1000π using meshes of 50 and 100 cells, with Ccfl = 0.95.
Exact solution shown by full line (Courtesy of Dr. V. A. Titarev).

20.5.2 Convergence Rates

A most important task is the verification of the expected accuracy of a
numerical method. All too often, claims are made regarding the accuracy of a
particular scheme, which may well be ill–founded. We stress that even the con-
struction of a non-linear second–order method for inhomogeneous equations
is not a trivial task. This is even more challenging when using unstructured
meshes.
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Here we reproduce some results taken from [178], obtained from ADER
schemes implemented in the frame of discontinuous Galerkin finite element
methods. The results are for the two–dimensional linearized Euler equations,
solved in a two–dimensional domain discretized with unstructured triangular
meshes.

Table 20.1 shows empirical convergence rates for schemes of second to tenth
order of accuracy in space and time. We remark that for the convergence rates
study, purposely distorted meshes, such as those of Fig. 20.6, have been used.
The first column of Table 20.1 shows the size h for the sequence of meshes
considered in the study. The second column shows the corresponding number
of elements; the third, fourth and fifth columns show errors in three different
norms and the remaining three columns show the corresponding convergence
rates. It is seen that the empirically obtained convergence rates are consistent
with the theoretically expected accuracy.

Fig. 20.5 shows error against reciprocal of mesh size (top) and against CPU
time (bottom) for schemes of second to tenth order of accuracy. In general
it is seen that for the range of smaller errors it is distinctly better to use a
high–order method than a lower–order one.

20.6 Concluding Remarks

We have presented an introduction to the family of ADER schemes for
solving hyperbolic equations with source terms. These methods are a natural
extension of the classic Godunov first–order upwind method. The basic ingre-
dients of the method are (a) a high–order spatial representation of the data,
instead of the piece–wise constant data of the Godunov method; (b) solution
of the generalized Riemann problem at each cell interface, instead of the clas-
sical piece–wise constant data Riemann problem of the Godunov method; (c)
the numerical flux is computed from a time–integral of the solution of the
generalized Riemann problem at the interface; for the Godunov method this
last step is trivial, as the similarity solution of the classical Riemann problem
along the interface is constant. Source terms are treated in a very natural
way; in addition to the numerical source computed to high order there is also
a contribution of the source to the numerical flux, which comes in through
the solution of the generalized Riemann problem.

The ADER methods are one–step, fully discrete schemes for which the re-
construction procedure is carried out only once per time step, and can be im-
plemented in the framework of finite volumes and discontinuous Galerkin finite
elements. The applicability of the ADER methods is not restricted to first–
order systems, such as hyperbolic equations with source terms. For example,
the ADER methodology has recently been applied to reaction–diffusion equa-
tions (parabolic), extending the concept of Riemann problem [535]; schemes
of up to 10th order of accuracy in space and time are reported. See also the re-
lated work [224]. ADER, being of arbitrary order, allows the user to select the
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wanted level of complexity by choosing the desired order of accuracy. The full
framework is the same, the first–order Godunov method being at the bottom
of the hierarchy, for the finite volume framework.

In this chapter we have given a very basic introduction to the ADER meth-
ods in the framework of finite volumes, for solving one–dimensional hyperbolic
systems with non–stiff source terms. We have also shown some numerical re-
sults that illustrate the limitation of second–order TVD methods, particularly
for long–time evolution problems. We have also displayed some results of the
ADER approach in the framework of discontinuous Galerkin finite element
methods. Results of convergence rate studies verifies that the schemes, even
on very distorted unstructured meshes do achieve the theoretically expected
orders of accuracy; results for ADER schemes of up to 10th order of accuracy
have been shown.

Some recent developments of the ADER approach for hyperbolic conser-
vation laws are found in the following references: [89], [175], [176], [177], [419],
[173], [171]. Current research concerns the extension of the ADER approach
to solve non–linear hyperbolic systems with source terms, for which the dif-
ferential, or principal part, cannot be expressed in conservation–law form.
These systems are sometimes referred as non–conservative systems. Recent,
still unpublished, communications on the subject are [85] and [174].
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ADER-DG O2

h Nd L∞ L1 L2 OL∞ OL1 OL2

6.51 2,978 4.0950E-01 7.3710E+01 3.1185E+00
3.26 11,913 1.7949E-01 2.1142E+01 1.0785E+00 1.2 1.8 1.5
1.63 47,653 4.4793E-02 3.9943E+00 2.2639E-01 2.0 2.4 2.3
0.81 190,610 8.2223E-03 6.3435E-01 3.7319E-02 2.4 2.7 2.6

ADER-DG O4

h Nd L∞ L1 L2 OL∞ OL1 OL2

13.03 2,478 1.8482E-01 3.1944E+01 1.3455E+00
6.51 9,928 2.5445E-02 2.1268E+00 1.0901E-01 2.9 3.9 3.6
3.26 39,710 1.8028E-03 6.0709E-02 3.4818E-03 3.8 5.1 5.0
1.63 158,842 1.2070E-04 2.8285E-03 1.8062E-04 3.9 4.4 4.3

ADER-DG O6

h Nd L∞ L1 L2 OL∞ OL1 OL2

26.05 1,302 2.3490E-01 5.7109E+01 1.9630E+00
13.03 5,208 2.7394E-02 4.1956E+00 1.8993E-01 3.1 3.8 3.4
6.51 20,832 9.1437E-04 4.6738E-02 2.3541E-03 4.9 6.5 6.3
3.26 83,328 1.5737E-05 1.0614E-03 5.6039E-05 5.9 5.5 5.4

ADER-DG O8

h Nd L∞ L1 L2 OL∞ OL1 OL2

26.05 2,232 8.3906E-02 2.3316E+01 8.4765E-01
13.03 8,928 3.0905E-03 4.7899E-01 2.2030E-02 4.8 5.6 5.3
6.51 35,712 4.5237E-05 2.6535E-03 1.2786E-04 6.1 7.5 7.4
3.26 142,848 1.3771E-07 1.4681E-05 7.7184E-07 8.4 7.5 7.4

ADER-DG O9

h Nd L∞ L1 L2 OL∞ OL1 OL2

26.05 2,790 5.5839E-02 1.4153E+01 5.2238E-01
13.03 11,160 1.0213E-03 1.6167E-01 7.4949E-03 5.8 6.5 6.1
6.51 44,640 4.6598E-06 4.9232E-04 2.5595E-05 7.8 8.4 8.2
3.26 178,560 1.7872E-08 1.3131E-06 7.0996E-08 8.0 8.6 8.5

ADER-DG O10

h Nd L∞ L1 L2 OL∞ OL1 OL2

26.05 3,410 3.2304E-02 8.6122E+00 3.2389E-01
13.03 13,640 3.6709E-04 5.4707E-02 2.6230E-03 6.5 7.3 6.9
6.51 54,560 8.8532E-07 1.0717E-04 5.2679E-06 8.7 9.0 9.0
3.26 218,240 1.1050E-09 9.6184E-08 5.2430E-09 9.6 10.1 10.0

Table 20.1. ADER discontinuous Galerkin schemes. Convergence rates for schemes
of second to tenth order of accuracy in space and time, as applied to the linearized
Euler equations on the very irregular unstructured meshes depicted in Fig. 20.6.
(Courtesy of Dr. M. Dumbser).
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Fig. 20.6. Grid topologies for convergence study of ADER discontinuous Galerkin
schemes as applied to the linearized Euler equations: (a) very coarse mesh (b) finer
mesh (Courtesy of Dr. M. Dumbser).
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Concluding Remarks

Here we first summarize the main themes of this book, point out some
related topics that have been excluded and give updated supplementary refer-
ences. We also discuss potential practical applications of the methods studied
and point out some current areas of research on numerical methods. Finally,
we briefly describe the library NUMERICA.

21.1 Summary of Numerical Aspects

We have studied a family of finite volume methods for solving numerically
systems hyperbolic conservation laws. The emphasis has been on the compu-
tation of the numerical flux, for which a large variety of methods have been
studied, all of which consider the classical Riemann problem. Then, there
are essentially two ways of making use of the Riemann problem, the upwind
approach and the centred approach. In the upwind approach one solves the
Riemann problem exactly, or approximately, in order to extract wave propa-
gation information contained in the differential equations to be used explicitly
in the computation of the numerical flux. In the centred approach one avoids
the direct solution of the Riemann problem and thus no explicit information
on wave propagation is utilized in the construction of the numerical flux. Most
of the book has been devoted to the study of ways of solving the Riemann
problem, see chapters 4, 9, 10, 11 and 12. An alternative upwind method-
ology to determine a numerical flux is offered by the Flux Vector Splitting
(FVS) approach; FVS methods are studied in chapter 8, where three different
splittings are considered. The Random Choice Method (RCM) of chapter 7 is
somewhat special, in that it uses the exact solution of the classical Riemann
problem, see chapter 4, and gives infinite resolution of discontinuities but does
not extend to general systems with more than two independent variables. We
have also studied the centred approach, starting with the classics, namely Lax–
Wendroff, Lax–Friedrichs and Godunov centred. A more recent centred flux
is the FORCE flux, introduced in chapter 7 for the one–dimensional case.

E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 679
c© Springer-Verlag Berlin Heidelberg 2009DOI 10.1007/b7976-1 21,
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FORCE is related to the centred methods advocated by Tadmor and collab-
orators. The multidimensional version of FORCE is studied in chapter 17 for
structured and unstructured meshes.

Numerical fluxes based on the explicit solution of the Riemann problem
can be divided into two classes: complete Riemann solvers and incomplete
Riemann solvers. In the first class, the underlying solution of the Riemann
problem accounts for all the characteristic fields present in the structure of
the exact solution of the Riemann problem. Otherwise we speak of incomplete
Riemann solvers. It is well known that for computing isolated shock waves,
the performance of complete Riemann solvers, incomplete Riemann solvers,
FVS fluxes and centred fluxes is very similar. However, for intermediate waves,
such as contact discontinuities and shear waves, there can be a big difference in
resolution. Complete Riemann solvers are the most accurate. All other fluxes,
with the exception of the FVS splitting of Liou and Steffen, contain excessive
artificial viscosity. This also has a bearing on the accuracy of computations
for more complex systems, such as the Navier–Stokes equations, in resolving
shear layers for instance.

At the first–order level, the emphasis has been on fluxes that are monotone.
Having established several ways of defining monotone numerical fluxes, we
have then introduced ways of constructing higher order methods, with most of
the material devoted to the second–order case. However, in view of Godunov’s
theorem, proved in chapter 13, useful schemes of accuracy greater than one
must be non–linear. We have introduced the TVD criterion for constructing
non–linear schemes, see chapter 13. Then in chapter 14 we have extended,
empirically, the TVD concept to non–linear systems.

The generalized Riemann problem is studied in chapter 19, which forms the
basis for the construction of ADER type schemes introduced in chapter 20, for
the case of model equations in one space dimension. The ADER schemes are
explicit, fully discrete one–step non–linear and of arbitrary order of accuracy
in space and time. The ADER schemes can be implemented in the frame of fi-
nite volumes or discontinuous Galerkin finite elements. The non–linear version
of the ADER schemes is based on ENO and WENO reconstruction procedures
for higher–order schemes. For second–order non–linear ADER schemes one can
also enforce the TVD criterion. The ADER schemes have many features in
common with the already classical ENO/WENO schemes, not studied in this
book, and for which relevant references are given in chapter 20.

There are important topics at the level of numerical methods that have
not been included. One example is the Piecewise Parabolic Method (PPM) of
Colella and Woodward [137], [584]. This is an excellent method of the Godunov
type and can be implemented following the basic material presented here. We
have not included implicit methods. Useful references here are Harten [239];
Yee [595] and specially the VKI Lectures [593]. We have not included material
related to multidimensional upwinding, for which the interested reader may
consult the classical papers of Roe and collaborators [411]; Deconinck, Pow-
ell, Roe and Struijs [152]; van Leer [563]; Deconinck, Roe and Struijs [153];
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Garćıa–Navarro, Hubbard and Priestley [197] and Baines and Hubbard [22].
More recent advances are reported, for example, in [113], [159] and [2], and in
references therein. The upwind and centred numerical fluxes studied in this
book can be used in the framework of the finite volume methods, as illustrated
here. These fluxes can also be used in the framework of discontinuous Galekin
finite element methods, not studied here. Useful background on discontinuous
Galerkin finite element methods is found, for example, in papers by Cockburn
and collaborators, see for example [125], [123], [121], [126] and [128].

I note that there are by now many books that are related to the main
themes of this textbook, some of them very recent. Examples include the
books by Godlewski and Raviart [215]; Laney [298]; Kulikovskii, Pogorelov and
Semenov [292]; Oran and Boris [366]; Toro [520]; LeVeque [311]; Guinot [229];
Ben–Artzi and Falcovitz [39]; Drikakis and Rider [165]. We also recommend
the edited review book [545], which contains 97 refereed articles by leading
authors on Godunov methods and application s. Two books on discontinuous
Galerkin finite element methods are Cockburn, Karniadakis and Shu [122];
Hesthaven and Warburton [248]; Wesseling[581]; and Feistauer, Felcman and
Straskraba [189].

21.2 Potential Applications

The methods studied in this book can be applied to a large variety of
practical problems. The paper by Roe [415] contains some examples of very
ambitious applications of upwind methods, in particular.

The shallow water equations are a popular hyperbolic system for
modelling environmental problems. The methods studied here are applica-
ble to these equations. Useful references are Marshall and Méndez [339];
Glaister [207]; Toro [504]; Watson, Peregrine and Toro [576]; Alcrudo and
Garćıa–Navarro [4]; Bermúdez and Vázquez [51]; Garćıa–Navarro, Hubbard
and Priestley [197]; Bermúdez et al. [50]; Fraccarollo and Toro [194]; Borth-
wick, Fujihara and Rogers [73], to name but a few. The recent review paper of
Toro and Garćıa–Navarro [534] contains a large number of updated references
on this topic. See also the recent textbook by Toro [520].

The Navier–Stokes equations are another system of practical interest,
for which some of the methodology studied here could be useful. The steady
incompressible Navier–Stokes equations may be formulated via the artificial
compressibility approach of Chorin [109] to produce the so–called Artificial
Compressibility Equations. Details of the derivation of these equations are
given in chapter 1. The inviscid part of the equations constitute a hyperbolic
system and one can therefore apply all the methods presented in this book.
The approach can also be extended to solve the time–dependent incompress-
ible Navier–Stokes equations. Useful, early references are the following: Marx



682 21 Concluding Remarks

[345], [346]; Drikakis [162], [163]; Weinan and Shu [579]; Turkel and Arnone
[550]; Hänel and Sharma [235]; Tamamidis, Zhang, Assanis [481]; Toro [514]
and Drikakis et al. [164]. More recent, advanced methods are described in the
paper by Bassi and collaborators [30] and in references therein. See also the
recent textbook by Drikakis and Rider [165], and references therein.

The compressible Navier–Stokes equation, see chapter 1, are the obvious
next extension of the methods presented in this book. A very useful reference
here are the VKI Lectures by Hänel [234]. Classical papers on this subject
are, for example, those of van Leer, Thomas and Roe [565]; Brown [82]; Toro
and Brown [529]; Drikakis and Tsangaris [166] and Allmaras [5]. A word of
caution is in order, when applying TVD methods to solve the Navier–Stokes
equations. TVD methods are effectively a smart way of introducing numeri-
cal viscosity to control spurious oscillations near large gradients. As pointed
out in chapter 13, section 13.9.2, in the presence of physical viscosity, the
standard TVD condition is, strictly speaking, incorrect, in that it does not
acknowledge the existence of physical viscosity. The net result is excessive
artificial viscosity. For most problems, satisfactory results are reported in the
literature, but for special problems concerned with fine details of the flow
physics, one would expect the limitations of standard TVD methods for vis-
cous problems to become apparent. Standard TVD methods are techniques
that have been constructed for inviscid problems. For viscous problems, new
TVD methods are needed. See [503] for possible extensions of TVD methods
for viscous problems. Advanced methods are described in [31], [127] and [129],
for example.

The Euler equations can be used to model wave propagation in general
compressible media, gases being the most obvious example. For problems
under extreme thermodynamic conditions, real gas effects become important
and use of real gas equations of state must be considered. For Godunov–type
schemes this requires the solution of the Riemann problem for a general equa-
tion of state. The media may be some material other than a gas, a liquid for
instance, which at high pressure is compressible. See Ivings, Causon and Toro
[264] for details on Riemann solvers for compressible liquids. The review paper
by Menikoff and Plohr [349] is highly recommended. See also the papers by
Colella and Glaz [135]; Glaister [208], [209]; Saurel, Larini and Loraud [429];
Quartapelle et al. [398]; and Müller and Voss [356]. The techniques presented
in this textbook may also be applied to model wave propagation in solids.
Useful references are, amongst many others, Kim and Ballmann [284]; Lin and
Ballmann [320], [323], [321], [322]. See the recent paper of Gavrilyuk, Favrie
and Saurel [199]; and that of Titarev, Romenski and Toro [491].

Detonation waves in gases and solids is an extensive area of applica-
tion of the numerical methods of this book. Classical references on detonation
waves are, amongst many others, Oppenheim and Soloukhin [365]; Fickett
and Davis [191]; Williams [583]; Clarke [117], [116]; Edwards, Thomas and
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Williams [180]; Gelfand, Frolov and Nettleton [201] and Gilbert [204]. Useful
references on numerical computation of detonation waves are Taki and Fuji-
wara [479]; Oran and Boris [367], [368]; Kailasanath, Oran, Boris and Young
[276]; Colella, Majda and Roytburd [136]; Bourlioux, Majda and Roytburd
[78]; Bourlioux and Majda [77]; Singh [448]; Singh and Clarke [449]; Clarke
et al. [118] and Nikiforakis and Clarke [363]. See also the book by Oran and
Boris [366] and references therein.

Astrophysics is a very active area of research in which numerical methods
of the kind studied here are used. Common systems of equations used are the
relativistic Euler equations and the equations of ideal and relativistic
magnetohydrodynamics, or MHD equations. The exact solution of the
Riemann problem for relativistic gas dynamics was first reported by Mart́ı and
Müller [342]. They extended the shock–tube problem solution of Thompson
[488] and highlighted the importance of their work in the context of numerical
relativistic hydrodynamics via Godunov–type methods. See also the papers
by Schneider, Katscher, Rischke, Waldhauser, Maruhn and Munz [431]; Plohr
and Sharp [386]; Marquina, Mart́ı, Ibañez, Miralles and Donat [338]; Mart́ı et
al. [341], [342], [343] and Falle and Komissarov [187]. The reader interested
in the simulation of astrophysical flows should consult the book by LeVeque,
Mihalas, Dorfi and Müller [312].

Early papers on the MHD equations are, for example, Brio and Wu [80];
van Puten [566]; Dai and Woodward [146], [147]; Tanaka [482]; Barmin, Ku-
likovskiy and Pogorelov [29] and Falle and Komissarov [188]; and Balsara [26],
[27]. More recent works are Dedner, Kemm, Kröner, Munz, Schnitzer and We-
senberg [154]; Gurski [230]; Honkkila and Janhunen [255]; Li [318]; Mignone
and Bodo [351]; Klingenberg, Schmidt and Waagan [285]; Balsara, Rumpf,
Dumbser and Munz [28]; Sangan [425]; Bodo, Masaglia, Mignone and Rossi
[68]; Dumbser, Balsara, Toro and Munz [171]. An important recent work to
mention here is the paper by Giacomazzo and Rezzolla [202]; they found the
exact solution of the Riemann problem for relativistic magnetohydrodynam-
ics, which is very valuable for assessing numerical schemes.

We finally mention the fact that numerical relativity is today a grow-
ing area of application of numerical methods. For a review on the subject see
Lehner [306].

Multiphase flow has become a large area of application of numerical
methods of the kind studied in this book. Such flows usually involve a fluid
mixture of different materials, typically solid particles (solid phase) immersed
in a gas (gaseous phase) or liquid (liquid phase). The physical concept of phase
is generalized to field or fluid, to allow for mixtures of physical phases with
different material properties, for example air and steam. In this manner the
mathematical models for multifield flow may consider a large number of fields
or phases. A distinguishing feature of these systems is that each field has its
own velocity vector, unlike the case of multicomponent flow in which a single
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velocity vector is needed, namely that of the carrier fluid. Useful background
on multiphase flow is found, for example, in the textbooks Drew and Gulliver
[160]; Drew, Marsden and Sirovich [161]; Jackson [265]; Gidaspow [203]; Ishii
and Hibiki [261]; Städtke [460]; Brennen [79]; Prosperetti and Tryggvason
[388].

Multiphase flow models have, in general, the following distinguishing
features: (i) the equations involve source terms, (ii) there may be non–
conservative products and (iii) the equations may, in the absence of dissipative
effects, be of mixed elliptic–hyperbolic type. The classical paper of Stewart and
Wendroff [464] addresses some of these issues. Interest on non–conservative
products is relatively new and will be addressed in more detail below. How-
ever it should be pointed out that, at present, there are some mathematical
models for multiphase flow that are conservative, see Romenski et al. [417],
for instance.

Regarding the application of Godunov–type numerical methods and re-
lated Riemann problems to compressible multiphase flow, perhaps the earliest
reported attempt is found in [501]; see also [525]. Other works are reported by
Sainsaulieu [421]; Saurel, Daniel and Loraud [427]; Saurel, Forestier, Veyret
and Loraud [428]; Toumi and Kumbaro [549]; Toumi [547]; Toumi and Caruge
[548]; Cortes, Debussche and Toumi [142]; Saurel and Abgral [426]; Städtke
et al. [461]; Castro and Toro [90]; Chang and Liou [102].

A number of papers have centred on the Baer–Nunziato equations [21].
Embid and Baer [183] carried out a comprehensive mathematical analysis
of these equations. Some publications have addressed the challenging task
of solving the Riemann problem for the Baer–Nunziato system. Andrianov
and Warnecke [14] studied the indirect Riemann problem; that is they as-
sumed a solution and found the corresponding initial conditions. Such solu-
tions have proved useful in assessing numerical methods. Schwendeman, Wahle
and Kapila [438] appear to be the first to have solved the direct Riemann
problem for the Baer–Nunziato equations. This is more useful, as the solution
can also be used to compute Godunov–type fluxes. Deledicque and Miltiadis
[156] have also solved the direct Riemann problem for a Baer–Nunziato type
model. Building upon the exact solution of [438] of the classical Riemann
problem, Toro and Castro [531] solved the generalized Riemann problem for
the Baer–Nunziato system. New path–conservative schemes for these equa-
tions in three space dimensions on unstructured meshes have recently been
reported by Dumbser, Hidalgo, Castro, Parés and Toro [174].

Free–surface two phase flow models have also appeared recently, start-
ing with the work of Pitman and Le [385]. Corresponding numerical methods
for these equations have also been reported, see for example the works of
Pelanti, Bouchut and Mangeney [376]; Rhebergen, Bokhove and van der Vegt
[401] and Dumbser, Castro, Parés and Toro [172].
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Non–conservative products is a topic that has attracted the atten-
tion of numerical analysts in recent years. The presence of non–conservative
products means that the principal part of the equations cannot be written
in conservative form or divergence form. At the mathematical (and physical)
level this leads to the problem of defining weak solutions. Dal Maso, LeFloch
and Murat [148] have addressed this issue from the mathematical point of
view, see also the early work of Volpert [571]. Numerically, it is also difficult
to treat non–conservative terms properly. The pioneering work of Toumi [546]
and of Toumi and Kumbaro [549], based on the work [148], has recently lead
to important developments of suitable numerical methods to deal with non–
conservative systems. See the recent works of Parés and collaborators [375],
[93], [94], [85] [172] and [174]. See also the work of Rhebergen, Bokhove and
van der Vegt [401].

Source terms are invariably present in most systems of practical inter-
est. In particular, multiphase flow systems are inherently inhomogeneous, the
various phases are coupled through the presence of source terms. Dealing with
source terms properly still represents a serious numerical challenge, although
significant progress has been made in recent years. A significant step forward
was Roe’s proposition [412] of using wave propagation information (upwind-
ing) to discretize the source terms. A fundamental requirement is that the nu-
merical method be well–balanced. Glimm, Marshall and Plohr [214] were prob-
ably the first to address this issue. Other early works are those of Bermúdez
and Vázquez [51]; Vázquez [569]; Greenberg and LeRoux [225]; Greenberg,
LeRoux, Baraille and Noussair [226]; LeVeque [310] and Gosse [220]. Some of
the more recent works on the subject include Gallardo, Parés and Castro [196];
Castro, Gallardo, López and Parés [92] and references therein. Some very re-
cent advances on the subject are reported in Pardo et al. [94], Canestrelli et
al. [85]; Dumbser et al. [172], [174].

In many applications the source terms are stiff. A new approach to deal
with hyperbolic systems with stiff source terms is presented in Dumbser,
Enaux and Toro [173] in the frame of high order ADER schemes. The method
introduces a locally implicit numerical solver for the generalized Riemann
problem, while retaining a globally explicit one–step method, reconciling in
this manner high accuracy and stiffness.

New Riemann solvers remain the subject of current research. The chal-
lenge is to devise a method of solution that results in a complete Riemann
solver, that is, a numerical flux in which all characteristic fields are accounted
for. This is vital for resolving intermediate characteristic fields. Robustness
and generality are two fundamental requirements on such Riemann solver.
The MUSTA approach proposed by Toro [496] contains some potential that
may lead to such an ideal Riemann solver. MUSTA is a predictor–corrector, or
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multi–stage, approach, whereby the initial conditions are evolved in time for a
number of stages, prior to a corrector stage that leads to the sought interface
numerical flux. Further developments of the MUSTA approach are reported
in [523], [524], [521], [495] and [357]. A promising variant of MUSTA, called
EVILIN, is reported in [522], whereby a simple centred–type flux is used as
predictor. In the corrector step one uses a simple linearization of the exact
solution of the Riemann problem, resulting in a complete Riemann solver.
EVILIN enjoys a degree of generality but the question of robustness remains
the subject of further investigations.

21.4 The NUMERICA Library

NUMERICA [518] is a library of source codes for teaching, research and
applications. The library is based on the contents of this book and [520]. The
source codes of the library can be useful as learning and teaching tools. First,
they can be used in a self–study situation as another way of reading the details
of a numerical method and second, they can be used as a method of demon-
strating, in a teaching situation, the main steps of a numerical technique and
a possible way of coding the methods. The programs can also be utilized as
development programs. First, they can most easily be converted into practi-
cal tools for real applications. They can also form the bases for much more
ambitious applications, such as the ones discussed above. For details on NU-
MERICA the reader should contact the author directly: Professor E. F. Toro,
Laboratory of Applied Mathematics, Department of Civil and Environmen-
tal Engineering, University of Trento, Italy; email: toro@ing.unitn.it; website:
http://www.ing.unitn.it/toro. The library is freely available to academics and
can be downloaded from the website. Non academics should contact the fol-
lowing email: inquiries@numeritek.com.
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224. G. Grassner, F. Lörcher, and C. D. Munz. A Contribution to the Construction
of Diffusion Fluxes for Finite Volume and Discontinuous Galerkin Schemes. J.
Comput. Phys., 224:1049–1063, 2007.

225. J. M. Greenberg and A. Y. LeRoux. A Well–Balanced Scheme for the Numer-
ical Processing of Source Terms in Hyperbolic Equations. SIAM J. Numerical
Analysis, 33:1–16, 1996.

226. J. M. Greenberg, A. Y. LeRoux, R. Baraille, and A Noussair. Analysis and
Approximation of Conservation Laws with Source Terms. SIAM J. Numerical
Analysis, 34:1980–2007, 1997.

227. D. F. Griffiths, A. M. Stuart, and H. C. Yee. Numerical Wave Propagation
in an Advection Equation with a Nonlinear Source Term. SIAM J. Numer.
Anal., 29:1244–1260, 1992.

228. H. Grönig (Editor). Shock Tubes and Waves (Proc. 16th Int. Symp. on Shock
Tubes and Waves, Aachen Germany 1987). VCH Verlagsgessellschaft mbH,
1988.

229. V. Guinot. Godunov–Type Schemes. An Introduction for Engineers. Elsevier,
2003.

230. K. F. Gurski. An HLLC–Type Approximate Riemann Solver for Ideal Magne-
tohydrodynamics. SIAM J. Sci. Comput., 25(6):2165–2187, 2004.
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341. J. M. Mart́ı, J. M. Ibañez, and J. A. Miralles. Numerical Relativistic Hydro-
dynamics: Local Characteristic Approach. Phys. Rev., 43:3794–, 1991.

342. J. M. Mart́ı and E. Müller. The Analytical Solution of the Riemann Problem for
Relativistic Hydrodynamics. Journal of Fluid Mechanics, 258:317–333, 1994.

343. J. M. Mart́ı, E. Müller, J. A. Font, J. M. Ibañez, and A. Marquina. Morphology
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123 problem, 129, 281

adaptive scheme, 522
ADER method, 655–659, 661, 663, 666,

667, 669, 671, 673, 674
adiabatic exponent, 12
advection, 18, 66
amplification factor, 540, 559
amplitude, 167
AMR, 593
approximate Riemann solver, 112
arithmetic mean, 251
artificial compressibility equations, 39,

40, 681
artificial compressibility factor, 40
artificial viscosity, 171, 487
asymptotically stable system, 538
Avogadro Number, 11

backward difference, 165
backward Euler method, 539
Boltzmann approach, 265
Boltzmann Constant, 11, 12
boundary conditions, 42, 182, 222, 223
boundary Riemann problem, 223
Buckley–Leverett equation, 64
bulk viscosity, 16
Burgers’s equation, 30, 71

caloric equation of state, 7
calorically ideal gas, 7
canonical equations of state, 8
canonical form, 52
Cartesian mesh, 599, 605, 609, 610, 618

Castro–Toro GRP K solver, 652

Cauchy problem, 626, 627, 629, 633, 635

Cauchy–Kowalewski, 628, 630–635, 637,
640, 643, 646, 647, 651, 652, 659,
660, 665, 667–669

Cauchy–Riemann equations, 46

cell average, 176

cell centred methods, 176, 555

cell Reynolds number, 487

cells, 176

centred rarefaction, 76

centred scheme, 416, 597, 598, 601, 603,
604, 611, 612, 679–681

CFL coefficient, 183, 221, 495

CFL condition, 217, 218

CFL number, 167, 168

chain rule, 43

characteristic curves, 47

characteristic equation, 92, 93, 299

characteristic field, 77, 95, 111

characteristic form, 52

characteristic limiting, 293, 508

characteristic polynomial, 44, 90, 538

characteristic speed, 48, 52, 66, 77

characteristic variables, 51, 54, 188, 189

characteristics, 533

chemical species, 326

chi–square statistics, 251

CHIMERA, 593

CIR scheme, 168, 171, 172, 177

classical Riemann problem, 625, 629,
636–639, 642–644, 646, 647,
651–653
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clipping of extrema, 171, 460, 670
compact support, 63
complete Riemann solver, 316, 596, 598,

680
composite scheme, 599
compressive region, 70
computational space, 576
concave flux, 66
conservation laws, 3, 43, 61, 66
conservation of energy, 4, 24, 25
conservation of mass, 2, 4, 20, 21
conservation of momentum, 4, 21, 22
conservative scheme, 2, 175
conserved variables, 2, 43, 61
Consistency Condition, 175, 350, 417
consistency condition, 319–324, 601
contact discontinuity, 85, 96, 107, 118,

140
contact wave, 85
convective flux component, 279
convergence rates, 672, 673
convex flux, 66
Courant number, 167
Courant number coefficient, 183
covolume equation of state, 13, 223
covolume gases, 117, 143

data compatibility, 450
decoupled system, 52
density, 2
dependent variables, 42
detonation, 682, 683
detonation analogue, 78
detonation waves, 78
diagonal matrix, 106
diagonalisable matrix, 106
diagonalisable system, 51
diffusion, 18
diffusion number, 487
dimensional splitting, 543
discontinuous Galerkin finite elements,

673
discontinuous Galerkin method, 655,

657, 673, 674, 680, 681
dispersive equation, 174
dissociation, 16
Distribution Theory, 452
divergence operator, 2
domain of dependence, 60

domain of determinacy, 60
dot product, 2
Dumbser–Enaux–Toro GRP K solver,

652

eigenvalues, 44, 65, 92, 104, 110, 298,
538

elementary waves, 94
elliptic system, 45, 46
ENO, 439, 661, 662, 666, 669, 680
enthalpy, 8, 89
entropy, 5, 7, 93
entropy condition, 72, 96
entropy formulation, 94
entropy glitch, 227
entropy–violating shock, 73
equation of state, 67, 140
escape velocity, 140
Euler method, 539
expansive region, 70
explicit scheme, 167, 539
explosion, 586, 587, 590

far–field boundary conditions, 224
fictitious cell, 182, 222, 495
finite volume, 19, 176
finite volume method, 543, 655,

657–660, 665, 666, 668, 669, 673,
674, 679–681

flow parameter, 501, 552
Flux Difference Splitting, 265
flux function, 66, 175
flux vector, 43, 61
Flux Vector Splitting, 90, 265
FORCE flux, 598–601, 603, 605, 606,

608–610, 612, 613, 617, 620
forcing term, 486
forward difference, 164, 167
fractional step method, 535, 543, 544
free energy, 9
free surface, 33, 35
free-stream Mach number, 46
Fromm scheme, 174
front tracking schemes, 294

Gas Constant, 11
general equation of state, 682
Generalised Riemann Invariant, 81, 97,

98, 111, 122–124, 135, 141, 377,
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385–387, 389, 390, 393, 395, 398,
399, 404

generalized Riemann problem, 625,
627–630, 635, 640–643, 648, 649,
651–653, 655, 656, 659, 660, 663,
665, 667, 669, 673

generalized solution, 63
genuinely non–linear field, 77, 84, 85,

95, 107, 111, 382, 395
geopotential, 37
GFORCE flux, 602–604
Godunov centred flux, 609, 611
Godunov centred scheme, 443–445
Godunov flux, 180, 181, 191, 219
Godunov scheme, 216, 218, 597, 600,

603, 604, 612
gradient operator, 2
grid generation, 574
grid speed, 167, 171

Harten–Osher–Engquist–Chakravarthy
GRP K solver, 651

head of rarefaction, 75
heat capacity, 9
heat conduction, 18, 66
heats of reaction, 78
high resolution, 445
high–order Riemann problem, 625
high–resolution methods, 449
HLL Riemann solver, 315, 320, 321,

329, 333
HLLC flux, 322–327, 331–333, 335, 336
HLLC Riemann solver, 315, 593
HLLE Riemann solver, 315, 328, 329
HLLEM Riemann solver, 329
homentropic flow, 94
homogeneity property, 89, 269, 270
homogeneous equation, 533
homogeneous system, 18, 26, 42, 531
hyperbolic conservation laws, 2
hyperbolic PDE, 55
hyperbolic system, 45, 61, 91
hyperbolicity in time, 105, 106

ideal gases, 117
implicit method, 539
implosion, 586, 587, 589
incipient cavitation case, 403

incomplete Riemann solver, 316, 596,
598, 680

incremental form of a scheme, 450
independent variables, 42
infinite resolution, 335
inhomogeneous equation, 535, 536
inhomogeneous problem, 486
inhomogeneous system, 26, 78
initial condition, 42
initial–value problem, 47
instability, 74, 221
integral curves, 377, 381
integral form, 62
integration path, 381, 384, 385, 389
intercell boundary, 177
intercell flux, 180, 184
internal energy, 3, 8, 88
intersection point, 377, 384, 385, 389,

397, 403
inverse of Jacobian matrix, 271
inviscid Burgers’s equation, 42, 64, 181
ionisation, 16
isentropic equations, 30
isentropic flow, 94
isentropic gas dynamics, 65
isentropic law, 94
isothermal compressibility, 9, 11
isothermal equations, 30, 64
isotropic medium, 15

Jacobian matrix, 43, 61, 64, 88, 104,
106, 108, 270, 271, 275, 354, 392,
538

Jacobian of the transformation, 577
jump discontinuity, 55

kinematic viscosity, 38
kinetic energy, 3

large–time step scheme, 424
Lax Equivalence Theorem, 418
Lax–Friedrichs flux, 185, 329, 599,

601–605, 609, 610
Lax–Friedrichs scheme, 172, 184, 226,

244, 249
Lax–Wendroff flux, 186, 599, 601–605,

609–611, 620
Lax–Wendroff scheme, 173
left eigenvector, 44, 92
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linear advection equation, 31, 33, 42,
47, 244

linear schemes, 415
linear system, 31, 42
linearly degenerate field, 77, 83, 95, 107,

111, 382, 395
long time evolution, 669, 671
low density, 227

Mach number, 32, 101, 266, 277,
591–593

Mach reflection, 592, 593
Mach stem, 593
magnetohydrodynamics, 683
mass flux, 121, 124, 145, 146
material derivative, 19
mean–free path, 70
mesh function, 452
mesh generation, 574
method of lines, 439
metrics, 576
MHD equations, 683
modified equation, 171, 172, 249
mole, 11
momentum, 2
monatomic gases, 13
monotone flux, 680
monotone scheme, 172, 173, 226, 250,

521, 568
moving boundary, 223
multicomponent flow, 326
multidimensional flow, 326
multidimensional upwinding, 680
multiphase flow, 683–685
MUSTA approach, 604

Navier–Stokes equations, 17, 680–682
Nessyahu–Tadmor scheme, 598, 599
Newton–Raphson, 127
Newtonian fluid, 15
non–conservative method, 174
non–conservative products, 685
non–conservative system, 674
non–convex flux, 67
non–linear scheme, 447
non–linear system, 42
non–reflecting boundary conditions, 224
normal velocity, 107, 550
NUMERICA, 334, 679, 686

numerical dissipation, 333
numerical domain of dependence, 169,

171
numerical flux, 175, 177, 180, 626,

630, 636, 640, 642, 645, 646, 648,
651–653, 655, 658, 663, 665–669,
679–681

numerical source, 626, 628, 630, 633,
640, 642, 653, 655, 658–660, 663,
665, 666, 668, 669

numerical viscosity, 171, 172, 460,
602–604

one–sided derivative, 164
one–sided differencing, 168, 188, 190
open–end boundary conditions, 224
ordinary differential equation, 47
oscillation–free scheme, 563

parameter vector, 352, 355
particle velocity, 101, 102
passive scalar, 296, 317, 327, 333
path–conservative scheme, 684
phase angle, 167, 559
phase plane, 77
phase space, 77, 381
physical flux, 175
physical space, 576
physical variables, 2
Poisson equation, 39
polyatomic gases, 13
polytropic gas, 12
positively conservative solver, 329
PPM method, 680
Prandtl number, 17
pressure, 2
pressure positivity condition, 127, 143,

403
primitive variables, 2, 91, 109
primitive–variable formulation, 114

quasi–linear system, 42

radiation boundary conditions, 224
random sampling, 240, 241
range of influence, 61
Rankine–Hugoniot condition, 71, 79, 80,

99, 112, 123, 139, 321, 323, 593
rarefaction shock, 73, 75, 366
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rarefaction wave, 74, 76, 85, 96, 98, 107,
111, 118

ratio of specific heats, 12, 13, 88

reaction progress variable, 78

reaction–diffusion equation, 673

real gases, 14

reconstruction, 626, 652, 656, 659–663,
666–669

regular reflection, 592

relative velocity, 99, 102, 120

relativistic gas dynamics, 683

Richtmyer scheme, 186, 226, 249

Riemann approach, 265

Riemann problem, 49, 55, 79, 83, 94,
116, 140, 177, 315, 317–320, 322,
327–329

right eigenvector, 65

right eigenvectors, 44, 92, 94, 104, 110,
298

robustness, 226, 227, 282, 307, 334, 372,
405

Roe matrix, 351, 353

rotation matrix, 105, 109

rotational invariance, 105, 108, 109

Runge–Kutta method, 539

Rusanov flux, 329

scaling factor, 45, 92

shallow water equations, 35, 681

shear viscosity, 16, 38

shear wave, 107, 111

shock fitting, 174

shock Mach number, 101, 103

shock thickness, 71

shock wave, 66, 70, 76, 84, 96, 98, 101,
107, 111, 112, 118, 174

shock–tube problem, 95, 117

signal velocities, 318

similarity solution, 83, 95, 111, 215,
629, 636, 639, 641, 643, 644, 646

slowly moving shock, 228, 405

small perturbation equations, 32, 46

smearing, 171

Sod’s test problem, 129

sonic boom, 70

sonic flow, 32, 296, 333, 366, 377

sonic point, 182, 281, 377, 382, 384, 385,
389, 395, 397

sonic rarefaction, 118, 182, 296, 335,
366, 368, 369, 500

sound speed, 10, 32, 44, 64, 65, 82, 83,
88, 93, 101, 266, 270

source term, 23, 25, 47, 78, 486, 531,
684, 685

species equation, 336
specific internal energy, 5, 13
split Riemann problem, 111, 112
Split–Coefficient Matrix Scheme, 267
spurious oscillations, 173, 226, 440, 445,

447, 501, 573
stability, 167, 171
stability condition, 168
stability of ODEs, 538
standard deviation, 251
Star Region, 56, 58, 59, 80, 118, 129,

139, 144, 390
start up errors, 593
stationary contact, 282
steady state, 40
steady supersonic flow, 151
stencil of a scheme, 169
stiff ODEs, 538
stiff source term, 685
stiffness ratio, 538
stream function, 38
strict hyperbolicity, 45
structured mesh, 597, 599, 605, 609
subsonic flow, 32, 46
substantial derivative, 19
supersonic flow, 32, 46
support of a scheme, 416
Sutherland formula, 16

tail of rarefaction, 75
tangential velocity, 107, 111, 550
tensor product, 4
tensors, 4
test functions, 63
thermal conductivity, 17
thermal equation of state, 6
time level, 166, 177
time step, 182, 183, 221
Toro–Titarev GRP K solver, 651
total derivative, 67
total energy, 2, 3
traffic flow equation, 64, 66
transonic rarefaction, 182
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transonic shock, 384
transparent boundary conditions, 224
Trapezoidal Method, 539, 540
trial solution, 167
true domain of dependence, 171
truncation error, 417
TVB schemes, 456
TVD, 413–415, 425, 431, 438, 440,

451–458, 460, 462–464, 469–484,
486–488, 655, 661, 669–671, 674,
680, 682

Universal Gas Constant, 11
UNO schemes, 439
unstructured mesh, 597, 599, 605, 617,

620, 674
upwind differencing, 168
upwind flux, 679–681, 685
upwind scheme, 165, 175, 597, 598, 600,

603, 604, 612
upwinding the source terms, 532

vacuum, 116, 118, 127, 139, 142, 304
vacuum condition, 143
vacuum problem, 345
van der Corput numbers, 250
vector potential, 38
velocity, 2
viscosity, 33
viscosity coefficient, 66

viscous dissipation, 66
viscous flux limiters, 487
volume expansivity, 9, 11
vorticity transport equation, 39
vorticity vector, 38

WAF method, 587, 593, 609, 669
Warming–Beam method, 173
wave, 49
wave breaking, 70
wave equation, 31
wave jump, 58, 191
wave length, 167
wave number, 167
wave speed estimate, 326–331, 335
wave steepening, 66
wave strength, 58
wave–by–wave limiting, 508
waves in solids, 682
weak shock, 70
weak solution, 63
well–balanced scheme, 685
WENO, 649, 661, 662, 669, 680

x sweep, 546, 548

y sweep, 546, 548

z sweep, 548


